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1. Summary. The aim of this paper is: (i) to find the best linear estimates of
the means and standard deviations of the rectangular, triangular, exponential
and double exponential populations; (ii) to compare the efficiencies of these
estimates with some other estimates for small samples; (iii) to discuss the varia-
tion of coefficients in the best linear estimates as the population varies.

2. Introduction. In recent literature, linear combinations of the sample ordered
values are used to provide estimates from random samples drawn from popula-
tions with specified forms. Such statistics are termed systematic by Mosteller
[8]. They are now in common use, because they provide very simple solutions of
many important parametric problems of statistical estimation. Sometimes they
are inefficient in the sense that they do not use all the information contained in
the sample as it would be used by the best possible methods, which are however
computationally more complicated. In this work that estimate is obtained (called
for short “best linear”’) which is the best linear combination of the ranked ob-

servations.

3. Rectangular population. The frequency distribution of a rectangular popu-
lation is

f) = 1/62, 6 — 30 =y =< 6 + 36
where 6, is the mean and 6, is the range. Let y1, ¥2, * -+ , Y= be a sample of size

n and let the observations be ordered to give yay, Y@, *** s Ym , forn = 2.
Now consider the linear estimates

o = Zla1i Y 0 = 21 a2 Y
The method of least squares will provide the best linear estimates of 6 and 6; .
The estima‘ges are (Lloyd [7])
(3.1) 0 = 3w + Ym)
(3.2) 07 = Y — yw) (v + 1)/(n — 1)

and the variances

Received 5/25/53, revised 9/30/53.

1 This is a summary of thesis submitted to Liverpool University on July 1, 1952. The
estimation of the parameters of the rectangular population was included which was obtained
independently of Lloyd’s work [7]. The details of this case are not given here.
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3.3) V(6) = 65/2(n + 1)(n + 2),
(3.4) V(6F) = 263/(n + 2)(n — 1).

The standard deviations (¢) can be estimated by 6f/2+/3. For the special
case f(y) = 1/6,,0 < y < 0,, the estimates are (Craig [2]):

(3.5) 607 = (n + yw/2n,
(3.6) 0 = (n + Dym/n
3.7 V(61) = 6/4n(n + 2),
(3.8) V(65) = 6;/n(n + 2).

The maximum likelihood estimates are in agreement with the best linear estimate
in both the general (Fisher [5]) and the special cases.’

4. Triangular population. The frequency distribution of the triangular popu-
lation is

@) = @/6)36: — |y — 61]), ly = 6] < 36,

where 6, is the mean and 6, is the range. Standardizing the variable (6; = 1 6, = 1)
to get’

_ J4a=, 0=sz=3

f(”)"{4(1—x). 121,

we have (Wilks [11])
3 1
1) B@) = [ 2efiler) day + [* 2efale) de,

where

file) = K@) 7(1 — 22))" 4,

fiw) = K[2(1 — 2)T"71L — 21 — 2)774Q — )
with K = n!/(r — 1)!(n — r)! and

] 1
4.2) EG) = [ &fis) dz + /* 21w do
<0
with the same notation for fi(z,) and fo(z,). Also, when z, < z,,

E(@,z,) = fol/on 2 2, f (@2, z,) dz, dz,

(4.3)

It

3 pzs 1.3
[ f z v f1(z, , z.) dz. dz, + [ / 2, 2o folx, , x,) dx, dz,
<0 YO 3 Jo

1 51
+ / / 2, 2. f3(x, , ) dx, da,
St Jz,
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where

filme, x) = C2x)) 7 (2x% — 221 — 220)"°(4)’x, .,

fo(@,, 2) = CQ2z7) [l — 227 — 2(1 — )12 — @)’ 1" @) 2 (1-— =)

S, @) = Cl1 — 2(1 — &) T7R2Q — )" — 21 — &) 77720 — )"
@1 -2 Q—a)

C=nl/(r —1Dis—7r—1Dln— s

The expected values, variances and covariances of the order statistic (x.) are
shown in Table I up to sample size 5. For the best linear estimate of the mean,

(4.4) 0 = Z} anyYw ,
the coefficients a;; are given in Table III. Since
(4.5) V(y) = 6:/24

we can estimate the standard deviation (¢) by (6,/4/24), and the coefficients
may be ddjusted to give the best linear estimate of the standard deviation
(¢*). These adjusted coefficients for which

(4.6) o* = }; a2 Y i)

are also shown in Table III.

Cramér [4] found for large samples that the ordinary sample mean is a better
~ estimate of the mean of the distribution that is the midrange; Table IV shows this
to be true also for small samples.
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TABLE I
Ezact expected values, variances, and covariances of the order statistic (x,) in samples of
size n from standardized triangular populations. Each variance and covariance value must
be divided by the appropriate divisor given in the last column.

n|r EXy) cov (Xr, X1) | cov (Xr, X' z)‘ cov (Xr,Xs) | cov (Xr,Xs) | cov (Xr, Xs) Divisor

21| 23/60 101 491 3,600
1| 13/40 726 400 229

3 33,600
2| 20/40 400 690 400

1| 1451/5040 | 452,309 | 261,651 | 170,781 | 105,529
4 25,401,600

2| 2199/5040 | 261,651 | 418,509 | 275,409 | 170,781

527/2016 | 3,405,665 | 2,034,710 | 1,379,952 | 983,242 | 630,871
5| 2| 794/2016 | 2,034,710 | 3,146,180 | 2,143,008 | 1,530,940 | 983,242 223,534,080
3 | 1008/2016 | 1,379,952 | 2,143,008 | 2,978,640 | 2,143,008 | 1,379,952

—

TABLE II

Ezact expected values, variances, and covariances of the order statistic (x,) in samples of
size n from standardized double exponential populations. Each variance and covariance value
must be divided by the appropriate divisor given in the last column.

n| T E(Xy) cov(Xr, X1) | cov (Xr, X2) | cov (Xr, X3) | cov (Xr, X4) | cov (Xr, Xs) Divisor

211 —3/4 23 9 16
1 —9/8 815 272 185

3 576
2 0 272 368 272
1| —133/96 13,287 4,315 2,533 2,137

4 9,216
2 —11/32 4,315 4,799 2,945 2,533
1| —305/192 | 1,354,983 444,738 243,328 183,838 170,233

5|2 —55/96 444,738 463,068 258,208 197,668 183,838 921,600
3 0 243,328 258,208 323,648 258,208 243,328

5. Exponential population. The frequency distribution of an exponential
population is

lIA
<
IIA

8

f(y) — e—(v—#)lao_/a_’ M
Letz = (y — n)/otoget f(x) = ¢ " for0 < x < «.Then
E@y) = p + oE(x),
(5.1)

. r 1
_ _ y=oryr—1  —z.(n—r+1) —
E(x(r)) =K l]\ 171(1 e ) e d.’l?y ,_Z:l -—-———-—-—(n — + 1)
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TABLE II1

321

Coeflicients in the best linear estimates, based on the order statistic yu) in different popula-
tions of size n, for the mean, Zi-1 ai Yu), where ay = aim-i+ny and the standard deviation
Dl ax Yo, where ax = —asm-isrn

Sam l:piil;et’i;:; and all a2l a2 as a1z @23
2 Rectangular | .5000000 | —.8660253
Triangular .5000000 | —.8748178
Normal .5000000 | — .8862269
Dbl. expon. | .5000000 | —.9428070
—_—
3 Rectangular | .5000000 | —.5773503 | O. 0.
Triangular .3945578 | —.5832118 | .2108844 | O.
Normal .3333333 | —.5908179 | .3333333 | 0.
Dbl. expon. | .1481481 | —.6222161,| .7037038 | 0.
4 Rectangular | .5000000 | —.4811250 | 0. 0.
Triangular | .3378906 | —.4722486 |  .1621094 | —.0541433
Normal .2500000 | —.4539404 | .2500000 | —.1101807
Dbl. expon. | .0472971 | —.4307352 | .4527030 | —.3003697
5 Rectangular | .5000000 | —.4330128 | 0. 0. 0. 0.
Triangular | .3060758 | —.3994195 | .1188518 | —.0637213 | .1501447 | O.
Normal .2000000 | —.3723816 | .2000000 | —.1352139 | .2000000 | O.
Dbl. expon. | .0166355 | —.3263380 | .2213003 | —.3169696 | .5241287 | 0.
TABLE 1V

Percentage efficiencies of various estimators of the mean in different populations. Sample
mean = §, midrange = w, median = §

Sample size ....

2

3

4

Estimator......

P}

w y

g

w y

Rectangular
Triangular. .

Dbl. expon.

100.00
100.00
100.00
100.00

100.00(100.00
100.00{100.00
100.00]100.00
100.00/100.00

90.00/100.00(50.00
98.82| 96.58(66.83
100.00| 91.99(73.56
88.43| 67.90(92.27

71.45
96.70
100.00
79.21

62.50
74.53
83.89
98.90

where K = n!/(r — 1)!(n — 7)!. Also

,

<

(5.2)

V(z) = E@) — [E@)] = X

r

f=1

E(xf) = K/ .’l??(l _ e—z,)r—le-—z.-(n-r+l) dx,,
0

N S
n — ¢+ ¥’

E(xrx‘) = Cj(; ‘/o‘ ‘x,x,(l _ e—-zr)r—l(e—-zr _ e—z.)a—r—-l

. (e—z.)n—s+le—zr dx, dx.
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where C = nl/(r — 1)I(s — r — 1)!(n — s)!. Finally

(5.3) cov (z,2,) = ;Zl m—:—;—w
Therefore, )
V=
Wt -1 —-1) 0 0o -0
n—=104 (@ —-2° —(n — 2)* 0 <o 0
=24+ m—-3)°"—-mn—-3)"--- 0
1
Since
1 1 1 cee 1
A= 1 >JE SR VS N
n =tn—24+1) iZitn—1714+1) =t(n—14+1)
it follows that '
[ 1 1 -1
I Ao N
(5.4) o . r(nz__ D o1 .. _l-l
AVTA)T AV = — ] .
nn — Dinw -1 =2 -+ =
Therefore,
(5.5) u* = [nyay — gl/(n — 1),
(5.6) o* = [§ — yoln/(n — 1).

These estimates are in agreement with the maximum likelihood estimates. From
(5.4) we have,

(6.7 V(*) = 1/n(n — 1)
(5.8) - V(e*) = 1/(n — 1).
Since the mean is equal to 4 + o, the estimate of the mean is
~ 1 nya —F _
(5.9) 1 1] —— = g.
(= 1) | ng —nyq

Therefore, the best linear estimate of the mean of the exponential population is
the sample mean. -
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6. Double exponential population. The frequency distribution of the double
exponential population with mean x and variance 20” is

f(y) — e—ly—#llv/2a.

Let z = (y — u)/o giving f(z) = 3¢ for —@ <z < ®, and E(yw) = p +
oF (.’Il(r)). Then,

0

a B = [ afie) de+ [ i) da

where
@) = KGe")[1 — 367"
1) = K(1 = 3e7) 7 (Ge™)r "
with K = n!/(r — 1)!(n — r)!. Also
0

62) B = [ atfia) do+ [ " ) da

with the same notations for fi(x,) and fa(z.). Finally,

40 szg
E@@mre) = _[ Y [ (@ 2)f (@, 5) Ay s

0 pzs
= f f fl(xr ’ xs)xr Ts dxr dx'

(6.3) =
+ fo _Lo 2, %o fo(@r , 4) Ay A,

+ lw -[% xrxsfa(xr, x,) dz, dz,

where
fia,, 2 = CEE™(E = @)L = 3o e
fz(xr , xs) - C(%ez})r—l(l _ %czr _ %e—zs)s—r—l(%e—z,)n—a.(%)2'6—1,.e—z,
folwr, @) = CB)"THA — 3e7™) TN e — ¢ TH) T g T g

with C = n!l/(r — DI(s — r — 1)I(n — s)L.

The exact expected values, variances, and covariences of the order statistic
(x(y) are given in Table II for n = 2, 3, 4, 5. The missing entries in the table
may be obtained by E(z()) = — E(®n-rt1) for expected values and cov [z )
= COV [T(nrtZ(n—s+1)], fOr cOVariances.

The coefficients (a;) in the best linear estimate w* = Dy on:y of the
mean are given in Table ITI.

Since op = 20¢°, then the coefficients in the best linear estimate of + can be ad-
justed to give the coefficients in the best linear estimate of the standard devia-
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GRAPH (1)

PERCENTAGE EFFICIENCES OF THE SAMRLE MEAN, MIDRANGE, AND MEDIAN IN DIFFERENT POPULATIONS
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tion (¢p). The adjusted coefficients (az;) for which o5 = Dy oni¥( are given
in Table III.

Comparison of efficiencies of different estimates of the mean shows that the
median is more efficient than either the sample mean or the midrange and less
efficient than the best linear estimate. The maximum likelihood estimates of the
mean and the standard deviation of this population are the median and the mean
deviation about the median (Fisher [6]), respectively. Neither is efficient for
small samples.

7. Comparison of different estimates. Table IV is constructed to give the
percentage efficiencies of midrange, median and sample mean as estimates of
the population mean (relative to the best linear estimate of the mean). The
comparison of efficiencies of the estimates in the different populations may easily
be seen in Graph 1.

The sample mean is the best linear estimate of the mean’of a normal popula-
tion, so in general we expect that its efficiency decreases in both platykurtic
and leptokurtic populations. The efficiency of the midrange decreases in normal
populations and again in leptokurtic populations. The median behaves in a
reverse way: its efficiency is high in leptokurtic, decreases in normal and again
in platykurtic populations.

Table V gives the expected values of different estimates of the standard de-
viation in different populations. By the normal estimate in this table is meant
that linear estimate of the standard deviation of the given population which is
best for a normal population (Godwin [4]). Further, Gini’s estimate is that ob-
tained by using Gini’s mean difference (Nair [9]) which may be expressed as

A = 2RU — (n 4+ 1)V]}/n(n — 1)
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TABLE V

Ezxpected values of the normal and Gini’s estimates of the standard deviation

in different populations

n=2 n=3 n=4 % =35
Population .
Normal Gini’s Normal | Gini’s Normal Gini’s Normal Gini’s
Rectangular| 1.02333 | 1. 1.02333 | 1. 1.01983 | 1. 1.01611 | 1.
Triangular..| 1.01304 | 1.13221 | 1.01304 | 1.13221 | 1.01213 | 1.13221 | 1.01115 | 1.13221
Normal.....| 1. 1. 1. 1. 1. 1. 1. 1.
Dbl. expon.| .93999 | 1.06066 .93999 | 1.06066 .94296 | 1.06066 .94612 | 1.06066
TABLE VI

Percentage efficiencies of the range, normal, and Gini’s estimgtes of the standard deviation
in different populations, from ordered samples of size n

n=2 n=23 n=4 n=235
Population
Range l:r{:l]'- Gini’s {Range I:,::i' Gini’s| Range | Normal| Gini’s | Range |[Normal| Gini’s
Rectangular. .. 100 | 100 ’ 100 | 100 97.38] 95.23 93.45) 88.04
Triangular....| 100 | 100 | 100 | 100 | 100 | 100 | 99.77| 99.77| 97.10] 99.02| 98.66| 95.29
Normal....... 100 100 | 100 100 | 98.78 99.72| 96.95 99.48
Dbl. expon.....| 100 | 100 | 100 | 100 | 100 | 100 | 94.75| 97.99| 99.99| 89.83| 96.62| 99.75

where U = Y jujysy and V = X7y . Table V shows that the normal esti-
mates are biased. Since the normal estimate is the best linear estimate of the
standard deviation of a normal population, we may expect in general that with a
platykurtic population the estimate is too high and with a leptokurtic popula-
tion it is too small.

The efficiencies of different estimates of the standard deviation relative to the
best linear estimate are given in Table VI, and a graphical representation in
Graph 2. The efficiency of the range, as an estimate of the standard deviation, is
greater in the rectangular population, decreases in the normal and again in the
double exponential. The efficiency should generally be higher in platykurtic
populations, decrease in the normal and again in leptokurtic populations. Fur-
thermore, the efficiency of the normal estimate should generally decrease in
both platykurtic and leptokurtic populations.

The efficiency of Gini’s estimate is higher in the double exponential than in
the normal, and decreases in the triangle and again in the rectangular population.
In the case of the double exponential, Gini’s estimate is more efficient than either
the range or the normal estimate, and it is nearly as efficient as the best linear
estimate, so we can use it as an estimate of standard deviation in samples from
this population. Its coefficients are very simple and so it can be calculated quickly
and easily.

* In the normal population, Gini’s estimate is shown to be nearly as efficient as
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GRAPH (2)

PERCENTAGE EFFICIENCES OF THE RANGE,GINI'S ESTIMATE, AND NORMAL ESTIMATE
IN DIFFERENT POPULATIONS
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the best linear estimate and more efficient than the range. So the estimate G =
1+/r A may be used as an estimate of standard deviation for a normal popula-
tion; it will be considerably more reliable as n increases than that based on the
range. If the functional form of the population distribution is unknown, we may
use the best normal estimate or better, Gini’s estimate, as an estimate of the
standard deviation, because of their high efficiencies. A further advantage of the
latter estimate is that its expectation is independent of n, so that it can be used
as an unbiased estimate.

8. Variation of coefficients in the best linear estimates. Table III gives the
coefficients in the best linear estimates of different populations. Comparing the
coefficients in the best linear estimate of the mean, we can see that equal weights
are given to the sample elements in the case of the normal population, while
smaller weights are given to the middle elements in samples from a triangular
population than those given to the extreme elements, and zero coefficients are
attached to all elements other than the two extremes in samples from a rectangu-
lar population.

Again in the case of the double exponential population, the weight is largest
for the middle sample element, decreases gradually, and becomes least for the
extreme elements. In general, we expect that the more platykurtic a population
is, the greater should be the weights given to the extreme elements compared
with those given to the middle elements.
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TABLE VII
Variances of the different estimates of standard deviation in different po pulation (¢ =1)
pop
n= 2 n=3 n=4 n=35
Popula-
tion ] | p |
Best iRange' Ifn‘:lli- Gini’s| Best iRange I;Z’i' Gini’s| Best (Range I;L(;rl- 'Gini’s| Best [Range I:J:arl‘ ;Gini’s
] R - ;
Rectan- | f
gular ..| .5000 .5236| .5000{ .2000: .2094| .2000| .1111 .1188( .1167 .0714 .0790; .0800
Triangu- I
lar..... .5306I .5306| .5445| .6933| .2415 .2415| .2478| .3155| .1514| .1518! .1555] .2000{ .1079] .1099 .lll7i .1453
Normal .| .5708] .5708 .5708 2755‘ .2755 .2755) .1801| .1823 . .1806/ .1333| .1375 i 1340
Dbl. ex-,
pon....| .7778; .7778| .6872| .8750| .4321' .4321| .3818| .4863| .2086| .3152| .2711| .3314] .2288| .2547 .2120l .2599
Expon.. . [1.0000:1.0000/ .7854(1.0000 50001 .5555| .4363| .5555| .3333| .4049 .3085 .3889( .2500‘ .3280i .2404‘ .3000

(Best denotes the best linear estimate; Normal, the normal estimate; Gini’s, the Gini’s mean difference.)

Comparing the coefficients in the best linear estimate of the standard deviation
of different populations shows that no weight is given to the middle element, as
is to be expected because the populations are symmetric. Similarly, we see that
the more platykurtic a population is, the smaller the weights given to the middle
elements and the larger the weights given to the extreme elements.

Conclusions. I would like to point out a few problems raised but not solved
in this paper.

(1) The reverse problem, that is to find the population or the set of popula-
tions, if any, for which a given estimate is best linear estimate, is not yet attacked.
It would be of interest, for example, to know the population whose best linear
estimate for standard deviation is Gini’s mean difference.

(ii) Table VII gives the variances of the best linear estimates of the standard
deviations for the given populations. It shows that the variances of the estimates
for the rectangular population are the least among the given populations. This
raises the problem of finding the population whose standard deviation can be
estimated with the least variance.

(iii)) When general expressions of the expected values, variances and covari-
ances are known, the best linear estimates from samples of size n can generally
be obtained. However, in many cases such expressions are not possible, or are
very difficult to obtain. In these cases we must find them separately for each
value of n, which will be tedious for large values. It may be possible to find a
new method or approximation, by means of which we can find the linear estimates
without these tedious calculations.

(iv) 'It has been shown that the coefficients in the best linear estimates vary
with varying shapes of the distributions, but it seems that this is not the only
relationship. One could relate the coefficients directly to known properties of
the distribution functions, such as moments or semi-invariants. However, this
problem seems to be difficult.

Finally, I would like to express my acknowledgement to Mr. R. L. Plackett
for suggesting the problem and for his help during his supervision. I am also
greatly indebted to the referee for his comments and to Dr. W. Hoeffding, Dr.
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E. L. Lehmann and Dr. B. G. Greenberg for their kind help in revising the manu-
script for publication.
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