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S.(x) goes through b;} - P{S,(x) stays in band for z > b | F;(x), S.(x) goes through
b; and is in band for z < b}. However the first and third of the factors is the same
forj = 0, 1, and thesecond isunityforj = 1, and therefore P, < P, .IfN\/A/N >
1/N (which is necessary if the test,is not always going to reject) then at least for
height b; ,

P{8S.(z) inside the band for z < b|S,() = by, Fo(x)} < 1.

Thus the test is biased.
I would like to thank Professor D. A. Darling for pointing out the error.
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(Abstracts of papers presented at the East Lansing meeting of the Institute,
September 2-5, 1952)

1. An Extension of Massey’s Distribution of the Maximum Deviation between
Two Sample Cumulative Step Functions. (Preliminary Report.) Cura Kurr
Tsao, Wayne University.

Letz; < 22< ++- <zpandyi < y2 < -+ < Ym be the ordered observations of two random
samples from populations having cumulative distribution functions F(z) and G(x) re-
spectively. Let S.(2) = k/n where k is the number of observations of X which are less than
orequal toz and S,,(z) = j/m where j is the number of observations of ¥ which areless than or
equal to z. The statistics d, = max | 8,(z) — S,,(2) | (max overz < «,) and d; = max | S,(z) —
S’ (2) | (max over z < max (2, ¥,)) can be used to test the hypothesis F(z) = G(z). For ex-
ample, using d. we would reject the hypothesis if the observed value of d. is significantly
large. In this paper, the methods of obtaining the distributions of d, and d, (for small size
samples) are similar to that in Massey’s paper, and several short tables for equal size sam-
ples are included. (Work supported by the Office of Naval Research.)

2. Polynomial Correlation Coefficients. W. D. BATEN aND J. S. FraME, Michigan
State College. :

In this paper is developed a formula for the correlation coefficient pertaining to predict-
ing polynomials. It is shown, when the independent variates are approximately normally
distributed, that the square of this correlation coefficient can be expressed as a finite sum
involving the squares of the averages of the derivatives of the estimating polynomial,
namely, 72 = Ey—@z /k!, where y represents the predicting polynomial. The proof is based
upon manipulations of Bernoulli numbers.

3. Truncated Poisson Distributions. PauL R. RipeEr, Wright-Patterson Air
Force Base and Washington University.
This paper gives a method for estimating the parameter of truncated Poisson distribu-

tions for which some of the data are missing, particularly those which are truncated at the
lower end. Application to a number of actual distributions is discussed.

4. Frequency Distributions for Functions of Rectangularly Distributed Random
»  Variables. StuarT T. HADDEN, Socony-Vacuum Laboratories, Paulsboro,

New Jersey.
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The theory of rectangularly distributed random variables is presented. It is shown how
such random variables can occur in a certain class of controlled experiments arising in the
fields of physics, chemistry, and engineering. On the basis of rectangularly distributed
random variables, arising in observations or process variables, frequency distributions are
developed for quantities which are funetions of such variables. The principal method used
in deriving the frequency distributions is operationally by means of the Laplace transform.
Example applications illustrate how such frequency distributions can be applied in the
analysis of experimental variance.

5. On Truncated Rules of Action. (Preliminary Report.) BENjAMIN EPSTEIN,
Wayne University.

A rule of action of theoretical and practical interest in life testing can be described as
follows: (a) Non-replacement. Start the life test with » items drawn from a population.
Let an integer 79 and truncation time 7', be preassigned. By the nature of the experiment
failures will occur in order. Let X,,» be the time when the roth ordered failure occurs. If
X,o.n < Ty, stop the experiment at Xy, and take action I. If X,,n» > Ty , stop the experi-
ment at T and take action II. (b) Replacement. Same as non-replacement except that a
failed item is replaced at once by a new item. The properties of this kind of rule are investi-
gated in detail when the underlying pdf is of the form (1/6)e=#/%, x > 0, a distribution of
some interest in life testing. The distributions of r, the number of items destroyed before
taking an action, and T, the length of the experiment, are obtained. In particular L(6), the
probability of taking action I (say), E4(r), and E4(T) are obtained. Some tables based on
this theory are obtained. (Work supported by the Office of Naval Research.)

6. The Distribution of the Difference of Two Independent Chi-Squares. JAMES
Pacuargs, University of North Carolina.

As a special case of the problem of the distributions of quadratic forms being investigated
by the author, let T, = X, — Y, , where X, and Y, are independently and identically dis-
tributed with probability density function (pdf) [T'(n/2)]le~»u(»=2/2, 4 > 0. If f,.(f) denotes
the pdf of T , then the following recurrence equation holds: faia(t) = {(n + 1)/(n 4+ 2)}

frs2(®) + {1/[n(n + 2)}82f2(t), n = 1, 2, --- . The exact distribution of T, is derived. If
K.(t) is the modified Bessel function of the second kind of order n, then f,(t) = 7~}{I'(n/2)]1
(| ¢/2 1) DRKG_yp(t]), n =1, 2, --- . Recurrence relations between the cumulative

distribution functions (ecdf’s) of T, are established so that any cdf for odd n» depends on
Fi(x), while any cdf for even n depends on Fs(x), where F,(z) = Pr[| T. | £ x]. A method
is given for evaluating Fi(x) by a series, with bounds on the error committed by stopping
with a given term. Upper and lower bounds for F,(z) are given. (Work sponsored by the
Office of Naval Research.)

7. Partially Balanced Designs with Two Plots per Block. R. C. Bosg, Uni-
versity of North Carolina, axp K. R. NA1r, University of North Carolina
and Forest Research Institute, Dehradun, India.

In many experimental situations, the block size is compulsorily restricted to two, as in
comparing treatments given to two halves of a leaf. Partially balanced designs requiring
only a small number of replications and with m accuracies m < 4 have been worked out.
It has been noticed that the association schemes of any known partially balanced incom-
plete block design with block size greater than 2 will lead to a design of the same type with
block size 2, but a larger number of replications.
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8. Minimax Sampling and Estimation in Finite Populations. OM PrAKAsH
AcGARwAL, Stanford University.

Stratified and cluster sampling from a finite population is considered from Bayes and
minimax point of view. The loss in estimating the mean is taken to be the cost of obhserva-
tions plus the squared error in the estimate of the mean. For stratified sampling with linear
cost function, for instance, it is shown that the minimax sampling plan chooses

n; = { /‘/ (N262/cs) + 1} individuals at random from the 7th stratum and uses the usual

estimate f = E,_IN X ; for estimating E,‘,IN i , where k is the number of strata, and in the
ith stratum, N; denotes the total number of individuals, u; , a, , the mean and variance,
¢; the cost of sampling per individual, X ; the sample mean, and {g} the integer nearest to g.

9. Some Two Sample Tests on the Exponential Distribution. (Preliminary Re-
port.) BEnsamiN EpsTEIN AND Cuia KuErr Tsao, Wayne University.

Let Sin, and Sz, be two random samples such that S;,; is a sample of size n; from a popu-
lation having pdf (1/68:;) exp [—(z — 4:/6)] (: = 1, 2). Let Si; be the set of the
first 7;(r; < n;) smallest observations in S;,; . On the basis of Si,, and Se, , various likeli-
hood ratio tests about the parameters involved can be obtained. The likelihood ratio tests
about the hypothesis 6; = 6, assuming either A; and 4, known or unknown are reducible to
the well-known F-test. The test criterion for the hypothesis A; = A, , assuming 6; and 6,
known, may be reduced to a random variable having an exponential distribution. The tests
of the hypothesis that A, = A, assuming 6; and 6, unknown, are also reduced to F-tests.
Finally the test of the hypothesis A; = A;and 6; = 6. is obtained for the special case r; = 75 .
(Work supported by the Office of Naval Research.)

10. Efficiency of Estimators of the Mean of an Exponential Distribution Based
Only on the rth Smallest Observation in an Ordered Sample. BENJAMIN
EpsTEIN, Wayne University.

Let us assume that the lives of certain items are describable by a positive random vari-
able X, whose pdf is f(x; 8) = (1/6)e=/%, z > 0. A sample of size n is drawn, and we suppose
that the observations become available in order. Let the experiment be terminated at ., ,
the time of failure of the rth item. We raise the question: How much information is lost
if we base our estimate of the unknown parameter 6 only on ., instead of basing it on all
the first r failure-times, #:., ,% = 1,2, - -+ , r? As reported recently the m. 1. estimate based
on the z;,, is given by 8., = U/r where U = 2 iZim + (0 — 1)2;,. . This estimate is ‘‘best”
in the sense that it is unbiased, minimum variance, efficient, and sufficient. It is shown that
unbiased estimates of 8 based on z,.. alone have high efficiencies (= .9) relative to Orom
for values of r < 2n/3. For example, for r = n/2, n = even integer, the efficiency Z2(log 2)?
= .9608. Tables giving the unbiasing constants 8., such that E(8,..2r.») = 8, Var(B,..Xr.),
and the efficiencies Var(:..)/Var(8..X-.) have been obtained for n = 1(1)20(5)30(10)100
and r = 1(1)n. (Work supported by the Office of Naval Research.)

11. On the Theory of Systematic Sampling. III. WiLLiam G. Mapow, Uni-
versity of Illinois.
It is shown that if the elements of the population are constants and the population is

‘monotone then centered systematic sampling is more efficient than random start systematic
sampling; and that if the elements of the population are random variables and the correlo-
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gram is monotone decreasing then centered systematic sampling is more efficient than
random start systematic sampling while if the correlogram is monotone increasing the
contrary is true.

12. The Power of Some Service Tests. LEo A. GoopmaN, University of Chicago.

George W. Brown and Merrill M. Flood have presented in an interesting paper (‘“Tumbler
Mortality’’, Jour. Am. Stat. Assn., Vol. 42 (1947), pp. 567-574) the results of an analysis of
a service test that was used to determine which of two types of glass tumblers had a longer
mean length of life when used in a particular cafeteria. At the end of each week, each
broken tumbler was recorded and replaced by a new one of the same type. Another kind of
service test is based on the procedure of replacing the tumblers in equal numbers; i.e., as
many of type 1 as of type 2, even though they broke in unequal numbers. Still another kind
of service test is based on the procedure of replacing each broken tumbler by a new one of
the other type. The preceding two procedures suggested, may be performed using either
weekly records, or only the final count (the latter is less powerful, but less work). The exact
power of these service tests is computed under the assumption of constant risk. The asymp-
totic power is computed in the more general case (non-constant risk). The several service
tests are compared. This information may be used by the experimenter to decide which one
of these tests to perform, and when to conclude the test.

13. A Minimal Essentially Complete Class of Tests of a Simple Hypothesis
Specifying the Mean of a Unit Rectangular Distribution. ALLAN BIRNBAUM,
Columbia University.

For the problem of testing a simple hypothesis on the mean of a unit rectangular dis-
tribution, on the basis of n (n = 2) observations, explicit characterizations of the minimal
complete class and a minimal essentially complete class of tests are given. Examples of
tests which are best against various classes of alternatives are given; it is shown that the
test with highest power against alternatives far from the null hypothesis has minimum
power against alternatives close to the null hypothesis.

14. Application of Random Walk Theory to a General Class of Sequential De-
cision Problems. (Preliminary Report.) G. E. ALBERT, University of Ten-
nessee.

One of rdecisions d; ,2=1,2, -+ ,r,is to be made concerning the conditional c¢df F(y | z)
of y given z, z and y in a Euclidean space R, by the following sequential experiment. Assign
r 4+ 1 nonnegative functions p;(z),72 = 0,1,2, --- , r, on R with E;_op,-(x) = 1. Perform a
random walk beginning at an arbitrary point z, , with successive points z; drawn from
F(zj.|z;),7=0,1,2, --- , and terminating as soon asone of d; ,72 = 1,2, --- , 7, has been
decided under the following rule: let dy denote the decision to continue experimentation
after any step z; of the walk; at each step ;, j = 0, 1, 2,---, one of the deci-
sionsd; ,7 =0,1,2, --- , r,is made with respective probabilities p;(z;). Let P;(z) denote
the probability of making the decision d; ,7 =1,2, --- ,r, as a result of a walk starting at z.

It is shown that under certain mild restrictions P;(z) = p;(z) + po(x) f P;(y) dF (y | z).
R

Also, the moment generating function and the moments of the duration of the experiment
satisfy integral equations of a similar type; see Wasow, ““On the duration of random walks.”
Annals of Math. Stat., Vol. 22 (1951), pp. 199-216, for a special case. Some methods of ap-
proximating the solutions of these integral equations are established. Application of the
theory is illustrated by a discussion of the sequeuntial probability ratio test of hypotheses
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0, , 62 on the parameter 6 of a general class of cdf G(z; 0) which possesses a sufficient statistie
for the parameter.

15. Nonparametric Comparisons of Populations when Data Are Collected in
Homogeneous Groups. FraNk J. MassEy, Jr., University of Oregon.

The method of comparing two populations when data are paired has been fairly widely
studied; for example, the sign test or ¢-test on differences. This paper presents similar tech-
niques for analyzing data which have been collected in groups of size larger than one from
each of several populations. Comparisons of power curves are made for certain normal
alternatives (Work sponsored by the Office of Naval Research.)

16. On the Reduced Moment Problem. SaLem H. Kuawmis, Statistical Office,
United Nations.

Let ®(z) and ¥(z), ¢ £ = £ b, be any two distinet cumulative distribution functions
which are continuous and differentiable solutions of the reduced moment problem u, =

b
f zrda(z),r =0,1,2, -+ ,2n. A proof is given of the inequality (1) | #(z) — ¥(z) | < Kpa(2),

a

where pn(2) = —| piti |/Da(x), %, = 0,1,2, .-+, n, Du(2) is the determinant obtained by
bordering the determinant | u:.; | by the prefixed row (01 x 2 --- z*) and the correspond-
ing column, and where 0 < K = AB/(A + B — AB) = Min(4,B) = 1with0< 4 =1+
lL.u.b.ege<s(—® () /¥'(2)) < 1and0 < B =1+ l.u.b.ags<b(—¥'(2)/@'(2)) = 1. Inequality
(1) is an improvement of an earlier result by the same author (Proceedings of the Inter-
national Congress of Mathematicians, 1950, Vol. I, p. 569) which is in turn an improvement
upon the corresponding Tchebycheff inequality, i.e., without the constant K (Shohat and
Tamarkin, The Problem of Moments, American Mathematical Society, 1943, p. 72). By a
special differencing method it is shown that the magnitude of the determinant in the nu-
merator of p,(x) is independent of the origin of the moments, and that the determinant in
the denominator is expressible in terms of the moments about the origin z. A method is also
given for constructing an infinite number of cumulative distribution functions defined over
a finite interval and possessing equal moments up to any given order, making use of the
properties of orthogonal polynomials. Inequality (1) is then applied to the special class of
such cumulative distribution functions associated with the Legendre polynomials.

17. Canonical Partial Correlations. S. N. Roy anp J. WHITTLESEY, University
of North Carolina.

Canonical partial correlations between a set of p and a set of ¢ variates, after elimination
of a third set of r variates, is obtained by considering the canonical correlations between
a set of (p + r) and a set of (¢ + r) variates having r variates in common. Suppose S is a
+q+ r) X (p + ¢+ ) p.d. covariance matrix partitioned into submatrices such that the
first row is Su(:p X ) S12(:p X @) Sw( p X 1), the second row is S1,(:¢ X ) S2(:q X @)
Sax(:g X 7), and the third row is Sis(:r X p) Sss(:r X q) Sss(:r X 7). Then the canonical
partial correlations between the p set and the ¢ set are given by the p nonnegative roots
(all lying between 0 and 1) of the equation in 6:

| 0(S1 — S1385'S1) — (S12 — S15854855) (S22 — S2:851855) "1 (St — S2S7S1s) | = 0.

Putting (i) r = 0, (ii) p = 1, (iii) p = 1,¢ = 1, and (iv) p = 1, r = 0, we have respectively
(i) canonical correlations, (ii) multiple partial correlation, (iii) partial correlation, and
“iv) multiple correlation.
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18. A Useful Transformation in the Case of Canonical Partial Correlations.
S. N. Roy, University of North Carolina.

If the distribution problem in Abstract 31 were to be tackled ab initio, that is, without
assuming the distributions of canonical correlations, the following transformation would be
very helpful: X;(:p X n) = Ui(:p X'p) X (DyizeDvs) X (a 2p X n matrix whose first
row is Li(:p X n) and the second row is L:(:p X n)) + Vi(ip X r)Li(ir X n). Also
X.(:qg X n) = (a ¢ X q matrix partitioned into 4 submatrices such that the first row is
Un(:qg — p X p)Un(d — p X ¢ — p) and the second row is Uz (:p X p)Un(ip X ¢ — p)) X
(a ¢ X n matrix whose first row is L:(:p X n) and the second row is L3(:¢ — p X n)) +
Va(:q X 7)Li(:r X n), and lastly X;(cr X n) = Us(:r X r)La(:r X n) where the
(p + ¢ + r) X nmatrix X, which is the reduced matrix of observations is supposed to be
partitioned into X1(:p X n), X2(:¢ X n) and X;(:r X n) placed one below the other, D,
stands for a diagonal matrix with elements (@, , --- , a,), 8 is given by the equation in the
above abstract, M stands for any triangular matrix with upper right hand corner zero, and
L'(nXp+p+q—p+r = (LiLL;Ly) is subject to LI’ = I(p + g + r). This trans-
formation for an X of rank p + ¢ + r can be shown to exist and could also be made one to
one if (i) the 6’s are distinct, and, say, (ii) the first row of U, , the diagonal elements of
U, and of U are all taken to be positive. This will of course happen almost everywhere
(in the sample space). Erasing X3, Us, Ls, Vi and V, we have the case of canonical
correlations.

19. Uniform Convergence of Distribution Functions. EMANUEL PARrzEN, Uni-
versity of California, Berkeley.

We determine conditions under which uniform convergence in a parameter 6 of sequences
of characteristic functions implies uniform convergence in 8 of the corresponding sequences
of distribution functions, which may be univariate or multivariate. We then derive a uni-
form central limit theorem and a uniform weak law of large numbers for sequences of inde-
pendent random variables whose distribution depends on 6. These results may be applied
to obtain conditions for the uniform consistency and uniform asymptotic normality of
maximum likelihood estimates to be compared with those given by A. Wald (‘‘Asymptot-
ically most powerful tests of statistical hypotheses,” Annals of Math. Stat., Vol. 12
(1941), p. 2).

20. Statistical Aspects of a Linear Programming Problem. D. F. Voraw, Jr.,
Yale University.

The Hitchcock-Koopmans transportation problem is to determine a most economical
program of transporting a homogeneous product (e.g., oil) from origins to destinations.
The amounts of the product at the origins and required at the destinations are given to-
gether with the cost of transporting a unit amount from any origin to any destination.
This paper is concerned with the analogous problem arising when the costs are unknown
parameters in a distribution from which a sample is available. An application of the analy-
sis of variance is pointed out, and some results of synthetic sampling are presented. (Re-
search sponsored by the Office of Naval Research.)

21. Maximum Likelihood Estimators and A Posteriori Distributions. J. WowLro-
witz, Cornell University.

Let f(z, 6) be the frequency function at x of each of the independent chance variables
Zi, -+, &, , whose distribution depends upon the parameter 6. Let g(6’) be the a priori
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density function of 6 at 6’, and let h(6’ | z,, --- , z.) be the a posteriori density function
of 6 at ¢/, given 21, - - -, 2, . Under suitable regularity conditions on f and g, h is asymptoti-
cally normal, with mean  and variance [nc(d)]~!, where # is the maximum likelihood estimate

of 6 from x;, --- , z, and ¢(8) = /( 0 log f(x, 6))/86)? f(x, 6) dx. Thus the influence of g dis-
P

appears in the limit. The present result includes that of v. Mises (Math. Zeit., Vol. 4 (1919))
for the binomial case, and those of Kolmogoroff (Izvyestya Akad. Nauk SSSR, Ser. Mat.,
Vol. 6 (1942)) for the normal case.

22. Estimates and Asymptotic Distributions of Certain Statistics in Information
Theory. (Preliminary Report.) Joun P. Hoyrt, U. S. Naval Academy.

In “On information and sufficiency’’ (S. Kullback and R. A. Leibler, Annals of Math.
Stat., Vol. 22 (1951), pp. 79-86), the concepts of ‘“‘information’’ (designated hereafter as
“4”’) and ‘“‘mean information per observation’ (designated hereafter as “I’’) for discrimi-
nation between two hypotheses were defined and various properties of ‘“I’’ were proved
for the abstract case. In ““An application of information theory to multivariate analysis”
(S. Kullback, Annals of Math. Stat., Vol. 23 (1952), pp. 88-102), certain applications of
information theory were made to multivariate analysis but problems of estimation and dis-
tribution were not considered. In the present paper, the characteristic function of the dis-
tribution of ‘4"’ in a sample of n from a normal multivariate population is found and from
this is derived the expected value and variance of ‘4”’. A sample estimate of n “I”’ is
then considered assuming equality of means in the two populations and a known value of
one of the variance-covariance matrices occurring in ‘‘I”’. Using unbiased estimates of
the parameters occurring in the other variance-covariance matrix, the characteristic func-
tion of the distribution of the estimate is found and is then used to show that the esti-
mate’s asymptotic distribution is given by the chi-square distribution with k(k 4+ 1)/2
degrees of freedom.

23. On Testing One Simple Hypothesis Against Another. LioNeEL WEIss, Uni-
versity of Virginia.

Given a sequence (X;, X, --+ ) of independently and identically distributed chance
variables, Ho is the hypothesis that the probability density function of each chance variable
is fo(x), H: is the hypothesis that this function is fi(z). A ‘“‘generalized sequential proba-
bility ratio test”’ is defined as the usual Wald sequential probability ratio test, except
that constant limits are not necessarily used; in other words, after the ¢ th observation
is taken, accept H, if the probability ratio is not greater than B; , accept H, if the ratio is
not less than A;, otherwise take another observation, where 0 < B; < A:. Given any
test T of H, against H, , not using randomization, and such that the probability that T'
will terminate is 1 when either H, or H, is true, then under mild restrictions on fo(z) and
fi(z) the following theorem holds: There exists a sequence (Gy, G, --- ) of generalized
sequential probability ratio tests such that Pr(sample size, when using G; and H; is true,
is no greater than n) = Pr(sample size, when using T and H; is true, is no greater than n)
for all n, all integers j, and ¢ = 0, 1; and also, as j approaches infinity, lim Pr(H; will be
accepted when it is true and G; is used) exists and is not less than Pr(H; will be accepted
when it is true and 7T is used), for 7 = 0, 1. If T is a truncated test, a stronger theorem
holds; there exists a generalized sequential probability ratio test, also truncated, enjoying
the above advantages over 7'.

24. Extreme Value Theory for m-Dependent Stationary Sequences of Continuous
Random Variables. Geor. Warson, University of Melbourne.
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The distributions, and their limits as N — «, of the order statistics of N successive
observations in a sequence of independent continuous random variables with a common
distribution function, are well known. The present paper considers the same problem for
sequences governed by stationary m-dependent probability laws. A stationary sequence is
called m-dependentif P(xo S ko | 21 S ke, +o+ ) =P@oS ko | 21SFkoy,y oo ,Zem S kem).
These distributions are found in the géneral case here and it is shown that, as N — «, their
limiting forms are the same as the distributions obtained in the case of independence pro-
vided max {P(z; > k,z; > k)/P(z > k)} >0k — B,k < 8) and max {P(z; < k, z; S k)/
P(x 2 k) > 0(k—a,k 2 a), where the maximum is taken for¢,j =1, --- ,m + 1,4 = j,
and where (a, B8) is the range of the random variables z;(t = -+- , —1,0, 1, --- ). Either
or both of « and 8 may be infinite. These latter conditions are shown to be satisfied in all
stationary normal processes. Thus the results of this paper give the limiting distributions
of the order statistics in a sample of successive observations from any normal stationary
autoregressive process.

25. Sequential Tests and Estimates for Comparing Poisson Populations. ALLAN
BirnBaUM, Columbia University.

The problem of testing a hypothesis ony = \z/A; is considered, where A; , A3 are the means
of two Poisson populations. It is shown that no nonsequential test of Hy : v = v against
H, :v = v; can have size uniformly £ « and power uniformly = 1 — 8(1 — 8 > «); a simple
sequential test (not of the Wald type) is given which has these requirements of size and
power against one- or two-sided alternatives. The generalization to the problem of classi-
fying v into one of k intervals is indicated. Comparisons with the Wald sequential tests of
H, :v = v, against one-sided alternatives and of Hy : v = 1 against two-sided alternatives
are made. The latter one-sided tests are constructed by use of a simple sufficient condition
for the existence of a sequential probability ratio test of a composite hypothesis Hy : 0 € w ,
against a composite alternative H; : 6 € w; , of size approximately « for all 6 £ w, and power
approximately 1 — 8 for 6 £ w; . Application of this condition to problems of comparing two
populations with Koopman-form distributions also gives tests which include those given
by Girshick (‘“‘Contributions to the Theory of Sequential Analysis. I,”” Annals of Math.
Stat., Vol. 17 (1946), pp. 123-143), and some new tests for comparing variances of two
normal populations. Tests of equality of ratios of means of two pairs of Poisson popu-
lations are given.

26. Sequential Decision Problems in the Stationary Case. J. Kierer, Cornell
University.

Results of Wald and Wolfowitz (‘‘Bayes’ solutions of sequential decision problems,”
Ann. Math. Stat., Vol. 21 (1950), pp. 82-99; also, Chap. 4 of Wald’s Statistical Decision
Functions, John Wiley and Sons, 1950) are generalized to the case where the chance variables
are no longer assumed independent, but instead form a stationary process. Questions of
measurability and existence, recurrence formulas, characterizations of Bayes’ solutions,
etc., are simplified by first considering only nonrandomized decision functions and by then
using results of the same authors (“Two methods of randomization in statistics and the
theory of games,” Ann. Math., Vol. 53 (1951), pp. 581-586) to extend the conclusions to
randomized procedures. The essential difference between the independent case and, e.g.,
the stationary Markoff case, is that in the latter a Bayes’ solution may depend at each
stage on the last observation as well as on the a posteriori distribution. For example, a
Bayes’ solution for testing between two simple hypotheses in the Markoff case is character-
ized by two functions B(z) £ A(x) (which under slight restrictions are continuous) which
. are used after m observations the last of which is z, by comparing the probability ratio
to B(xn) and A (zm). Unlike the independent case, the B(x) and A (x) cannot in general be
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replaced by constants independent of z; nor does every pair B(z), A(z) constitute a Bayes’

solution relative to some weight function, cost, and a priori distribution- (as does every
pair B, A in the independent case) ; nor need a Bayes’ solution possess the optimum property
of the independent case.

27. Random Functions Satisfyirfg Certain Linear Relations. II. SuprisE G.
GHURYE, University of North Carolina.

The particular case k = 1 of the problem mentioned in Part 1 is considered here in detail.
Let X(t) be a p-dimensional, real-valued random function, defined and continuous in
probability for all ¢ in an interval [ty , T]. Further, let there exist a real-valued, p X p
matric function A(h), defined and continuous for & > 0, such that if we write Y(k; h) =
X (to + kh) — A(R)X (to + [k — 1]k), then for any positive k and any integern (nh = T — to),
X(t), Y(A; k), --+, Y(n; h) are mutually independent. Then it is shown that A (k) can be
written in the form ¢5%, where B is a constant matrix, and that X*(t) = ¢~#¢X(?) is a random
function with independent increments (r.f.i.i.). It is also shown that if Z(¢) is any p-di-
mensional r.f.i.i. and 4 (t) i‘s a p X p matric function, continuous and of bounded vari-

ation, then the integral A(v) dZ(v) exists as the unique limit-in-distribution of the
to

sequence of approximating sums. From this, a one-to-one correspondence (in distribution)

between the random functions X(f) mentioned above and the random functions

¢
/ et—B dZ(v) is established.

to

28. Optimal Designs for Estimating Parameters. (Preliminary Report.) HERMAN
CuERNOFF, Stanford University.

The following is a generalization of a result of Elfving (see ‘“Optimum allocation in
linear regression theory,” Annals of Math. Stat., Vol. 23 (1952), pp. 2565-262). It is desired
to estimate parameters 6; , 63, - -+ , 8, . There is available a set of experiments which may
be performed. The probability distribution of the data obtained from any of these experi-
ments may depend not only on 6;, 62, --- , 6, but also on the nuisance parameters 6.1,
0s42, ++* , 0% . One is permitted to select a design consisting of n of these experiments to be
performed independently. The repetition of experiments is permitted in the design. Then
it can be shown that under mild conditions and for large n locally optimal designs may be
approximated by selectingaset of r £ k + (k — 1) + -+ 4 (k — s + 1) of the experiments
available and by repeating each of these r experiments in certain specified proportions.
The criterion of optimality used is a natural one involving the information matrices of the
experiments.

29. The Distribution of the nth Variate in Certain Chains of Serially Dependent
Populations. L. V. ToraLBALLA, Marquette University.

The following is a representative of the problems considered: Let Py, Py, -+, P, be a
sequence of normally distributed populations, the first having a mean m, and variance o,
each population after the first having a mean m; = ax;_1 + b, where z;_1is a random value
of the variate in P;_; and a variance o7 . One seeks the absolute distribution of the variate
in P, . In this particular case it is found that the absolute distribution of the variate in P»
is normal, with a mean bEr~%ai 4+ am, and variance 27 jc¥ol_; .
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30. An Experimental Method for Obtaining Random Digits and Permutations.
J. E. Waisg, U. 8. Naval Ordnance Test Station, China Lake.

This paper presents an easily applied method for obtaining small numbers of random
binary digits and random permutatiors. The procedure consists in flipping ordinary minted
coins and combining the results of the flips in an appropriate manner. Digits and permuta-
tions obtained according to the method of this paper can be considered sufficiently random
for any practical application. It appears likely that these digits and permutations are much
more nearly random than most of those now available in printed tables. Moreover, any
possibility of bias from misuse of tables is avoided. The method presented is particularly
suitable for use with respect to experimental designs. Only a few random permutations are
ordinarily required for a given experimental design.

31. Distribution of Canonical Partial Correlattons. S. N. Roy, University of
North Carolina.

By certain general arguments the distribution of canonical partial correlations in random
samples of size n + 1 from a (p + ¢ + r) variate normal population (p £ ¢, p + g+ r < n)
can be shown to be of the same form as that of canonical correlations in random samples
of size n 4+ 1 — r, and involves as parameters (on the non-null hypotheses) the p roots (all
lying between 0 and 1) of the equation in 6.

| 6(Zn — Z0Za'Zh) — (T — ZuZ5 Zh) (Sn — ZuZa'Zh) 1(3h — ZuZalZh) | =0,

where the population co-variance matrix = (supposed to be p.d.) is partitioned in the same
manner as the sample covariance matrix S of Abstract 17.

i

In the abstract ‘“On judging all contrasts in the analyms of variance’ by Henry Scheffé
(Annals of Math. Stat., Vol. 23 (1952), p- 477) the equation 2, ¢; = 0 was printed incorrectly
(due to a compositor’s error) as =¥ ¢;6; = 0 on line 5.

o
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Readers are invited to submit to the Secretary of the Institute news items of interest
Personal Items

Mr. Fred C. Andrews has been appointed a Research Associate in the Applied
Mathematics and Statistics Laboratory, Stanford University, Stanford, Cal-
ifornia.

Edward W. Barankin, Assistant Professor at the Statistical Laboratory, Uni-
versity of California, Berkeley, has been promoted to Associate Professor. For
the academic year 1952/53, Dr. Barankin will be on leave, working at the Insti-
tute for Numerical Analysis, Los Angeles.

Z. W. Birnbaum, who has been on leave from the University of Washington
for the academic year 1951-1952 and had a visiting professorship in the Depart-
ment of Statistics at Stanford University, has returned to resume his duties at
the University of Washington.

Dr. K. A. Bush, formerly Associate Professor of Mathematics at State Uni-




