EXTENSION OF A METHOD OF INVESTIGATING THE PROPERTIES
OF ANALYSIS OF VARIANCE TESTS TO THE CASE OF RANDOM
AND MIXED MODELS

By F. N. Davip anp N. L. JouNsoN

University College, London

Summary. Results are given whereby the methods described in an earlier
paper [1], dealing with the parametric case, may be applied also to the case of
random, or mixed random and parametric components.

1. Introduction. In a recent paper [1] we set out a method for approximating
to the power function of tests of the general linear hypothesis under fairly wide
conditions of non-normality and non-uniformity of residual variance. In many
analysis of variance problems, it is more reasonable to replace some or all of the
parameters by independent random variables with zero expected value. (This
is the basis of the well-known ‘components of variance’ model.)

In the present paper we give certain general formulae which will facilitate
the application of the method described in [1] to such random or mixed models.
Our results are presented in such a form that they refer to the various sums of
squares suggested by the analysis appropriate to the parametric case. Since,
however, the same sums of squares are commonly used (though not necessarily
in the same way) in the analysis when a random or mixed model is envisaged,
the results given will be appropriate in such cases, though care must be taken
in their interpretation.

It may be noted that this extension of our method covers the case of the
general linear hypothesis with correlated residuals, since such residuals may be
represented as the sum of

(i) independent residuals for each observation, and

(ii) independent random terms common to different observations (i.e., occur-

ring in the same way as do parameters in the general linear model).

2. The theoretical model. In [1] we used a theoretical model of the form
T; = ailol + e + ai,t—pos—p + at‘,s—p+loa—p+1 + o0+ aub, + 2
(i’: 17 ce 7")7
where the 6’s were unknown parameters and the 2’s were independent random
variables each with zero expected value. The hypothesis to be tested specified

that fpppr = -+ = 6, = 0.
We now replace 6,41, =+ , 6i—p, Ospirtr, *++ , 0(g < s — p, 7 < p) by
independent random variables y,41, *** , Youp, Yompir+1, *** , Ys (each with

expected value zero) so that the theoretical model is of form
Ty = aaby + -0+ Giby + Gigprlon + -0 F CGioplYsp
+ az‘,o—p+loa——p+1 + e + al’.o—~p+ron—p+r

+ ac‘,a—p+r+lyn—p+r+l + ce + aiayc + %
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The hypothesis to be tested specifies
Oppt1 = +* = Oppytr = 0,
4 (ys—-p+r+;) = .-+ =9(y) =0.

As in [1] it is also assumed that the matrix A = (a;;) is nonsingular and the
2’s are mutually independent. We further assume that the y’s are independent
of the #’s.

3. Method of investigation. It will be recalled that in the parametric case the

test of the hypothesis H(0,—p41 = -+ = 6, = 0) was based on the criterion
(Ss/p)/(Sa/(n — 8)), where S, is the minimum value of
E?=1 (s - aaby — -+ — at"sec)z
with respect to 6;, --- , 6, ; and S, + Sp is the minimum value of
Dt (@i — anb — 0 — Giapbeyp)’
with respect to 6,, -+ , 6,—p. The upper 10029, limit of the test criterion

could be obtained from tables of significance limits of the F-distribution.
The test could formally be expressed as

reject H if (So/p)/(Se/(n — 8)) > Fp,n-s.a .
Investigation of properties of the test reduces to evaluation of the probability
P{(8/p)/(8a/(n = 8)) > Fp,ns.a}

which can be written in the form
P{8, — C8, > 0},

where C = 1 + pFpns.o/(n — ) and S, = S, + S, . This probability is ob-
tained approximately by finding a frequency curve which has the same first
four moments as S, — CS,. It is assumed that the theoretical model (1) is
adequate in the number of parameters and/or random variables which it contains.
Following our previous work it may be shown that S, and S, may be written

in canonical form as
n

Sa = 2 mij 22

=1
and
S, = 20 mij (e + D)z + D)),
1, )=
where
, 8— p+r 2
Di= 2 aube+ 2,  auy
t=8—p+1 t=8—p+r+l
=Ai+Y1 (i=1,---,n)

and the m’s and m'’s depend only on the a’s (see Section 4).
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4. Definition of determinants. Before turning to a consideration of the moments
it will be convenient to summarise in determinantal form the various quantities
which are required.

As before
.
n
Gk = D aijau
i=1
and
1
Gy -+ Gy Gy te Gl,s—? |
A = . y A, .
Gls N G’ss I Gl.n—.p cre Gs-—p.s—l’
Let
1 @ir c Gieep | 0 Qi1 0 Gisp
) @i Gll . Gl,s—p , a1 Gll cee Gl,t—P
Ay = . . . » o %= : : :
@ sp GI,S—p .o Gs_p_s_p ! Aj,s—p Gl.s—p tee Gs—p.a—p
Then
’ ’ ’ 3 B
mi; = —aij/A vET

mi; = 1 — aii/A = Al/A.

Similar quantities without primes may be expressed as similar determinants of
order (s + 1) instead of (s — p + 1). In this present work we shall also use

0 Candi - 3 aupds

’ 1 2251 Gu ce Gl.S—-p 2 ’
T = |- Emia,
yo
1 Gisp Grop + Gipep
2 §
Z A Z aind; - Z i pop A

1 T 1

1 Z anA; Gn te G1o-p n
’ 2 ' ’
Ay = o~ ' = Z m,-,-A.-A,-.
a : : : =1
Z Qi s—p A; Gl,a—p v Ga--p,a—-;n
1

Similar quantities without primes which may be expressed as determinants of
otder (s 4+ 1) will have zero value. So far the determinants are the same or are
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directly comparable with those of our previous paper. We now introduce new
determinants and note in these definitions that ¢ and w may run from
(s — p+ r -+ 1) to s only. We define

s
G Gy - 3—p,t At @1 Qie—p
, 1 Glu Gll e Gl,s—p , 1 Glt Gll e Gl,s—p
Tw = N . . ’ Qi = A . . ’
Gt—p.u Gl,s—p e Gs—p.s—-p Ga—p.t Gl.s-p e G«—p,s—p

Z aie A Z and;--- Zai.a—pAi
’ 1 G Gun o Grep

Ga—p,t Gl.s—p M Gc-—p.a-p

Similar determinants of order (s + 1) may be written down to represent
quantities without primes but these will be zero.

5. Moments of S, and S,. We write
#(S; %) = &[(S: — &(8,))'(Sa — &(S))"]

with x(8;87) for the corresponding cumulants. It is easy to see that the moments
of S, are the same as those indicated in [1] with the appropriate determinants
now put equal to zero. For example, (all summations running from 1 to n)

8(Sa) = Z: Mii Kai
k(82 = Z; miikg + 2 ; ; Mij Kai Kej
k(S5) = ’Z méike: + 12 ; ; Mis M K Ko + 6 z': ; Mg Mij My Kai Ksj
+ 4 Z Z, meiksikg; + 8 Z ZJ: Zz M5 Mgy Mgy Ko Koj Kat

and so on, the rth cumulant of z; being defined as «,; for r = 2. Again it is a
simple matter to show that «(S, Sz) is the same under this treatment as it was
in [1] if the appropriate changes are made in the determinants. Thus

k(S:S.) = D mumiks + 22, D M M5 K Koy + 2 D M8 ks,
7 i T

where §; has A’s instead of D’s in its definition. The moments of S, and the
cross cumulants of S; and S, containing a power of S, greater than or equal to
2 can be derived by elementary algebra or by a simple combinatorial method
from the moments of S, previously obtained. Let &, be the rth cumulant of ¥, .
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We have then
&(S,) = Z Miikes + Aa + ; Tt Kat

where { may run from (s — p 4+ r 4+ 1) to s only. Again
k(S = D mitku +2 2, 2, mitkaine + 4D, miidiky + 4 2‘) 83 Ka
i i i %
+ 42 Tk + 220 X Tiikufa + 4 30 Tuhif
u
+4 ; AR + 420 }; Q1% Rae ko

This last expression demonstrates how the moments of S, can be obtained
directly by substitution from [1]. We write down the expression for (S?) from
[1] and add to it expressions in ¢, or in ¢ and u, which 'we obtain by substituting
%re fOT ki , Tt for my; , and so on. We add further the terms in %.,; by making
the appropriate substitution for the cumulants and writing @i, for m:; . This
combinatorial method is obvious if the form of the various determinants is
considered. We have worked out the cumulants and cross-cumulants up to and
including those of the fourth order by two different methods but they are so

easily derived by the above process that we do not reproduce them here in full
generality.

6. Special cases of normality. If it is assumed that z; and y; are both normally
distributed then from a knowledge of the moments it is possible to study the
effect of heterogeneity of variance on the power function of the test. For the
special case of normality we have

&(8s) = Emii"zi,
&(8,) = D mime + A4 + 2 Titkae,
k(S2) = 2 22 miame;
k(SaSy) = 2 D mismijkaika;
k(87) = 2 20 mifiama; + 4 20 03k + 2 20 TiuRuikow + 4 20 AR
k(8% =8 Z M MM j1K23K2 K2l
k(8,82) = 8 D mimumjmeiaar ,
k(S28,) = 8 2 mimim jkemoina + 8 D miSidikaika; + 8 D M ekaikajne
k(82 = 82 mimimimmsiiar + 8 2 T T uoRaiRauka
+ 24 3 miQiQmakasar + 24 D QT tukeiRaikow + 24 D M58 Kaiko;
+ 48 2. QidiAuaie + 24 20 TruAtAuRarkou
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K(S:) = 48 Z M i MM MM 1K 2K jK21K2k o
x(S,8%)
x(S38%)

!’
48 D i Mg g kK Kaikak 5

48 > mggm;lmjkmlk'ﬁ%"ij"zl"zk + 48 D mimaQ; Qs jkaikos
+ 32 2 mimadidiaimana
k(S%8,) = 48 D MMM KK Kaakak + 96 > mgjmuﬂg'tﬂszuszKzu?zt
+ 48 3 M QR T ke Rackow + 96 D mimad dkziaiat
+ 96 D, M8 Q5cA kaikaiis
K(Sf) = 48 Z m;;mglm,;‘km;sziszKﬂKZk + 192 Z m;jmglg;tg;t"%"Zj"Zl'-‘Zt
+ 288 3 mi Q5 QT tukaitajRasion + 192 D Qi QT 0T wokaiRackouko
+ 48 X T1Tr Ty ToukeiReafankow + 192 D mg‘;”ngzs;lﬂkzikzszz
+ 192 3 Q5010 KaikaiRar + 384 D mi Qi A toinasRae
+ 192 37 QI QLA A wkaiRerkon + 384 20 Q1T inbiA ukaikarou
+ 192 X ToT i Ay AuRerkoukse -

For ease of printing each summation sign stands for one, two, three or four
separate summations as required by the subscripts. In these summations <, 7,
1 and % run from 1 to n, ¢, u, v and w run from (s — p 4+ r 4+ 1) to s. A further
simplification will be to let 8; be zero and the summations for ¢, u, v and w run
from (s — p) to s. In this latter case the alternative hypotheses to that tested
specify the existence of certain random variables but not any parameters.

7. Special cases of correlated variables. As an illustration of the use of the
foregoing theory when the variables are correlated we consider the test for the
linearity of regression in a bivariate table. The standard case where departure
from linearity is represented by parameters was studied in [1]. It will now be
supposed that the deviations from linearity form a simple moving average
series of random variables. Let z;; be the dependent variable and W, the inde-
pendent variable (¢ = 1, «++ ,n, ;¢ =1, - -+ , s). We suppose that the model is

T = 0 + (Wt - W)oz + yr + RyT—l + 24,

where T = ¢ + 2 and R is a known constant. We shall assume that kr(2:1) = &
(i.e., the distribution of z;; depends only on the array). The fundamental sums
of the squares are

Sa = Z, > (e — &), 8= 2; 2z — &, — bW — W},

where

;nt(Wt - W (& — £.)
b= Z (W, — W)Z

t
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Evaluation of the determinants gives
P,T'l' = n + Rznt+1 - N—l(nt + Rnt+1)2 - (Z ntwi)—l(ntwt + Rnt+lwt+l)2,

where w, = W, — W and n,41 = Q. We have, therefore, using the determinants
a;; which have been worked out in [1],

_ 1 w} )
S(Sr) = Zn; (1 N" m Kat

2 2
+ Z [n‘ + R? Neg1 — (ne + Rnyy) _ (newe + Rm+21 Wiy ]E"
N Z e We

with the convention that n.s1 = 0. Again it may be shown that

’ = _ (e + Rngyd) (negs + Rnt+2‘)
Trr4 = B N

_ (newy + Rnepr Werr) (e Wepr + Beys Weps)

> nwh

and

o= (e + Rnes) (nu + Rnuyr) _ (wr £ Rne Wet1) (M Wy + R7uy1 Wurr)
e N 2 mw:

where U =u+2@w=1,---8)and |T — U | = |t —u|>1 Alsoifin

terms of our original notation (Sections 2-6) ¢ is in the ¢th group,
Q=1 — Ny + By wy(me wy 4+ RNyyr Weyr)
(¥4 “—‘N_“““‘ Z Iy 'wf ’
if 7 is in the (¢ 4+ 1)th group,
Q. =R — Ny + By we(ne we + BNy Wepr)
iT = _N Z e w% ’
and if ¢ is not in the ¢th or the (¢ 4 1)th groups,

ne + Ry We(mewy + Ry Wi41)
— ———————— 2 .
N > new

’
Qir =

For brevity we write
1 We Wy
¢tu = F-I-Zntw%’

_ (¢ + Rneyr)(nu + Rnugs) + (newy + Rnps Wepr) (M Wo + Bui1 Wuir)
Xtu = N Z ne w%

_ ™ + Rngpa + wy(ny we + Rfgyr Wey1)

= Sl
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Then

k(8) = 2 nll — )k + 2 m(l — 2 G + 2 2 NuBuake
+ Z (ne + R'Mup1 — Xee) Rar + 2 Z (ne + Rnep)(ne + Ry — 2xu)far
+ 4 2 Rngp(Rnep — 2xees)Kerke,rgn + 2 > Xiukerkeu
+ 3 e — Wk + nenRA — 2Rk + 2o nubucaor.

The higher cumulants follow in a similar way.
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