ON SOME THEOREMS IN COMBINATORICS RELATING
TO INCOMPLETE BLOCK DESIGNS

By KureEnpra N. MAJUMDAR
University of Delhs

1. Summary. In this paper we have studied certain combinatorial properties
of incomplete block designs and efficient necessary conditions for the existence
of affine resolvable balanced incomplete block (b.1.b., for abbreviation) designs.
Two theorems give combinatorial properties of certain b.i.b. designs. The well
known inequality of Fisher between the number of varieties and number of
blocks is shown in this paper to hold under very general conditions. An intrinsic
characteristic property of symmetrical b.i.b. designs is given in another theorem.
In the last two theorems we have deduced efficient necessary conditions for the
existence of affine resolvable b.i.b. designs. Besides these there are some minor
results. Utilizing the simple yet very fruitful idea of associating an incidence
matrix with a design, all the results are deduced with the help of arguments of
algebra of matrices and linear equations. The last theorem requires the use of
the celebrated four square theorem of Lagrange and a result due to Legendre in
number theory.

2. Introduction. An arrangement of objects of v different varieties into b
blocks (or sets) in such a way that (i) no two blocks are identical (i.e., contain
the same varieties), (ii) a variety occurs at most once in a block, (iii) no block
contains all the varieties, may be called an incomplete block design. If an in-
complete block design satisfies the further conditions that (iv) all the blocks
are of equal size (i.e., every block contains the same number of objects or varie-
ties, say, k) and (v) any pair of varieties occurs together in the same number,
say A (where A # 0), of blocks it is called a balanced incomplete block design.
These designs were introduced by Yates in applied statistics. It easily follows
that every variety is replicated (i.e., occurs in the whole design) the same num-
ber, say r, of times in a b.i.b. design. For, consider the r; blocks in which the
ith variety occurs. Each of the other varieties must occur together with the ith
variety in A of the r; blocks considered. The total number of objects in these
blocks is therefore (v — 1)\ 4+ r; ..Also this total number equals 7%, so that

(2.1) r= )‘————-——;v:ll) =,

say. Counting the total number of objects in the whole design in two ways we
get

2.2) vr = bk.
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378 KULENDRA N. MAJUMDAR

A b.ib. design in which b = vis called a symmetrical b.i.b. design. (2.1) and (2.2)
are trivial necessary conditions for the existence of a b.i.b. design with the
parameters », b, r, k, \.

A v X b matrix A completely characterizing an incomplete block design can
be constructed in the following manner. List the varieties in a column and the
blocks in a row. Insert 1 or 0 at the intersection of 7th row and jth column
according as the ¢th variety occurs in the jth block or not; 2z = 1,2, --- v;j =
1,2, --- b. The sum of the elements of a row of an incidence mattix for a b.i.b.
design is r while the similar column sum is k. The scalar product of any two
row vectors is A. Hence for a b.i.b. design,

TN e A
(2.3) AA =N 7 -0 A

AN e or ]|
(2.4) |AA" | = (r — N7 r + \p — 1))

(25) |AP=|44"| = (r — N\’ for a symmetrical b.i.b. design.

3. General nature of Fisher’s inequality. Fisher’s inequality [1] namely, b = v,
for a b.i.b. design has been proved by several authors by different methods of
which [2] may be noted. The following discussion reveals the very general nature
of the inequality.

The rank of an arbitrary v X b matrix A can exceed neither the number of
its rows nor the number of its columns and
3.1) rank A = rank A’ = rank (4’A) = rank (44").

If rank (4A’) = t then ¢ < min (b, v), so that for the inequality b = » to hold
it is enough that | AA’ | % 0. Consider, for instance, the matrix 4 which satis-
fies the conditions,

(i) the scalar product of any two, without loss of generality, say, of its first
¢ row vectors is \; , where 0 < A\; < min(ry, 72, -+, 7. , and where r; denotes
the square of the length of the 7th row vector. Similarly the scalar product of
any two of its other v — ¢ row vectors is A\, where

0< A < min(m.l s Tet2y °°° Tv),

(ii) the scalar product of any of the first set of ¢ row-vectors with any of the
second set of v — ¢ row vectors is A where A> < M\, . Then

71 Xl oo xl N N cee A

A7 NN A A

\ ’ )\1 Xl Te A A H A
(3.2/ I AA | =

A Tet1 A2 Az

A A A N T Az

A A A A g )
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To evaluate this determinant subtract the cth row from the previous rows and
similarly the vth row from all rows above it and below the cth. Add suitable mul-
tiples of the first, second, - - - (¢ — 1)st column to the cth column so as to make
its first (¢ — 1) elements 0. Similarly reduce to 0 the (¢ + 1)st, --- , (v — 1)st
elements of the last column. Thus'

-1

c—1
IAA,I = H (ri =) H (r; — A2)
i=1 imctl

(3.3)
rery — AT 4 de(uds — AP + d(ro A — ) + e(r A — N},
where ‘
« re — M1 =1 Te — Ao
(34) d= 2 —— e = 2

Clearly | AA’ | > 0 and consequently b = v. We observe that this is a general
result concerning the shape of a matrix when (i) and (ii) are satisfied. In particu-
lar, if we suppose A to be an incidence matrix for an incomplete block design
(when of course the scalar products and lengths of row-vectors will have obvious
interpretations in terms of varieties and blocks), we get the inequality b = ¢
for a more general class of designs from the above result provided we replace
(ii) by the condition A = min (\; , A;). Plainly, imposing diverse and more gen-
eral conditions on A we can ensure that | A4’ | < 0.

Before leaving this topic we note that if /;; is the number of varieties common
in the 7th and jth blocks, 7 = 1,2, --- b;7 = 1,2, - -+ b in any incomplete block
design, then the rank of the matrix (I;;) is equal to the rank of the incidence
matrix. Trivially, every v X » minor of the determinant| l;; |, situated symmetri-
cally about the main diagonal is a perfect square. For a b.i.b. design at least one
of these minors is a nonzero perfect square since at least one set of v columns
of the corresponding incidence matrix is independent.

4. A characteristic property of symmetrical b.i.b. designs. What is the nature
of an incomplete block design in which every pair of varieties occurs together in
A blocks and every pair of blocks has A’ varieties common? The answer is given
in the following.

TueoreM 1. If in an incomplete block design every pair of varieties occurs to-
gether in X blocks and any two blocks have \' common varieties, then the design s a
symmetrical b.i.b. design. (In case A = 1 we further assume that there are at least
two blocks, each containing at least 3 varieties.)

We observe that not both X and A’ can be 0. We consider two cases according
asA = lorA > 1.

Case I. A = 1. We give an indication of the proof. For this case use the terms
“points” and “lines” instead of varieties and blocks.

When A = 1, N is also 1 as can be seen by considering two intersecting lines.
Now, there cannot be any line with only two points on it. For, it is easy to see
by drawing a diagram or by considering the incidence matrix that this implies
that the system consists of a set of concurrent lines and a transversal, each line
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except the transversal having only two points on it. But by our assumption we
have at least two lines with at least 3 points on each. Hence every line must con-
tain at least 3 points. Thus the system becomes a finite plane projective geometry
of Veblen and our theorem is a well known result in that geometry. We notice
here that the third postulate of that geometry, namely, every line contains at
least 3 points, can be replaced by the postulate that there are at least two lines
each containing at least three points.

CasgII. A > 1. Letr, , 12, -

-, ry respectively denote the numbers of replica-

tions of the varieties and &y , ks, - - - , ky respectively be the sizes of the blocks.

AT
A

Ty

’

[N — 1) + ks

If A is the incidence matrix of the design we have
]
]Cg
(4.1) A
| Fs_|
r—rl—
T2
(4.2) Al
and
" A
(4.3) AA =[N T
A A
Premultiply (4.1) by A’ and use the
]
’ r
ki A A ks
Nk M=
NN k] | -
4.9 | Ky

A > 1) + 7]
)\(U - 1) + T
[ ANv — 1) + 7,
[\ — 1) + k|
N =1 +k

kz)\(v it l)

I_’61, )\(v - 1)_

[’ﬁ N
A4 =N koo X
k, X’ ]Cb
value of A’A from (4.3). We then get
A — 1) + r;—
Mo — 1)+
_x(v - 1) + Ty |
—k],X(U - 1)—

B!

T2
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and using (4.2) we obtain

L CkA(v — 1) A'(b — 1) + ki |
ki Moo >‘, ks k(@ — 1) N — 1) + ke
(4.5) Nokooee . . + .
kI X’ e kb . . . »
k] Lk —1)] [AN'®—-1)+ k]

The ith equation from (4.5) is

(46) KN Tk — Nk = kAo — D) + NG — 1) + ki3 i=1,2+,b,
J

that is,

@7 Ki—kMN+M—=A4+1D)+Nm—-=Nb0—-1)=0; ¢=1,2---,b
where m is the total number of objects in the design. If «, 8 are the roots of (4.7)
then k; = « or 8. We now show that either all k,’s are equal to a or all are equal
to 8. If-possible, let k; = a; k; = B. In that case,

(4.8) vZ2kit+ki—N=a+B—-N=2Av—-1)+1

which is absurd unless A = 1. Hence all the block sizes are equal, to k, say.
From (4.1) or from (2.1) we get

Ay —1)
k—1

(4.9) r; = = r(say), 1=1,2---0.

Finally | 44’ | = (r — N7 + Mp — 1)) # 0;
|A’A | = (b — M)k + N(b — 1)) #0.

Therefore, rank (A4’) = v and rank (4’A) = b and thus b = v. From the rela-
tion vr = bk, it then follows that r = k and from the relationsA(v — 1) = r(k — 1)
and M(b — 1) = k(r — 1) we get \ = \’. This proves that the design is a sym-
metrical b.i.b. design.

6. Two combir it.rial properties of certain b.i.b. designs. Let us now consider
the following solution of the b.i.b. design v = 16,b = 24,r = 9,k = 6,A = 3
given by K. N. Bhattacharya [5].
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a,2,7,8,14,15 ®,5,7,8,11, 13) ,3,8,9,13, 16)
@,5,8,9,12, 14) 1,6,7,09, 12, 13) @, 5,7, 10, 13, 15)
3,4, 17, 10, 12, 16) @3, 4, 6, 13, 14, 15) @,5,7,9, 12, 15)

@, 4, 9, 10, 11, 13) @3, 6,7, 10, 11, 14) 1,2, 3,4,5,6)
a,4,7,8,11, 16) @, 4, 8, 10, 12, 14) (5, 6, 8, 10, 15, 16)
(1.6 8, 10, 12, 13) 1,2, 3,11, 12, 15) @, 6,7,9, 14, 16)

(1, 4, 5, 13, 14, 16) @, 5, 6, 11, 12, 16) @, 3, 9, 10, 15, 16)
(4.6.8,9, 11, 15) (1, 5,9, 10, 11, 14) (11, 12, 13, 14, 15, 16)

where 1, 2, - -+ , 16 denote the 16 varieties. If we compare the numbers of varie-
ties common to the 20th and 24th blocks (counting is done in a vertical way)
and other blocks, and similarly for the 6th and 10th blocks, we obtain the follow-
ing tables.

Number of varieties | Number of varieties
Block -common with Block | common with

Block 20 | Block 24 : Block 6 : Block 10
1-6 2 2 1-5 2 1 2
7 3 3 7-9 2 ' 2
8-10 2 2 11-12 2 2
11 3 3 13 3 1
12-13 2 2 14-18 2 2
14-15 3 3 19 i 3
16-19 2 2 20 2 2
21-23 2 2 21 3 1
22 1 3
23-24 I 2 2

The two right-hand columns are identical in the first table. A superficial inspec-
tion of the second table reveals that the sum of its two right-hand columns gives
a constant. This led the author to conjecture Theorems 2 and 3. The first proofs
were deduced from the main theorem given in the doctoral dissertation [6] of
Connor. Later on independent proofs were obtained and these are given below.

TureoREM 2. The necessary and sufficient condition for the existence in a b.i.b.
design of two blocks such that the numbers of varieties common to any other block
and these two are equal, is that these two blocks contain k + X — r common varieties.

Let two blocks (which we take to be the first and second blocks) contain ¢
common varieties. Let the 7th block contain z; varieties which occur in the first
but not in the second block. Similarly it has y; varieties which occur in the second
but not in the first block. Considering the combinations of varieties taken two
" at a time we have.
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b

61 Tale =D = Nulse— 1D = G — k= — DA — 1

=3

(5.2) zb; Ty = (k — ¢)
(5.3) .Z_;ax,- = g Yi =(k — ¢)(r — 1).

Using these we have
b

(5.4) Do(xi—y)? =20k — o)+ r—x—k),

=3

If c =k + N — r we must have z; = y; for all 7z and conversely. Henee the
theorem.

THEOREM 3. The necessary and sufficient condition for the existence in a b.3.b.
design .of two blocks, such that if any other block has s varieties in common with
the first block it has 2\k/r — s or 2kr/b — s varieties in common with the second,
18 that the two blocks have r — N\ — k + 2\k/r or 2kr/b — k varieties in common,
respectively.

As before, let two blocks have ¢ common varieties. Let the ¢th block have z;
varieties which occur in the first but not in the second block, y; varieties which
occur both in the first and second blocks, and z; varieties which occur in the
second but not in the first block. Then

(5.5) Zb;fx,-(x; -1 = ?;,:zi(zi -1 =Gk=-0k-c—DA=-1
(56) is Ti2; = (Iv bl 6)2)\

b b
(5.7) 23 ZTiY: = Z:a Vi =k —c\ — 1)

b
(5.8) Z_:ayi(yi -1 =clc— 1A -2

(5.9) iax,- = gz; =((k—0c(r—1)
(5.10) Zb: Vi = c(r — 2).

1=3
We now form the sum ZLs (s + 2y: + 2z; — w)® where w is the mean of the
variable z; + 2y; + 2z, , thatis, w = (2(r — 1)k — 2¢)/(b — 2). Using the results
(5.5) to (5.10) and (2.1) and (2.2) one finds that the cumbersome sum factorizes
as

2b 2k 2kr | .
G (ke 2P ) m 2y,
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Ifc=r—=XN-—1Fk+4 2\k/r we have x; + 2y + z; = w = 2\k/r for all 4.
Conversely if z; + 2y; + 2z; = 2\k/r we must have ¢ = r — A — k + 2\k/r
since w = 2\k/r in this case. As z; 4+ 2y; + 2; represents the sum of the num-
bers of varieties common to the sth block and the first and second blocks, the
first part of the theorem follows. Similarly for the other part.

As a by-product, we get from (5.4) and (5.11) the inequality

(5.12) max(zzk—k,k—l—)\—-r)élgr—)\—k—l—%‘lf
where [ is the number of varieties common to any two blocks. This inequality
was obtained by Connor [6] by a different method.

6. Necessary conditions for the existence of affine resolvable b.i.b. designs-
If in a b.i.b. design the blocks are separable into groups such that the blocks
in any group (or ‘replication”) contain between them all the varieties, each
variety occurring once and only once in the replication, the design is defined to
be a resolvable balanced incomplete block (r.b.i.b.) design. Of course, all the
replications necessarily contain the same number of blocks, say n, and then

6.1) v=mnk; b= nr

Some properties of r.b.i.h. designs were studied by Bose [3]. These designs are
of special importance in analysis of variance. Here we are interested only in
their structural properties and will study them through incidence matrices.

In forming the incidence matrix A of a resolvable design we arrange the blocks
in such a way that the consecutive columns of A correspond to the blocks in a
replication. Thus the first » columns correspond to the n blocks of the first replica-
tion, the next n columns to those of the second replication and so on. An impor-
tant piece of information about A4 is that on any row, the portion cut off by the
n columns corresponding to a replication, contains 1 once and only once. This
fact will be fully exploited in Theorems 6 and 7. Since the sum of the » column
vectors corresponding to any replication is a column vector of 1’s, we get Bose’s
inequality b — r + 1 = rank A = » by (2.4), for r.b.i.b. designs. The r.b.i.b.
designs for which

(6.2) b=v+r—1
or equivalently,
(6.3) r=Fk-4+2X\

are called affine r.b.i.b. designs. These possess some properties somewhat analo-
gous to those of symmetrical b.i.b. designs. We give here an alternative proof
for such a property due to Bose. Consider the n blocks constituting a replication.
Since the number of varieties common between any two of these blocks is & +
. A — r, that is, 0, Theorem 2 can be applied. If therefore any block not belonging

to this replication has ¢ varieties common to the first block, it must have ¢
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varieties common to the second and so ¢ varieties common to the third and
so on successively. Since the n blocks are disjoint and contain all the varieties

2
k
.

S|

(6.4) nec =k , or c =

Using (2.1), (6.1) to (6.4) it is not difficult to show that the parameters of an
affine r.b.i.b. design can always be expressed in terms of two integral variables
as

v = n@t — nt + n), b =n0t+n 4+ 1), r=nt+n+1,

(6.5) R
k=nt—nt+mn, A=nl+ 1.

From the property in (6.4) it immediately follows that if we choose a block
in an affine r.b.i.b. design and break up every other block (not belonging to the
replication to which the chosen block belongs) into two subblocks, one containing
the %*/v varieties which occur in the chosen block and the other containing the
residual varieties, then the first set of b — n subblocks constitutes the r.b.i.b.
design,

v =nmt —t+ 1), b = n(n’t + n), = nt + n,

(6.6)
F=nt—t+4+1 N =nt.

Though numerous combinatorial structures like b.i.b. designs, finite projec-
tive geometries, etc. have been constructed and a large number of sufficient
conditions accumulated [4], yet even now very little is known about necessary
conditions for their existence. Only recently Bruck, Schiitzenberger, Chowla,
Ryser, Shrikhande, Hall, Mann and others have obtained some important neces-
sary conditions for the existence of finite plane projective geometries, symmetrical
b.i.b. designs and cyclic projective planes.

For symmetrical b.i.b. designs the following two theorems are known.

TuroreM 4. If for given r, N and even v a symmetrical b.a.b. design exists,
then r — X\ 1s a perfect square.

This theorem seems to have been obtained first by Schiitzenberger [7]. It
was independently discovered by Chowla and Ryser [8], and Shrikhande [10].
The proof is almost trivial and follows immediately from (2.5).

TuaeoreM 5. (Chowla and Ryser). If for given r, X and odd v a symmetrical

b.i.b. design ‘exists, then
— 1){e=-D
(o
p

where p is any odd prime which divides the square-free part of » — X and (m/n)
is the Legendre symbol in number theory. In case p divides N we will have

_ 1)ie-D _ 1)i0+D
(( 1) m): L o (( ) m)=1
p p
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according as the highest power of p which divides A is even or odd. Here A\; and a
respectively denote the greatest divisors of A and r — X, which are prime to p.

The proof given by Chowla and Ryser in their important paper [8] is remark-
ably ingenious and simple. By straightforward generalization of Bruck and Ry-
ser’s result [9], Shrikhande indepehdently deduced necessary conditions in terms
of Hilbert’s norm residue symbols. The last sentence in the statement of Theorem
5 does not occur in [8]. It is due to the present author and can be deduced from
Chowla-Ryser’s proof.

We now establish some necessary conditions for the existence of affine r.b.i.b.
designs. Theorems 6 and 7 are precisely analogous to Theorems 4 and 5. These
results were obtained some time ago. Shrikhande, working independently on the
same problem, has obtained similar results, which he announced without proof
in [12]. It may be mentioned here that the proofs given below are direct and self-
contained.

TueoreM 6. If for given b, r, k, N and odd v an affine r.b.i.b. design exists, then
k or k*/v is a perfect square according as r is odd or even.

Adjoin r — 1 row vectors to the incidence matrix A of the affine r.b.i.b. design
so as to get a square matrix A*. Let the 7th of the new row vectors have 1’s at
the (7 — )n 4 1st, (z — 1)n 4 2th, --- , (¢ — 1)n + nth positions in the vec-
tor while the other positions are occupied by 0’s,5 = 1,2, --- , r — 1. Remem-
bering the special nature of the incidence matrices of r.b.i.b. designs noted above
we have

A N1l 17
A7 N1l 1
, A A r 11
(6.7) A*A¥ =
1 1 0 0
11 1 0 n
(11 1 00 n )
and

| A*|P = | A*A* |
8 _
(6 ) = (7‘ - )\)v—l (T - _(r———n—ﬂy + )\(1) — 1)) nf—l - kv—r-\‘-lvr—l

as

r—(r-—l)%+>\(v—1)=r—-(r-—-1)k+r(k—1)=k,

r—\=k, n =

e
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From (6.8) it follows that % is a perfect square when v and r are odd. When »
is odd and r is even, v must equal a perfect square. From (6.4) we know that
k*/v is an integer and so when v is a perfect square, k*/v is also so. This completes
the proof. .

As an application of the theorem consider the design v = 45, b = 66, r = 22,
k = 15, N = 7 obtained from (6.5) by putting n = 3, ¢ = 2. An affine r.b.i.b.
design with these parameters cannot exist as v and k*/v are not perfect squares
though v is odd and r is even. Similarly an affine r.b.ib. design with the param-
etersv = 63,b = 93, r = 31, k£ = 21, A = 10 is impossible. The impossibility
of the latter design was demonstrated in [11] by a different method.

THEOREM 7. If for given v, b, k, X\ and r = 2 or 3 (mod 4) an affine r.b.i.b. de-
sign exists, then every prime of the form 4a + 3 which divides v/k, occurs to an
even exponent in the standard form of v/k (i.e. when v/k is expressed as a product
of distinct prime powers).

Introduce a column vector X of rational variables z;, 2, , -+ , Zy4ra . Put

(6.9) X/A* = ('U/j, yUgy * 00, u,,+,_1).

Then from (6.7) we have

v4r—1 v v4r—1 v 2

E W= XA*A¥X = =N 22+ n Z xf+)\<2x,~>

1=1 =1 T=v41 faal
(6.10) . vt

+2(5=)(Z, =)

that is,

v4r—1 v r4r—1 v 2 v v4+r—1
(6.11) 2 ui= kzlx3 +n leﬁ +>\<Z;x,~> +2<le¢><2 :v,>-

i=1 i= ' = = il

Case L. v odd, » = 3 (mod 4). In this case k = m® where m is an integer by
Theorem 6 and 80 kY 41 23 = D 4 (mz;)’. Now by Lagrange’s four square
theorem every positive integer can be expressed as a sum of four integer squares.
Solet n = & + b* + ¢ + d where a, b, ¢, d, are integers. Then

v+r—71 . 2 2 1‘%7
n ZI‘ xr; = n(xu+r——2 + x‘v-{-r——l) + Z
1=v+1 1=0

2

© 12) - {(a%ppainr + DTupsivs + CTopairs + dxv+4i+4)
. 2
+ (bxv+4i+1 — OTypaige + dxv+4i+3 - va+4i+4)

2
+ ("va+4£+1 + dTopaiys + ALy 4i43 — bxv+4i+4)

2
+ (dTorai41 + CTossivz — Dyiaiys — ATpyaire) ).
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From (6.9), X’ = (uy, us, *+* , Upyr1)A* . Consequently the 2’s in (6.11) can
be replaced by the w’s. Utilizing (6.12) we can write (6.11) as

v4r—1 v4r—3

(6.13) § ui = ;1 yf + n(y3+r—2 + y3+r_1) + >\y3+r T+ 2Yopr Yosra

.

where the y’s are linear forms in the u’s with rational coefficients.

Now set y1 — . = 0 if the coefficient of w; in y; is not one, otherwise set
th + . = 0. Next set y» — w2 = 0 if on elimination of %, from it by means of
the first equation the coefficient of u, in the resulting expression does not vanish;
otherwise put y» + u, = 0. Similarly set ¥z — u; = 0 if the coefficient of u; in
it after the elimination of u; and u, by using the first two equations, is not 0,
otherwise put y; + us = 0. Proceed in this way up to the v + » — 3rd stage.
Finally, eliminate u; , 4z , - -+ , Uy4r—s from y,4, = 0 using the other equations.
The resulting equations are equivalent to a system of the following form:

anwy + apuz +, -, + Gegr AUy = 0

apz +, 00yt Gy aUpp = 0

(6.14) TR
e + At = 0,

where t = v+ 7 —2anda;; 0,7 = 1,2, --- , ¢ — 1. A little reflection on
(6.14) shows that there exist integral solutions (u; , ua, -+ - , Uysr_) for which
at least one of w,,_» and u,,,_, is a nonzero integer. Thus, 4% = u}, 7 = 1, 2,
-~ ,v 4+ r — 3, and y,4r = 0. Consequently, with this choice of the w’s and
because of the homogeneity of the relation (6.13) we arrive at the nontrivial
relation,

(6.15) Ugir—z + Upirr = n(p* + ¢)

where all the quantities are integral.

Cask II. v even, r = 3 (mod 4). Considering various combinations of n, t
(mod 4) it is seen from (6.5) that v = 0 (mod 4) for this case. Express & ZLI 2%
and n Y2471 27 as sums of squares of linear forms in the z’s as in Case I and
proceed as before. Ultimately we get a nontrivial relation exactly similar to
(6.15). )

Casg III. » = 2 (mod 4). From (6.5) it follows that » = 1 (mod 4). By The-
orem 6, kn = s where s is an integer. Multiply (6.11) throughout by n and
express n .41 ° u} as a sum of squares of v 4+ 7 — 3 linear forms y; in the u’s
(i.e., in the z’s by (6.9)). We then get

v4r—3 g 2 . v . v4r—1 .
2 Ui A n(Uegrs + Uern) = 2 (s2)’ + 2 (nx)
1=1 1=1 =41

(6.16)

v N\ 2 v v4r—1
+ M (E xi) + 2n (Z x,~> ( > x)
$mo] te=l 1=v41
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Choosing z’s such that y; = sz, ;2= 1,2, --- ,v,y; = *nx;;¢ = v + 1,

v+ 2 ---,v4+7r—3and X 1, 2; = 0 exactly as in Case I we obtain a
nontrivial relation

) ,
(6.17) n(Up4r—2 + Usirm1) = DI + G1

where all the quantities are integers.

So for all the cases it follows that n can be expressed as the sum of two integer
squares. An appeal to a result of Legendre in number theory completes the proof.

As an application let us consider a design with the parameters v = 216, b = 258,
r =43,k = 36, A = 7. An affine resolvable b.i.b. design with these parameters
cannot exist by Theorem 7 since here v/k = 2-3. An affine r.b.i.b. design cor-
responding to n = 21, ¢ = 1 in (6.5) cannot exist—this is decided by Theorem 7
though the parameters satisfy the condition of Theorem 6. Manifestly these
two theorems are independent though in many cases both lead to the same con-
clusion. Finally we observe that the powerful and general theorem of Minkowski
and Hasse [9] on the arithmetical reduction of quadratic forms, when applied
to (6.7) in conjunction with Theorem 6, gives us Theorem 7 and nothing more.
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