EQUIVALENT COMPARISONS OF EXPERIMENTS!

By Davip BLACKWELL
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1. Summary. Sherman [8] and Stein [9] have shown that a method given by
the author [1] for comparing two experiments is equivalent, for experiments with
a finite number of outcomes, to the original method introduced by Bohnenblust,
Shapley, and Sherman [4]. A new proof of this result is given, and the restriction
to experiments with a finite number of outcomes is removed. A class of weaker
comparisons—comparison in k-decision problems—is introduced, in three equiv-
alent forms. For dichotomies, all methods are equivalent, and can be described
in terms of errors of the first and second kinds.

2. Introduction. An ordered collection &« = (m;, ---, m,) of probability
measures on a Borel field ® of subsets of a space X will be called an experiment.
Any pair (o, A), where A is a closed bounded convex subset of n-space corre-
sponds to a decision problem as follows. A point z £ X is selected according to
-one of the distributions m; ; the statistician observes z and then chooses an action
d from a given set D, incurring a loss L(Z, d). If we associate with d the vector
w(d) = (L1, d), -- -, L(n, d)), the range of w(d) as d varies over D is the set A
associated with the problem. Thus we may replace D by 4, and suppose that the
statistician chooses a point @ = (a;, --- , a,) € A, incurring loss a; when m; is
the distribution of z. By using randomized decision procedures we increase A to
its convex hull, and for simplicity we suppose' A closed and bounded as well as
convex.

A decision function in the problem (@, 4) is a ®B-measurable function f from
X into A, specifying for each z the action ¢ = f(z) to be taken when z is ob-
served. When m; is the distribution of z, the expected loss from f is

vi(f) = f a(z) dm;(x); the vector v(f) = (Wi(f), ---, va(f)) is called the loss

vector of f, and the range of v(f) as f varies over all decision functions in the prob-
lem (e, A) will be denoted by B(a, 4). The set B(a, A) will be a closed, bounded,
convex subset of n-space [2].

For two experiments «, 8 with the same n, following Bohnenblust, Shapley,
and Sherman, we say that a is more informative than 8, written a D B, if for every
A we have B(a, A) D B(8, A), that is if every loss vector attainable in problem
(8, A) is also attainable in (a, 4). For any experiment &« = (m,, -+, m,), let
p:(z) be the density of m; with respect to 2 1 m; , let p(z) = [p1(@), - - - , Pal®)],
and let m, denote the distribution of p(x) when z has distribution > mi/n.
Then m, is a probability measure defined on the set P of all vectors
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p=(pr, -, pn) with p, = OandZ{'p = 1, and
(1) fp,-dma = 1/n;
the center of gravity of m, is the point (1/n, - - - y 1/n). The measure m, is called

by Bohnenblust, Shapley, and Sherman the standard measure associated with
the experiment a. Their basic results connecting m, and D are summarized as
Theorem 1 below (for a proof see [1)).

THEOREM 1. Every probability measure on P with property (1) is the standard
measure of somé experiment; two experiments a and B have the same standard
measure if and only if B(a, A) = B(B, A) for all A; a D B if and only if for every

continuous convex function ¢(p) on P, f ¢dm, = [ ¢ dmg .

An alternative method of comparing two experiments a, 8, introduced by the
author [1], can best be described in terms of the concept of stochastic trans-
formation. If ®, @ are Borel fields of subsets of X, Y respectively, a stochastic
transformation T is a function Q(z, E) defined for all z £ X and E ¢ € which for
fixed E is a ®-measurable function of z and for fixed x is a probability measure

on €. For any probability measure m on ®, the function M (E) = f Q(z, E) dm(x)

is a probability measure on @, denoted by Tm. If X, Y are Borel sets in n-space
and ®, € are the Borel subsets of X, Y, T is called mean-preserving if

[ ydQ(z, y) = z for all .

fa=(m,---,m,)and 8 = (M, -+, M,) are two experiments, with
m;, M; defined on Borel fields ®, @ of X, Y respectively, we shall say that «
is sufficient for B, written a > B, if there is a stochastic transformation 7' with
Tm; = M;for? = 1, --- , n. Thus @ > 8 means that the statistician, observing
the result x of «, can, by selecting y according to @(x, F), obtain a result equiva-
lent to the result of observing .

The concept > also has a description in terms of standard measures, sum-
marized in

TueoreM 2. [1]. a > B if and only if there is a mean-preserving stochastic trans-
formation T with Tmg = m, .

If @ > B and ¢ is any continuous convex function on P,

f ¢ dm, = f < f #(p) dQ(q, p)> dmg(q)

= f ) ( f pdQ(g, p)) dme(g)

= f¢dmﬁ,

s0 that, from Theorem 1 we obtain
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THEOREM 3. a > B tmplies a D 8.

The converse of Theorem 3 has been proved, for experiments with a finite
number of outcomes, by Sherman [8] and Stein [9]. In Section 3 we give a new
proof of the Sherman-Stein thegrem, and in Section 4 extend the theorem to
arbitrary experiments.

3. The Sherman-Stein Theorem. If the space X of outcomes of the experiment
«a is finite, consisting say of z;, -+, », then «is characterized by the n X N
Markov matrix P = || pi; |, where p;; = mi(z;), and conversely every Markov
matrix can be interpreted as an experiment. For two Markov matrices P, Q
with the same n, we write P D Q, P > @ if the corresponding experiments are
related by D, > respectively.

THEOREM 4. If P, Q are n X Ny, n X N, Markov matrices with P D Q, then
for eveiy Ny X n matrix D there is an Ny X N, Markov matriz M with

Trace (PMD) < Trace (@D).

Proor. Let A be the convex hull of the rows of D. The decision function f
in problem (@, 4) selecting the jth row of D when j is observed has v.(f) =
> ; qijd;i , the ith diagonal element of @D.

Since P O Q, there is a decision function g in problem (P, A), selecting say
aj & A when j is observed, with v,(g) = D_; pi;a; = vi(f) for all <. Since a; ¢ 4,
there are nonnegative numbers m j with > . mjz = 1 such that aj; = Ek Mz Qs
for ail <. Thus vi(g) = D_jx pijmds:, which is the ith diagonal element of
PMD. 1t follows that M has not only the property asserted in the theorem but
the stronger property that PMD and QD have identical diagonal elements.

THEOREM 5. P > Q if and only if there is a Markov matrix M with PM = Q.

This is simply a restatement of the definition of > for the special case
X=(1,---,N),Y =(, ---, N,), since a stochastic transformation becomes
simply an N; X N, Markov matrix.

TueoreM 6. (Sherman-Stein theorem). P DO Q implies P > Q.

Proor. Consider the function h(D, M) = Trace (Q — PM)D, as M varies
over all N; X N, Markov matrices and D varies over all No X n matrices with
0 = di; = 1 for all k, 4. Since h is bilinear and the ranges of D, M are closed,
bounded, and convex, h has a saddle point [3], that is there exist Dy, M, with
h(Dy, M) = h(Dy, Mo) = h(D, M,) for all D, M. From Theorem 4, there is an
M with h(Dy, M) < 0, so that h(D, M,) < 0 for all D. Writing U = @ — PM,,
we have

Trace (UD) = 0 for all D,

so that uy =< O for all ¢, k. Since U is the difference of two Markov matrices,
D ixua = 0, so that us = 0 for all 4, k and PM, = Q. Thus by Theorem 5,
P > Q.

An alternative form of the Sherman-Stein theorem is

THEOREM 7. If my and m. are any two probability measures on a finite subset

X of n-space such that for every continuous convex ¢ defined on the convex hull of X,



268 DAVID BLACKWELL

f ¢ dm; = f ¢ dmy , then there is a mean-preserving stochastic transformation T

with Tmy = my .

From Theorems 1 and 2, Theorem 7 implies Theorem 6. Theorem 7 was proved
for n = 1 by Hardy, Littlewood, and Polya [6], for n = 2 without the restriction
that X be finite by the author, and in the form given here by Sherman (8] and

Stein [9]. ,
Proor or THEOREM 7. From Theorems 1 and 2, Theorem 6 implies Theorem 7
if X C P and the common center of gravity of m;, msis (1/n, - -+, 1/n), since

in this case m; , m; are the standard measures of experiments. Imbedding X in
n + 1 space and performing an appropriate linear transformation reduces the
general case in n-space to that of standard measures in n + 1 space and com-
pletes the proof.

A direct proof of Theorem 7, using the methods of Theorem 6 and not
appealing to Theorems 1 and 2 can be given.

4. Equivalence of D and >. In this section we extend Theorem 7, replacing
the requirement that X be finite by the weaker requirement that X be bounded.
For any two probability measures m, M on a bounded subset X of n-space,
we write M D m if for every continuous convex ¢ on the convex hull of X

f odM = f ¢ dm and M > m if there is a mean-preserving stochastic trans-

formation (abbreviated m.p.s.t.) T with Tm = M. We shall prove

TueoreM 8. If M DO m, then M > m.

The method of proof consists of approximating m, M by measures concentrated
on finite sets and using Doob’s martingale convergence theorems. We first
prove

A. There exist sequences of measures m, , M, each concentrated on a finile set,
withmy < My Cm C M < My < My for all N, and for every open set O

my(0) — m(0), Mxy(0) — M(0) as N — .
Proor. For any n-vector a = (a1, ---, @,) with integral coor@inates, let
C(N, a) denote the cube consisting of all ¢t = (t;, - - , t.) with 27%a; < & <

27%(a; + 1), let Z(N, a) be the center of gravity of m on C(N, a) and let my
assign to Z(N, a) measure m(C(N, a)). It is easily verified that my has the re-
quired properties.

To define My, let Qun(t, E) for ¢t e C(«V, a) concentrate on the 2" vertices of
C(N, a) assigning to vertex 2 V(a; + e, -+, @, + €.), where e, = 0 or 1,
measure bybs - - - b, , where b; = 274, +1 — t;if ¢, = 0 and b; = t; — 27 %a, if
¢; = 1. The function Qn(¢, E) is a m.p.s.t. Uy, and if we define My = UnxM,
we have also My = UxMy41, so that My has the required properties. '

B. There exist sequences Ty , Vi , Wy of m.p.s.t. each from a finite set of n-space
to a finite set of n-space with

r (a) Myy1 = TNmN 5 (b) MN—-l = VNMN, (C) MN = WNmN,
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and
(d) Wy = VN+1WN+1TN.

Proor. From A there exist sequences 7'y and Vy with properties (a) and (b).
Also from A, my C My, so that, from Theorem 7, there is a m.p.s.t. ¥y from a
finite set to a finite set with My = Yymy . For D > N, write

YND = VN+1 e VDYDTD—I <o Ty y
so that
YND = VN+1YN+1'1;TN ' fOI' D > N + 1,

and
M)v= YNDmN ) fOI'D>N

Let D — « through a subsequence for which Yxp converges for all N, say to
Wy . Then Wy satisfies (¢) and (d).

Proor or THEOREM 8. We specify the joint distribution of two sequences
Ty, %2, ", Y1, Y2, -, of n-dimensional chance variables by

C. For any N, the variables z;,, - -+ , Z~, Y~, ** -, 1 form a Markov chain
in the order written. The distribution of x; is m; and the conditional distributions
of x;41 given x,, yy given zy, and y._ given y,, are specified by T;, Wy, and
Vi respectively.

Part (d) of B guarantees that the requirements C are consistent, and
Kolmogorov’s extension theorem [7] then asserts the existence of x;, x2, - - -,
Y1, Y2, - , with property C. Parts (a), (b), (¢c) of B imply that z», y» have
distributions my , M respectively. Also the sequence

L1, T2,y " Y2, Y

forms a martingale [5] in the order written; by Doob’s martingale theorem [5],
zy — z*, yy > y* as N — o, and E(y* | 2*) = z*. From A, z* and y* have dis-
tributions m, M respectively, so that Q(x ,E) = Prob {y*¢ E | x* = .z} isam.ps.t.
T with Tm = M. This completes the proof.

6. k-decision problems. In this section we introduce a comparison somewhat
weaker than >. The following lemma will be useful.

LeMMA. For any experiment a and any closed, bounded set C with convex hull A,
B(a, A) = convex hull of B(a, C).

Proov. Since both B(a, A) and B(ea, C) are closed and B(a, A) is convex
[2], it suffices to show that every »(f) e B(a, A) can be approximated by points
in the convex hull of B(a, C). We may suppose that f assumes only a finite num-
ber of values @, -:-, ax, since every f can be approximated by f’s of
this kind. Say

8; = {f@) = a}, a5 =2 Nici, i 20, 2= L
=l ¢
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Forany h = (hy, -+, hn),1 < h; < r, define
() = e, for o & 85, \(R) = Ul Ats-
Then v(f(h)) ¢ B(a, C), and Zh)\(hjv(f(h)] has for its sth coordinate
AW [eonpdme = T mi(Sylon M)
= T mls) (F ew (A0
= 2 m(S) (Zil NijCis) = ; ajsms(S;)

7
= s™ coordinate of v(f).

This completes the proof.

APPLICATION 1. Let a be any experiment, let $ = (S, - - -, Si) be any partition of
X into k disjoint B-measurable sets, let P(S) be the n X k Markov matrix with
pij = mi(8S,), let ®ax be the range of P(8), and let @, be the set of all n X k Markov
madtrices P which have the property o > P. Then @ 4 is the convex hull of ®%. .

This is the special case of the lemma applied to the experiment o’ consisting
of nk measures M;; with M,; = m,; forj = 1, ---, k and C consisting of the
kn X k Markov matrices Py, -- -, Py, where P; has the jth column identically
1 and the remaining columns identically zero.

AprpLicATION 2. For any experiment a and any closed bounded convex set A
which is the convex hull of the set of k points dy, --- , di., B(a, A) is the range of
diag PD as P varies over ®. , where diag U for any n X n matriz U = || ui; ||
denotes the n-vector (uy , Uz, -+ , Uns) and D is the k X n matriz whose rows
aredy, -+ ,dy.

If C consists of dy , - - - , di , and f is any decision function in (e, C), say S; =
{f = d;}. Then the sth coordinate of v(f) is

; m’(Sj)dil ’
so that
v(f) = diag P(S)D.
Thus B(a, C) = range of diag PD as P varies over ®%: . From the lemma, the
convex hull of B(e, C) is B(a, 4), and from Application (1) the convex hull of
the range of diag PD as P varies over ®% is the range of PD as P varies over @ .

THEOREM 9. Let o, 8 be two experiments with the same n. The following condi-
tions are equivalent:

0] ®ar D Cpi

(2) For every A which is the convex hull of a set of k points, B(a, A) D B(8, A).

(3) For every convex function ¢ on n-space which is the maximum of k linear

functions, [¢pdm., = [¢dmg.

Proor. Suppose (1) and let v e B(3, A), where A is the convex hull of

dy, -+ ,d;. Thenv = diag PD for some P & @ .
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Since ®Pp C ®Pox, v = diag PD for some P ¢ ®u and v € B(a, A). Thus (1)
implies (2).

Now suppose (2) and let P ¢ ®g . Then for any closed bounded convex set R,
letv e B(P, R),sayv = v(f), wherg f(j) = r;e R,j =1, --- , k. Thenv ¢ B(P, R¥),
where B* is the convex hullof r,, - - - , . Since B(P, R*) € B(8, R*) C B(e, R*),
v € B(a, R*) and consequently v € B(e, R). Thus a D P for any P ¢ ®g and, by
Theorem 8, « > P. Since @ contains all n X & Markov matrices P with « > P,
P& ®u and ®g, © ®o . Thus (2) implies (1).

In considering (3), we use the fact that the standard measure mp of ann X k
Markov matrix P is concentrated on k points, which follows immediately from
the definition. Suppose (3), let ¢ be the maximum of any finite set £ of linear
functions, and let P ¢ ®g . There is a ¢, the maximum of % functions in £, which
agrees with ¢ on the k points on which m, is concentrated. Then [¢ dm, =
Jydma = [y dmg = [Ydmp = [¢ dmp , so that from Theorems 1 and 8, « > P.
Thus P ¢ ®u , s © P and (3) implies (1).

Finally, suppose (1) and let ¢ = max (L, -+, L); say
U; = {Li(p) = ¢(p), Li(p) < ¢(p) for i < j}.
If S; = {p) U;}, 8 = (S, ---, Sk is a partition of X and the experiment

P = P(8) associated with 8 and $ (see Application 1) has a standard measure
mpe with

me(U;) = me(U};),

so that

f¢ dmg = f¢ dme.

Since P & ®g, (1) implies P &€ ®u , so that f¢ dm, = [¢ dmp = [¢ dmg . This
completes the proof.

If two experiments «, 8 with the same n satisfy any of the three equivalent eon-
ditions of Theorem 9, we shall say that « is more ¢nformative than B for k-decision
problems, written o >; 8. Condition (2) is the direct analogue of D, and condi-
tion (1) is analogous to >, since it requires that every experiment with % out-
comes producible from g is also producible from «. Clearly >4 implies >,
and if @ > B8 for all k, then a > B, since a > 8 for all k implies f¢ dm, = [¢ dms
for every ¢ which is the maximum of a finite number of linear functions and hence,
by approximation, for every continuous convex ¢. An alternative statement is:
if every experiment with 2 finite number of outcomes which is producible from
Bis also producible from «, then 8 is itself producible from a.

Stein (unpublished paper) has shown that in general > 1 is actually stronger
than > . For n = 2, however, all >, for £k = 2 are equivalent.

TaroreM 10. If a and B are two experiments with n = 2, then a > B implies
a > B.

Proor. For n = 2, the standard measures m, and ms are defined on the line
segment p; = 0, p1 + p2 = 1. On this line segment, every function ¢ which is the
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maximum of a finite number of linear functions is representable as Za,dn ,
where a; > 0 and each ¢; is a maximum of two linear functions. Consequently
a >, B implies @ >; B8 for all k and hence a > B.

CoROLLARY. Let A be the line segment Jotning (0, 1) and (1, 0). If B(a, A) D
BB, A), then o > 6.

Proor. For any line segment A’ in the plane, there is a transformation

L 2 =ar+b
’ Y =cx+d

with LA = A’. Since LB(«, A) = B(a, LA) and similarly for 8, we have B(e, 4")
D B(B, A’), so that @ >; 8 and consequently « > 8.

For the A4 of the corollary, the boundary of the set B(a, A) consists of two
curves, joining (0, 1) and (1, 0), one of which is the reflection of the other about
(1/2,1/2). Denote by f.(t) the minimum of u for which (¢, u) € B(e, A). Then a > 8
if and only if f.(t) < fs(¢) forall¢,0 < ¢ < 1. The function f.(?) is a nonincreasing
convex function of ¢, representing the minimum attainable error of the second
kind when the error of the first kind is fixed at ¢. Thus an alternative statement
of the corollary is:

a 1s more informative than B if and only if at every level t the error of the second
kind with o is less than or equal to the corresponding error with 3.

Since if @ > B, then an experiment with » independent observations with
a is more informative than the corresponding experiment with 8 [1] we obtain

TrEOREM 11. If for a sample of size 1 at every level t the probability of an error
of the second kind with a does not exceed the corresponding probability for B, then
the same s true for every sample size.
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