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The quadratic ¢ = 1 has solutions
3z £+ v/ Q?éT_S
fi .

(10) y =

As v is known to be greater than z, only the positive sign in (10) need be con-
sidered. The result so obtained is everywhere greater than x, and positive for
all z > —1, giving the result

R. < 4/{3z + V/8 + 22}, z > —1

4. A corollary on the weight function in probit analysis. The function

Y(z) = / f e du f e du

is well known as the weight function in probit analysis. From tables it is obvious
that ¢ is a decreasing function of 2°. Hammersley [5] has given a rather com-
plicated proof of this result, and has remarked on the apparent lack of a simple
proof. In fact

Y(@){r(x) — »(—7) — 2z}
22y (x){\(x') — 1}, where — |z| <2’ Z|z]|,

¥'(x)

by the Mean Value Theorem, and, since y is positive by definition, the result
follows immediately from (3) above.
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ON A DOUBLE INEQUALITY OF THE NORMAL DISTRIBUTION!

By RoBerT F. TATE
Unaversity of California

In this note we shall extend certain results of R. D. Gordon and Z. W. Birn-
baum concerning bounds for the normal distribution function.
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Gordon [1] obtained the inequalities

T 1 —3z2 f © 1 _32 1 1 —4s2
= < — - .—= f X
Al vt =L vme #=5yge o e>0
Birnbaum [2] improved Gordon’s lower bound, obtaining the inequality

- 1 ® 1
w.vzze—hzé‘/ \/2_ —*t dt for r = 0.
s z m

It was pointed out by Feller [3] that

2 1 2 J1 1  1-3 1-3- ---(2k — 1)
f\/z—f" v = '{5‘5"'?*“*“” P2 }

where for £ > 0 the right side is an upper bound when k is even and a lower
bound when k is odd. It is evident that Feller’s expression does not constitute an
improvement of the bounds of Gordon and Birnbaum when 0 < z < 1. The
following theorem gives new bounds for
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THEOREM:
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For the case x = 0 the lower bound exceeds that of Birnbaum for some z and
is exceeded by it for other values of z. The upper bound is an improvement on

the result of Birnbaum and Gordon for all z. The inequalities for z < 0 are of
course obtainable immediately from the relation

—\72 edt=1-— lr_ g,
-z ™

The proof of the theorem will consist in proving two lemmas and then com-
bining the results. In what follows we shall use the notation

1 .1,
fl@) = \7’2—1r—e_*“ and F(z) = .[wx/i;e—“ dt.

Lemmal. @F — 1)f=2 F(1 — F)xzfor0 < z < o with equality at 0 and .
Proor. Let g = (2F — 1)f — F(1 — F)z. Then,

(1) g =2*-—FQ1—F), ¢ =—4zf+ @QF - ).

It may easily be shown that g is continuous with derivatives of all order, g(0)
= g(w) = 0, and ¢’(0) > 0. From this we see that unless g is nonnegative for
all positive z, there exists a minimum z, for which g(zo) < 0. Now, from (1) and
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the definition of g, we have g” < F(1 — F)xzy — 4xf” < —2x0f> < 0, which is

impossible. Hence, g is nonnegative for all positive z, which completes the proof.
Lemma 2. F(1 — F) 2 «f°/2 for 0 £ x < « with equality at 0 and .
ProoF. Let h = F(1 — F) — =f*/2. Then,

2). W =fQ1 —2F)+ xxf’, & =f(x — 2 — 2x2’) — zf(1 — 2F).

It may be shown that h is continuous with derivatives of all order, h(0)
= h() = 0, 1'(0) = 0, and A”(0) > 0. Let y, be an extremum of k. Then, from
(2) h” = fi(r — 2 — wyt) at the point y, . Hence, % < (v — 2)/v/2if yoisa
minimum and o = (r — 2)}/4/2 is ¥ is a maximum, so that if a minimum and
a maximum both exist, the minimum must precede the maximum. In view of this
circumstance it is evident from the above mentioned properties of h, b’ and h”
that a minimum cannot exist, and therefore that h is nonnegative for all
positive x.
The results of Lemmas 1 and 2 can be rewritten respectively as

(et s -

@ (p—é)zgi—gz.

For x = 0 the upper bound of the theorem is obtainable from (3) and the
lower bound from (4).
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CORRECTION TO “SOME NONPARAMETRIC TESTS OF
WHETHER THE LARGEST OBSERVATIONS OF A SET
ARE TOO LARGE OR TOO SMALL"”*

By Joun E.' WaLsH

U. 8. Naval Ordnance Test Station, China Lake

This note calls attention to the fact that Theorem 4 of this paper (Annals
of Math. Stat., Vol. 21 (1950), pp. 583-592) is only partially correct. The results
limg-_P1(®) = 0 and limg—._,P3(®) = 1 as well ag the monotonicity properties
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