NOTES

A MARKOV CHAIN DERIVATION OF DISCRETE DISTRIBUTIONS

By F. G. FosTER
Magdalen College, Oxford

Let an irreducible, aperiodic Markov chain' have the matrix of transition
probabilities, A = [p;;] (4,7 = 0, 1, 2, - - -). Then as usual we shall have

v

pi; =0 for all z and 7,

Dopii=1 ’ for all 4.
j=0

It is known ([1], p. 325) that the nth power of A, A", tends to a limiting matrix
as n —
lim A» = B,

and B will either be null or have the identical Tows,
X = (xo’xl) “.))
such that z; > 0 for all 7 and Z“,Lo z; = 1. Moreover we shall have
xA = x.

In this way we may make correspond to any matrix A, of the type under con-
sideration, either the null vector or a probability distribution represented by x.
Conversely, to any distribution x there will correspond a matrix A (not neces-
sarily unique). A method of constructing such a matrix is given below and illus-
trated with some examples.

Let {a;} (£ =0,1,2, ---) be a sequence of positive numbers and define 4, =
dtoa;(m=0,1,2 ---). Now let

[a. o
i 4 0o 0 O
Qo ay (12
- — = 0 o0
Ao A 4 4
ay a1 (12 ag 0

A; A, A; 4,

Then A satisfies the usual conditions for being a transition probability matrix;

1 For definitions of all terms used see [1].
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moreover it is clearly irreducible, and, since its diagonal elements are all positive,
it is also aperiodic. Now suppose x is a vector such that

xA = x.
s

If we regard this as an equation in x, we find that in our special case the solution
is easily obtained. We have
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It follows by induction that

8
Q
~
)
3
v

Tn = Ly ————————— n 1,
and s0 x is uniquely determined, apart from a common factor. For x to be a dis-
tribution, we must have in addition

0

S gy a
=2 @0 =@+ @2, .
n=0 am1Ag s Any

Thus
_ =2 Ay * - Gy
%= 1/<1+nZ-IA0"' An-l>’

and it follows that the matrix B (= lim A™) is non-null if and only if

ay **° Qp

—_— <L >
n=1 AO A An—l ’

and each row of B will consist of the distribution x.
Conversely, if we have given a distribution x, we may calculate the sequence
{a;} which possesses the required property. We have only to put

An Tn

?
A n—1 Tn—1

S
v
—

Then we find as required that

al oooa
= z,.

Ty =
Ay - Any

The sequence {a;} is now easily calculated. We have

Z.
4, — An—l = O0n = An—l ~.
Ln—1
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Therefore

A, = A,._1<1 Ln ),
Tn—1

An= a0ﬂ<1 + % ).

t=1 Ti-1

and, by iteration,

Hence, putting (as we may, since a common factor is unimportant) ay = 1, we
have

Tp—1 i=1 Ti-1

n—1
an=x"H(1+x’>, n =1

The above procedure may be given the following interpretation. Consider a
particle performing a random walk on the integers 0, 1, 2, - - - in such a manner
that when in position n it has probabilities in the ratios

Gp:Q1:Qg: *** (0pq1

of jumping at the next move into one of the positions 0, 1, 2, - -+, n 4 1. That
is, the particle can move either one step along or back to any previous position.
The distribution {z;} may then be interpreted as giving the asymptotic prob-
abilities for its position after a large number of moves, and we have shown how
the sequence {a;} may be calculated to give any required asymptotic distribution
{z:} (with z; > 0 for all 7).

In some cases where x is a recognised distribution the sequence {a;} has a par-
ticularly simple form.

Example (a). The Poisson distribution. Let us take

Tn = ¢ \"/nl, A >0, n=20,1,2+--.
We find that

an=7'%>\(x+1)”_()\+n_1), n=l,2,""

with @p = 1. Thus the nth row of A is a truncated negative binomial dis-c
tribution having n + 1 terms. In particular, when A = 1, A takes the very
simple form wherein a, = 1 for all n, and the rule governing the motion of the
particle is that when it is in the nth position it has equal probabilities of jumping
into any of the positions 0, 1, 2, --- , » 4+ 1. We have then the result that its
asymptotic position is a random variable with the Poisson distribution {1/(en!)}
n=20,12,--+).
Example (b). The negative binomial distribution. Let us take

Zo = (1 - B))‘a
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where 0 < 8 < 1,A > 0. We find that

a,,=)\—_j_n—_lﬁ(1+)\5)---(n—1+[)\+n—-2][3), n=12---,

n!
with @, = 1. In particular, when A= 1, we have
an = (1+ 8)"78, n=12--,
with @y = 1, and each row of A is a truncated modified geometric distribution.
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ON MINIMUM VARIANCE ESTIMATORS!

By J. KiErER
Cornell University

Chapman and Robbins [1] have given a simple improvement on the Cramér-
Rao inequality without postulating the regularity assumptions under which the
latter is usually proved. The purpose of this note is to show by examples how a
similarly derived stronger inequality (see equation (2)) may be used to verify
that certain estimators are uniform minimum variance unbiased estimators.
This stronger inequality is that which (under additional restrictions) was shown
in [2] to be the best possible, but is in a more useful form for applications than
the form given in [2]. For simplicity we consider only an inequality on the vari-
ance of unbiased estimators, but inequalities on other moments than the second
(see [2]), or for biased estimators, may be found similarly. The two examples
considered here are ones where the regularity conditions of [2] are not satisfied,
where the method of [1] does not give the best bound, and where the method of
this note is used to find the best bound and thus to verify that certain estimators
are uniform minimum variance unbiased. (For the examples considered this also
follows from completeness of the sufficient statistic; the method used here ap-
plies, of course, more generally.)

Let X be a chance variable with density f(x; 6) with respect to some fixed o-
finite measure u. (6 € @, x € ). We suppose suitable Borel fields to be given and
f(x; 6) to be measurable in its arguments. @ is a subset of the real line. For each
6, let @ = {h| (6 + h) cQ}. For fixed 6, let A; and \; be any two probability

measures on  such that E:h = hd\; (h) exists for 7 = 1, 2. Then, for any
Q¢
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