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1. Introduction. The problem of discrimination, that is of assigning an ob-
served individual to its proper group, admits a simple solution when the distribu-
tions of measurements in the alternative populations are completely specified.
Research in this direction originated with the use of the linear discriminant func-
tion introduced in 1936 by Fisher [3]. In 1939 Welch [24] showed that a general
discriminant function in the case of two alternatives is the likelihood ratio of the
two hypotheses, and is deducible either from Bayes’ theorem with given a priori
probabilities or by the use of a lemma by Neyman and Pearson [11] when the
errors for the two hypotheses are minimised in any given ratio.

A general theory of decision functions when the alternatives are finite or in-
finite was developed by Wald [19] in 1939 and further generalized by him in 1949
[23]. In 1945 von Mises [9] obtained, in the case of a finite number of alternatives,
the solution to the problem of minimising the maximum error, which is the
general theme of Wald’s work. Explicit solutions of Bayes’ form, with given a
priori probabilities or ratio of errors for the alternative greups, and the construc-
tion and use of a doubtful region were discussed by the author [13] in 1948. Re-
lated problems and the extension to problems of selection have been treated in
a subsequent series of papers [15], [16].

In all these cases the alternative population distributions are assumed to be
completely specified. The decision rule consists in setting up a correspondence
between values observed in a sample and the alternative population distributions.
In practice it is rarely possible to specify completely the distributions, but they
may be estimable on the basis of independent samples from each of the alterna-
tive distributions.

Let S,, - - -, Sk be independent samples from k alternative populations which
may be partially specified, as when the functional forms of the probability densi-
ties are given but with unspecified parameters, or completely unspecified. After
a sample S is drawn from a population known a priori to be one of the above set
of & populations, the problem is to infer from which population the sample S
has been drawn. The decision rule should be in the form of associating S with
one of the samples S;, -+, Sx, and declaring that S has come from the same
population as the sample with which it is associated.

The usual practice is to estimate the alternative distributions on the basis of
the sample information, and to use them in the solution which is strictly applica-
ble when the alternatives are completely specified. This is probably the right
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approach when estimation is based on large samples. Fix and Hodges [4] have
shown that this procedure is consistent under certain conditions, that is, with
probability tending to unity it gives the same results as when the alternatives
are known, provided the sample sizes are indefinitely increased. This procedure
can be shown to be asymtotically the best in the sense of Wald [20].

No systematic attempt seems to have been made to offer solutions for finite
samples. Wald [22] proposed to solve this problem in the case of two alternatives
by obtaining the distribution of the estimated likelihood ratio or the linear
discriminant function of Fisher. Even if the distribution problem is satisfacto-
rily solved, it cannot be applied in practice since it involves unknown parameters.

In this paper some general methods have been developed with the help of
which the discrimination problem can be solved, utilizing only the sample infor-
mation. This theory is immediately applicable when the alternative distributions
have given functional forms but with unspecified parameters. The nonpara-
metric cases can be treated in a similar manner, but no attempt has been made
in this paper to offer explicit solutions.

2. Statement of the problem. Let pi(z | 61), - - -, pe(z | 6x) be k probability
densities with known functional forms but unknown parameters. In the represen-
tation of the function p(z | 8), =z stands for all the measurements and 6 for all
the unknown parameters. We have, in general, to deal with p-variate populations
so that x stands for a vector of p stochastic variables. Samples of sizesny, < - - , 1
are available from these & populations. The observations from the 7th popula-
tion, for 7z = 1, -- - , k, are denoted by

(21) S'i: x;:=(xfi7"'7x;i)7 j=1)"'7ni'

An individual known a priori to belong to one of the & groups has the measure-
ments

2.2) S: z=(x1, -, Zp).

The problem is to assign this individual to its proper group on the basis of the
information supplied only by the observations (2.1) and (2.2), without making
any assumption about the unknown parameters. The problem is similar when,
instead of p measurements on a single individual, the sample S in (2.2) consists
of p measurements on each of n individuals drawn from that population. The
problem is to decide on the population from which S has arisen, using the in-
formation supplied by S and Si, - -+, Sk of (2.1).

3. Some observations on the solution when the parameters are known. If the
a priori probabilities of the observed individual belonging to the &k groups are
m, -+, ™, then the Bayes’ solution which minimises the errors of wrong
classification is to assign individuals with measurements z to the ¢th group if
m:p:(x | 6;) has the highest value in the set

3.1) mp1(x | 61), -+, mepu(x | Or).
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The solution which assigns the individual to the 7th group if a;p:(x | 6;) has
the highest value in the set
(3.2) ap(x | 61), -+, axpr(x | Or)

has the property of minimising the frequencies of wrong classification for the
various groups in a ratio determined by the procedure (3.2). This ratio is a

function of a; , - - - , ax ; if possible, the constants may be chosen for any speci-
fied ratio [13].
When m, - -+, m are unknown or when the consideration of a priori proba-

bilities is irrelevant, we have to depend on solution (3.2). One method is to choose
the constants such that the errors are in an equal ratio, using the criterion of
minimax [9], [23]. Another method is to choose a; = 1 for all 7, using the principle
of maximum likelihood. The latter method gives an unbiased division of the
space, that is, the probability with respect to the density p; of all observation
points assigned to the sth population is the highest for j = 7. All Bayes’ solutions
do not have this property except in the case of two alternative populations. Also,
it is not evident whether the minimax solution is always unbiased in the above
sense. Some criterion has to be developed for the choice of a rule from the sub-
class of Bayes’ solutions which are unbiased.

4. Large sample theory. The observations (2.1) and (2.2) considered in Section
2 can be represented by a point in a space of (n; + ns + - -+ + nx + 1)p or more
generally of (ny 4+ n2 + - -+ + n + n)p dimensions. Every division of the space
into k regions R, , - - -, Ry provides a decision rule, by which the 7th population
is accepted when the points fall in the corresponding region R; .

The probability of correct classification 8; for the ith group is the density of
the region R; when the last observation (2.2) arises from the 7th group. If the
a priori probability that the last observation belongs to the ith group is =;, then
the probability of correct classification is

4.1) mB1 + -+ + mb.

This is obviously less than mpB: + - - - + mB: , where 8; are the values associated
with the solution (3.1) when all the parameters are known a priori and samples
do not provide any additional information.

Expression (4.1) is a function of the unknown parameters (6, - - - , 6;) and of
the division' © of the space of N = (n1 + n2 + - - - 4+ n; + 1)p dimensions. This
function is denoted by fx(D, 61, - - -, 6;) or simply by fx(D, 6). Let Ly(D1, Dg)

represent the least upper bound of the difference fx(D1, 0) — fv(D2, 6) corre-
sponding to two divisions D; and D, .

Following a concept due to Wald [20] we define a sequence of divisions D* to
be asymptotically best if there does not exist any other sequence D such that

(4.2) lim sup Ly(D, D* > 0.

n;—00
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If there exists a sequence of divisions D, such that
(4.3) Dy, 8) > mbr + -+ + mbs as n; — ©

uniformly in the parameters as the sample sizes individually tend to infinity,
then such a sequence automatically satisfies the criterion (4.2) for being best
asymptotically. Fix and Hodges [4] have shown that for the solution

44) R:  mpdx|b) = mpi(z|6y), J=1-,k

where 8, , ---, 6, are uniformly consistent estimates of the parameters the
probability of correct classifications, tends uniformly to mB: + --- + mB: as
each sample size tends to infinity, provided the probability densities satisfy some
mild regularity conditions. This result, together with property of uniform con-
sistency of maximum likelihood estimates (true under some general conditions
stated by Wald, [21], provides a method of constructing an asymptotically best
solution of the type (4.4).

6. Small sample theory. Let us first consider the problem of two alternative
groups. There are n; observations from the first group, n, from the second, and a
single observation (each observation means a set of p measurements) on an indi-
vidual whose group is unknown. If 6; and 6, are the parameters for the first and
second groups, then the parameters applicable to the three sets of observations
are

H1: (01, 02, 01)
when the individual belongs to the first group and
Hz: (01, 02, 02)

otherwise. The two alternative hypotheses from which one is to be chosen on the
basis of observations are, therefore, the vectors (6., 62, 6,) and (6, , 6. , 65), what-
ever 6; and 6, may be.

5.1. Test for H, against Hy at a fized significance level. Let us choose one of
these hypotheses (say H:) as null and test it against the alternative H; . For this
we need critical regions in the space of (n; 4+ n, 4 1)p observations which are
similar with respect to the parameters 6; and 8, under the hypothesis (6: , 6z, 6s).
Out of these, one which maximises the power with respect to the alternatives
(61, 65, ) is to be chosen. How far this method yields successful results may be
judged by a simple example.

Let pi(x | 61) and pa(x | 2) be univariate normal probability densities with
unknown mean values 6; and 6, and unit standard deviation. From each popula-
tion n observations are taken; the mean values are found to be #; and £, . Ac-
cording to the null hypothesis, the last observation z belongs to the second group.
In this case

» T =&, Ty = (x + nZ) /(1 + n)
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are sufficient for 6; and .. The critical region similar with respect to 6; and 6; has
a conditional size « on the surfaces of constant values of Ty and T .

If to these statistics is added 73 = x — &, then it is necessary to consider
only the conditional distribution of T; given Ty, T». In fact, T is distributed
independently of T, , T under both hypotheses and has the densities proportional
to

—-n — 7, -n 2
exp {m (T3 — 6, — 02) }, exp{m Ta},
whose ratio is independent of the observed values from the first group.

The test derived above is the same as that for testing whether the observation
z comes from the second group when the alternatives are unspecified. The situ-
ation is somewhat unfortunate in that the test does not utilize the information
given by the second sample. Perhaps it is inevitable, if we have to come to
decisions independently of any a priori knowledge restricting to a fixed signifi-
cance level. This, however, suggests an intuitive approach to the problem of
classification.

Suppose that it is possible to test the hypothesis that the individual belongs to
a specified group, say the 7th, (ignoring the fact that the alternatives are confined
to a finite number about which we have some information) at any given proba-
bility level of rejection, and that all the critical regions corresponding to different
probability levels are well ordered, the bigger containing the smaller. We define
by £: the least probability level at which the sth hypothesis can be rejected. The
k groups supply k values & , -- -, &, and it appears to be a reasonable rule to
assign the individual to the jth group if £; is the maximum in the set. The opti-
mum properties of this rule will naturally depend on the nature of tests of the
above hypotheses, but this is generally applicable in situations where reasonable
tests exist.

Consider for example the univariate case where the &k samples provide the
averages &, - -- , & based on sizes n;, --- , n and pooled variance s° based
on (3_n; — k) degrees of freedom. If z is the observation on an individual to be
classified, we calculate the probabilities

Ei=P{lt| > |z — &l /sV1+ 1/n,

where the variable ¢ has Student’s distribution based on (3_n; — k) degrees of
freedom. The individual is assigned to that group for which £; is a maximum.
This rule is immediately applicable since it involves no new technique. Only a
reasonable test should exist and the probability integral table should be avail-
able. It is, however, not easy to say what optimum properties are implied by this
rule, except that errors are less for groups with larger sample sizes.

Another intuitive method which may yield fruitful results is to use fiducial
probability distributions if they exist (as defined by Fisher [2]) of the observation
z. Corresponding to k groups we can set up the k alternative fiducial distributions,
using the samples. These distributions are parameter-free and the problem now
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reduces to the classical case of assigning the observation & to one of & populations
whose distributions are completely defined. It would, however, be somewhat
difficult to study the optimum properties of this procedure.

In the following we will lay down a few postulates concerning the nature of
the decision rule, and obtain solutions which have optimum properties when the
alternative hypotheses are close to one another.

5.2. A general postulate concerning the decision rule. Let us denote the prob-
ability density of the observations from the 7th group by

Pi(xz I 01') = pl(x;l 01) e pi(x:ti I 0,‘), i = 1, .-, k.
For simplicity we shall consider only nonrandomised decision rules which need a
division of the sample space of (n; + -+ + n + 1)p dimensions into mutually
exclusive regions R , - - - , Ry . The rule of behaviour is to accept the hypothesis
that the individual belongs to the ith population when the sample point falls in
R;.

In developing the arguments we shall choose the case of two alternative
populations only, the conclusions being the same for several. In this problem
there are two regions R; and R, . The proportion of errors committed when the
individual belongs to the first group is

(61, 02) = ]; Pl(xl I 61) Pz(x2 | 62) iz | 61) dw.

2

Similarly for the other group,
w0, 0) = [ P 6) Pia'16) pale|0) .

1

Suppose that we need a decision rule for which the linear compound of errors
(5.2.1) mau(01, 02) + maaz(61, 62)

is a minimum. The compounding coefficients m and 7, may be assigned a priori
probabilities, or suitable weights may be attached to the errors. If there exists a
division of the space which minimises (5.2.1) irrespective of the true values of
the parameters, then such a division cannot be improved upon. The minimum
value of (5.2.1) for any given values 6; and 6. of the parameters is attained for
the regions

Ri: mpi(x|61) = mopo(w | 62),  Ra: mpa(x | ) = mpa(z | 6).

If the boundary of these regions is independent of the parameters 6; and 6, , then
we have a uniformly best division of the space. In such a case the sample observa-
tions do not provide any additional information.

If we exclude such special cases, it would appear that whatever may be the set
of regions offered it will not be uniformly the best for all values of the unknown
parameters and can be good only in some restricted sense. We need then some
rgasonable postulates governing the choice of a decision rule.
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An obvious requirement on the decision rule is that it should not lead to con-
tradictions or give recognizably bad results in particular cases. Let us consider
the degenerate case when the two alternative distributions are identical, that is,
6, = 6, = 6. For any division R, , R; of the space, the errors committed for the
two groups in this situation are a1(6, 6) and (6, 6), with the necessary condition
a1(6, 6) + o3(6, ) = 1. When the population distributions are equal the only
rule is to assign individuals at random, subject to a given or a chosen frequency
of errors for the two groups. It seems therefore reasonable to postulate that
a:1(0, ) and a»(6, ) should be constant independently of the common values of
the parameters 6; and 6, .

Further, let us imagine that for a given division of the space the value of
a;(0, 0) at a neighbouring value (8 -+ 86) is more, implying that

1=02==0

o0 {5%1 ai(6:,0,) + 6—60—2 a1 (61, 02)}0 = 86(a + b)

is positive, or if 86 is positive the expression within the brackets is positive. The
value of oy(6, 8) at the value 8§ — 86 is c1(6, ) — 80(a + b), which is smaller
than o4(9, 0).

Since we have assumed continuity of the functions involved, throughout a
neighbourhood (over a square) around the point (6, 8), o1(8:, 6:) lies between
a1(8, 0) & 86(a + b)/2. Consequently, throughout this square around (6, 9),
a1(61, 02) exceeds the value a1(6 — 66, 6 — 860) at the neighbouring point. It is
clearly undesirable that more errors are committed when the populations are
different than when they are equal in any given region including the line of
equality (at least as a boundary) in which the possible values of (6;, 6,) are re-
stricted to lie. A necessary condition for this is that (a + b) should vanish at all
points on the line of equality, implying that «;(6, §) and therefore a.(8, ) should
be constant independently of the common values.

We are not, at the moment, demanding that the functions a;(6;, 6.) and
az(6; , 62) should be stationary or that they should be absolutely minimum on
the line of equality, although these appear to be desirable properties leading to
unbiased divisions of the space. It is, however, necessary that (6, 6) should be
constant independently of 6. In our arguments, we have explicitely used one
parameter although we said that 6 stands for a vector of parameters. This is
clearly admissible since we can consider variations in one parameter keeping
the others fixed.

The restriction that «;(8, 0) is constant on the line of equality implies that
with respect to the probability density of observations

Py(z' | 6) Pa(a’ | 6) p(z | 6)

that is, when 6, = 6, = 6, the regions R; and R; are similar to the sample space
with respect to the free parameter 6. In such a case we shall say that there exists
a stmilar division of the sample space with respect to 6.

Having determined similar divisions, we have to select the best one among
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them. It is hard to imagine that there exist regions which minimise uniformly
any linear compound of the errors mai(61, 6;) + mae(61, 62) except in some
special cases. Some suitable criteria have to be used, as in Section 6, depending
on the type of difficulties which the probability densities may present, to obtain
reasonable solutions.

We have yet to consider the nature of the error functions on the line of equality
where the maximum error for any group cannot be reduced below 50 per cent.
It may be reasonable to impose the restriction

a1(0, 0) = a2(0, 0) = 0.50

In some problems the actual specification of the ratio of errors a;(8, 6) / «2(6, 8)
may be left open, and chosen to satisfy some optimum conditions. We could im-
pose any other restriction specifying the ratio of errors at any value of the
set (61, 6s). .

A special case is the choice az(8, ) = 0.05, which leads to a test of significance
of the null hypothesis H,, that the observed individual belongs to the second
group, against the alternative that he belongs to the first group. This will be
useful in further subdividing the regions R; and R in such a way that some
portions lead to more confident classifications, while other portions permit only
provisional decisions. Further theory is developed in the examples considered
in the next section.

The arguments of this section can be extended to the case of more than two
alternative populations. The division of the space into k regions must be such
that the error committed for any group remains constant whenever the popula-
tions are identical, whatever may be the common values of the parameters. As
in the case of two populations, we may choose this constant to be 1/k for each of
the alternative populations. Also, any ratio of these constants may be specified,
or sometimes suitably determined. Problems of tests of 51gn1ﬁcance may be con-
sidered in a similar way.

The general postulate laid down in this section can be used in the solution of
a wide variety of problems in classification. For instance, the problem of the
greater mean (Bahadur and Robbins, [1]) admits a neat solution once this condi-
tion is imposed.

6. Some optimum conditions and derivation of decision rules. It is known
(Neyman, [10]) that similar regions can be constructed, when a set of sufficient
statistics exist, by considering the relative probability density of the observa-
tions, given the set of sufficient statistics. Lehmann and Scheffé [8] have shown
recently that when the parameters admit a minimal set of sufficient statistics
such that no function depending on them has zero expectation (in which case the
set, is said to be complete) then all similar regions have Neyman’s structure.
That sufficient statistics possess this unicity property under some conditions has
been formally demonstrated by the author [14]. In the illustrations considered
in this paper, these results are used without proof.
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If T stands for the complete set of sufficient statistics for 6, then we can write
down the joint densities of the observations under H; and H; as

H;: G)I(T I M, 6)I)I(xl) :132, r | , 6) T) = 6)1(777 6)P1(777 6))
H'A’: 0)2(T| B 6)P2(x17 xzy x | m, 67 T) = 02(777 6)P2(77) 6))

where P; and P, are relative probability densities of observations given T', and
®; and @, are the densities of 7', while » and & are the vectors (6, + 6;) and
(61 — 62).

The regions R;r and Rzr on the surface of T for which the linear compound of
overall errors ac;(61, 6;) + bas(f1, 62) is a minimum subject to the condition

(6.1) a1(0, 6)/cx(6, 8) = 1/p,
where p is fixed, are given by )
(6.2) Rir:  a®i(n, 8)Pi(n, 8) + MPi(n, 0) = b®s(n, §)Pa(n, 8) + NoPa(n, 0),

with the reverse relationship in Rsr . The constants A; and A; are determined to
satisfy the condition (6.1). The proof of the result (6.2) and the subsequent
ones follow from a lemma proved by the author in ([16], p. 340). The region (6.2)
will generally depend upon the unknown quantities n and 4, and is therefore not
useful. We therefore need to restrict the regions by imposing some condition on
the error functions.

We first note that the errors a;(8; , 6:) and «:(8; , 62) could be written in terms
of n and & as ay(n, 8) and as(7, 8), using oy and a» as symbols for error functions.
Let

’ a .
ai(ﬂ) 6) = 6'_'6 ai(’?, 5), 1 = 1, 2,

denote the derivatives with respect to the parameters § in any given direction.
The values a;(n, 0) and as(n, 0) are the errors when the populations are identical
and the slopes of the error functions in the given direction at § = 0 are

(6.3) ai(n, 0),  as(n, 0).

To ensure optimum properties, at least in the neighbourhood of the line of
equality of the two populations, we may minimise a linear compound of the
slopes (6.3), or minimise them in a given ratio. Observing that minimising the
slopes (6.3) is equivalent to minimising the slopes corresponding to the relative
errors on the surfaces of T, we find the boundary separating the best regions
R;r and Ryr on the surfaces of T as

69 ol P,0 + MPila, 0) = b 2 Palr, 0) + ha P, 0).

(i) For any a and b and the choice of \; and A, to satisfy the condition (6.1),
Jthe linear compound aai(y, 0) + bas(n, 0) is minimised. The special values a =
b may be useful in practice.
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(if) For a suitable choice of a, b, A;, and \;, the slopes a1(4, 0) and as(n, 0)
*an be minimised in a given ratio in addition to the condition (6.1) being satis-
fed. The special case of the equality of the slopes may be of some practical in-
terest.

The solution (6.4) may depend on 7 when Pj(5, 0) and P;(n, 0) contain 7.
In the illustrations considered in Section 7, the Pj(n, 8) are functions of & only,
so that the solution (6.4) serves the purpose. Otherwise some method has to be
devised, such as minimising the average slopes over a set of 5 or considering
regions similar for » with respect to the functions Pj(y, 0).

For the problem of testing the hypothesis H, against the alternative H; we
have to construct a region w on the T surfaces satisfying the four conditions
(given v < 0)

( .
(a) f Py(5 = 0) dv = 0.05,
(b) [ Pits = 0y dv =,
6.5) < “
() [ P& v 005,
(d) f Pi(5 = 0) dv = a maximum.

\

The region satisfying the conditions (a), (b) and (d) is given by
(6.6) w:  aP1(0) + MP1(0) Z bP3(0) + MP(0)

on the T surfaces where @, b, \; and X are suitably chosen. For this region the
slope of the conditional power curve 81(5) at & = 0 is a function of 4 defined
in condition (b). We now relax this condition and maximise 83(0) subject to the
condition ¥ < 0. With this choice of ¥ we can set up the region w as in (6.6).
If, for this region, condition (c) is satisfied, then we obtain a test of the hypothe-
sis that H, is true against the alternative that H; is true. This test is
most powerful in a given direction for small differences in the parameters of the
two populations.

The situations in tests of significance and discriminatory problems are dia-
grammatically represented in Figure 1.

If the direction used in the above construction with the first derivatives is
not justifiable, then we may try to impose further restrictions such as unbiased-
ness of the error functions on the line of equality

(67) a;(ﬂy 0) =0, aé(ﬂ, 0) = 0.

We will assume that this condition implies that the derivatives of these errors
vanish when 6§ = 0 for all T'. The derivatives are calculated from the conditional .
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probability densities

(6,8) (%‘ al(n, 5, T), 0‘—66' a2("h 63 T))

where f ai(n, 8, T)®:(T | 9, 8) dT = a;(n, 8). In all the illustrations considered in

Section 7 this condition is automatically satisfied. Otherwise it may be necessary
to impose the conditions (6.8) which may be only sufficient for (6.7).

We consider the second derivatives of the relative probability densities with
respect to the elements of the vector of parameters 6 = (6;, 82, * - - ). Defining

fork = 1or2

" FL . 9
i _ —_ g —
Py = 55, 9, Py(5 = 0), p; ET Pi(6 = 0),

let us construct the regions
(6.9 Ru: 23 auPi’ + MPi+ MPi+ - + mPr
2 ZZbi}Péi + AaPi + ApPi + -+ + uPs

with the reverse relationship in R, .

/ E
/ -
S 3
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2 /e~ &
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. F1a. 1. Power and error curves for tests of significance (left) and for problems of dis-
crimination (right).
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(1) The regions R; and R, minimise

o E3
ZZ% é—m 051(7]: 8 + Zzbi;‘ Wj 012(’7; 8)
at & = O for given a,; and b;; , provided A;; and u; are chosen to satisfy the con-
dition (6.8) and a given ratio of errors when § = 0.
(ii) For a suitable choice of a;; and b;; , the local powers of discrimination for
the two groups can be made constant on the ellipses

(6.10) > > v¥s5; = constant

and their sum then maximised. Condition (6.10) implies that the second deriva-
tives are in the ratio y".

(iii) By a suitable choice of a;; and b;; we could also construct a critical re-
gion w of a given size such that the first derivatives of ca(9, §) and az(, 8) van-

ish at § = 0 and that f > > v“P# dv is maximised subject to the condition
w

f ZZﬁ“P;j dv < 0, where v/ and 8" are assigned as in (6.10). Such a region

can be used in testing the hypothesis H, against the alternative H,, provided
the region is so adjusted that its size under H; is 5 per cent when § = 0 and
less than or equal to 5 per cent when § = 0.

Another alternative is to restrict to those regions which give the errors as funec-
tions of a distance A between two populations. (Distance is a suitably defined
function of the parameters of two populations. The construction of distance
functions is discussed in two papers by the author [12], [14].) Even restricting to
this class, it may not be possible to obtain regions for which a given linear com-
pound of the errors aa;(A) + bas(A) is minimised. In such a case, we may try to
minimise

(6.11)

da;(0) dos(0)
“~ TP

to obtain regions for discrimination. For tests of significance we may have to
maximise —da;(0)/dA subject to the conditions

da(0)
dA

In Section 7; we shall show that such regions can be constructed.

Another possible approach is to consider decision rules which satisfy the prin-
ciple of invariance [7]. It-appears that some of the results obtained here can also
be deduced by using this principle.

The necessity of considering the derivatives in (6.11) arises only when no uni-
formly best regions exist in the class which gives the errors as functions of A only.

Besides the parameters § which are considered to vary from population to
population, there may be other unknown parameters ¢ which are the same for

=0, (0) =005
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all populations. Thus we may consider the class of normal distributions with the
same unknown variance but different mean values. In such situations, we may
demand that the division of the space be similar for the unknown parameters ¢
also when the populations are identical in the 6 parameters.

This introduces fresh complications in the applications of the results (6.4),
(6.6), (6.9) and (6.11) for the derivation of optimum regions. Fortunately, in
some cases the problems can be reduced in such a way that the above results are
directly applicable, as shown in Section 7.2.

One may argue that in laying down the decision rules, undue emphasis is laid
on discriminating between populations which are close to one another. In the
first place, this is done just to set up decision rules which do not involve the un-
known parameters. In the absence of rules which are uniformly best, we can
think only of rules which are best at some assigned values of the parameters, or
at most for an assigned set of values.

The requirement that the decision rule should possess some optimum proper-
ties in the neighbourhood of equality of the populations is not unrealistic since
in practice we often meet with alternatives which are closely related ; the methods
developed are best suited to such situations. It is, however, possible to reduce
decision rules which have optimum properties for a given difference in the parame-
ters of the two populations. These may be useful in some situations. Of course,
whatever may be the rule offered, it is better to examine its performance for all
possible differences in the parameters of the two populations and satisfy oneself
whether it can be reasonably applied in.a given situation.

7. Illustrations.

7.1. Multivariate populations, dispersion matriz known. Let us consider p char-
acters and represent the relevant statistics computed from the three samples,
and functions based on them, as follows:

(307 TR 1 2 3
Samplesize. . .......coiiii n Ny n
Average of ith character .................. Ta Lo T
Population average. ...................... Wil Wi Wi

0; = pa — Ma Z; = n&; + mEq + Nelan

T; = Ta — Ta, U; = & — (o + NaF)/(n + n2)

f1 = (nl -+ n2)/nln2 , f2 = (’n + n + ’ﬂz)/’n(’ﬂl + ’ﬂz)

n = ’ﬂz/(nl + ’nz), g = '—’ﬂl/(nl + nz)

@ = 1/f+ gi/f, @ = 1/f: + ga2/fe

When pi = pe = u;for all , then Z; are sufficient statistics for u; and we need
, consider only the relative distribution of 7';, U, given Z; . It is easy to see that
T;, U:, and Z; are all independently distributed, so Z, can be dropped from
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further consideration if errors are restricted to functions of & only. The joint
probability density of T';, U; under the hypothesis H; is

PI(T, U; 6)

= const exp [—% Zza‘f{(Ti — 51';1(7,1‘ ) (U; - 916.;2(U — & gl)}]

Under H, , we replace ¢; by g, to obtain Py(T, U, 3).

In this problem we consider regions R, and R, whose size under both hypoth-
eses depends only on the single parameter A = Y a%,3; , since the formulae of
Section 6, using the first and second derivatives, do not yield fruitful results.
With this end in view let us consider the surface integral

fA Py(T, U, )G  doy - - - day,
where

P(T, U, )
(7.1.1) = P(T, U,0) exp {—3q 2.0 a"[(6; — W)(; — W) — W:Wwil},

G=[dn-d, W= T+ 0 U/ + 0

For the above integration, only the first expression in the exponential of (7.1.1)
is important. This may be regarded as a p-variant normal distribution of
d1, +*-, 8. Then the integration results in a noncentral x* probability density
with noncentral parameter M, , given by

p/2|aw'l§ -1 - M.AN\T
—M1/2—A" 12/, N\ (pr2)—1 1
(LTI singyon-s 3 (M

) 1
12
™ riT (;—) + r)

My =q 22 0"W:W;, A = qa,
([16], pp. 51, 57). Observing that

I i Ii -1 A( p/2)—1
[ dsi - as, { L } da
A (27) opiz (p)

and changlng over to A in (7 1.2), we find the total integral in (7.1.1) for the two
cases to be

(7.12)

6@ = Pr, v, 5T (Mg,

G2(8) = Py(T, U, 0)¢ ™" Z vr{%p—)l- r) (1‘{24?”)'.
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Restricting the minimisation of a linear compound of the errors to the divisions
which yield errors as functions of A only, the boundary is obtained as

(7.1.3) aG1(4) = bG:(4).

The proof of (7.1.3) is trivial ([16], p. 285). We have to make sure that for the
regions based on (7.1.3) the errors are functions of A only. This follows from the
invariance of the expressions M; and M, . The solution (7.1.8) in general involves
A and can be used only when A is known. We can, however, seek for optimum
properties in the neighbourhood of A = 0, where

4GA) _ p(1, U, 01 (J‘f, - 1),

Tda 2
dG2(A) (Mz _‘ 1)
A = Py(T, U, 0)g: 5 3/
Consider the bounda,ry
dGl(O) dGz(O)

(7.14) 4+ NPT, U,0) =b——2 4+ NPT, U,0),

or aqiM; — bgaM: = c. The choice @ = b leads to a minimum value of the sum
of the derivatives of the errors. In this case the boundary is

- — 2 2
(715) 2 2.a" {91 g U:;U; + 28— 92 2(g — g2 T, U} _plg1 — g2) )
T Afe f2
For the case g1 = —g» , equation (7.1.5) reduces t0)_» «'T,U; = 0, so that the
regions are

R, : ZZa"'TfU; =0, R, : EZa”TiU <0

with fifty per cent errors when A = 0. In this case the regions are uniformly best
for all A because G1(A) = G»(A) in R, and the reverse is true in R, , irrespective
of the value of A. The appropriate regions when n; # n, have the boundary as
in (7.1.5). For these regions the errors may not be fifty per cent when A = 0.
If this condition is also insisted upon, the boundary is

(7.1.6) >Xat {-‘ﬁ f—2 g U:U; + 2(9}1;2 o), U,} > e

where ¢ is éuita,bly determined. We can also choose @, b, A1, and A, in (7.1.4)
subject to the condition that the derivatives of errors are equal when A = 0.
For tests of significance the critical region is of the form

(7.1.7) w: aM, — bM, = ¢

where a, b, and ¢ are determined such that

d

(71.8) E-A;{Pl(aM! — bM; = ¢)}a=o
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is a maximum subject to

Pz(aMx - sz = CIA = 0) = 005, -(-i- {Pz(aMl - bM2 = C)}A-O 0.

da
In the above expressions, P; stands for the probability according to the first
hypothesis and P, for the second. The ultimate solution depends on the evalua-
tion of the expressions (7.1.8). The problem needs further investigation.
In the univariate problem, if (n, — 7) is not large compared to (n; + n),
the regions for classification are obtained as special cases of (7.1.5) as

Ry TU = 0, R,: TU =0,
T=1a— 2, U=2%— (mZ + ne)/(m1 + ns),

where %, and £, are the averages of the two samples and Z that of the sample to
be classified. The critical region for testing Hy against Hj is of the form TU = ¢,
where ¢ is determined to ensure five per cent size when § = 0. The regions for
classification depending on different combinations of 7 and U are diagrammatically
represented in Figure 2.

7.2. Multivariate populations, dispersion matrix unknown. In addition to the
statistics defined in Section 7.1 we need estimates of the dispersion elements
when the populations are identical, that is, when 8 = 0 for all 7. Let S.; denote
the pooled sum of products within the three samples with (n; + ny + n — 3)

IIA

T
A

SECOND

SECOND ? FIRST ?

FIRST ? SECOND ?

SECOND

F1a. 2. Division of the space for different decisions
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degrees of freedom. When §; is zero, all the observations can be regarded as
samples from the same population so that we have estimates of the dispersion
elements based on (n; + n, + n — 1) degrees of freedom. If B;; denotes the cor-
rected sum of products from the combined samples, then

Bij' = S”' + T,,T]/fl + UtUJ/fz .

The statistics Z; (defined in Sec. 7.1) and B;; are sufficient for the common
mean values and the elements a;; of the dispersion matrix. Similar divisions of
the space are obtained by considering exclusive regions on the surfaces of con-
stant values of Z; and B;;, subject to some conditions. The probability density
of T;, U;, and S;; under the hypothesis H, is

const |Sij|™* exp {—3> > a”[Si; + (Ts — 8.)(T; — 8,)/fx
+ (Ui — ¢:16)(U; — g18;)/f:]}

where m = (n; + ny + n — p — 4). Changing over to T';, U, , and B;; permits
their joint density to be written as the product of

P(Bi;| 8 = 0) = const |By,|™"", exp {—32 > a"Bi},
F(B,T,U) = |Biyj — TiT;/fi — UU;/f2|""* + |By|™",
Q1(8) exp (2 (Ts/fy + qUi/f)e: — 31,

where {; = &+ -+ a? ‘s, and Yi=qA = QIZZa,-jg‘ig‘j . The probability
density under the second hypothesis is obtained by replacing g; and ¢; by g. and ¢,
in the above expressions. We shall consider divisions R, , R, for which the errors
are a function of the Mahalanobis distance A = D9 a;;¢.¢; only. This means

It

(721) [ P(Bysls =0 dB [ HFB, T, VIQE) aT dU = pi().
R1B

Following the arguments of Hsu [6] and Simaika [17] in a similar situation, we

can show that condition (7.2.1) implies

f MF(B, T, U)Qu(5) dT dU = Gy(K),
R)B

where K = EZB,,;‘,;‘, If we are m1n1m1s1ng a linear compound of errors it is
enough to maximise ae *1’Gi(K) + e ¥’Gy(K) on the surfaces of B.;, since
the expected value of this linear compound integrated over B;; with density
P(B;;| 6 = 0) gives the linear compound of correct classifications to be maxi-
mised. There is no hope of obtaining a solution without involving A, except
perhaps when n; = n,. We shall therefore minimise a linear compound of the
derivatives with respect to A at the value zero, or maximise

d (e d (v
(7.2.2) aJK{eWBl(A)}—i-bd {e"8,(A)}



668 C. RADHAKRISHNA RAO
4+ A = 0. Evaluation of the three terms at A = 0 yields

i, (A) = fP(Bij |8 =0)dB ./; F(B, T, U)Q:(s) T dU,

=" f P(By;| 5 = 0)Gy(K) dB;

dGl(O) B

d6,(0
sy Bd‘i) f B,P(B;|5 = 0)

dG'l(O) .

dGl(O) fB”P(B” l 6 = 0) dB = (m + P + 3) (277} dK ’

d _y 4
- g (A) = — _g.‘ﬁl(O) + 61(0).

Consequently the value of (7.2.2) at A = 0 is

{ dGi(0) bdGz(O)} (m+p+3) — {ﬁg—l G1(0) + ’-’Z)—q" 02(0)}‘

Since the latter depends only on the errors when A = 0, we need only maximise
the former or the expression adG1(0)/dK + bdG»(0)/dK if possible, subject to
given magnitudes of errors when A = 0. Observing that

G = [ PGB, T,0) e (T (T/fi + 6 U4} dT aU,
1B
let us consider the surface integral over the surface S = ZZB,—,{,{,-

/‘;F(B, T, U) exp {2_ (T'/f + @ U/f)ed G diy - - - dey,

(723)
G =fsd5~1 e dt,.
As in (7.1.1), the value of (7.2.3) is
. Ir'(3p) (MlK)'
(7.24) const F(B, T, U) X Ty F\ 4 s

where .
= 22 BY(Ti/fs + g:U/f)(Ti/fr + qiU/fe).

The derivative of (7.2.4) with respect to K at K = 0 is const M;, and the de-
rivative corresponding to the second hypothesis is const M. where the two
constants are the same. We can now define the boundary aM,; — bM, = ¢ over
the surfaces of B;;. The constants @, b, and ¢ may be suitably chosen. For
discrimination we might choose @ = b and ¢ = 0, in which case the sum of the
derivatives of the errors is minimised. We can choose a, b, and ¢ differently as in
othier cases considered in Section 7.1.
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For tests of significance we need to determine a, b, and ¢ such that over the
surfaces of B;;

f F(B, T, U)Qs(0) dT dU = 0.05 ‘% f F(B, T, U)Q:(8) dT dU
is a maximum at K = 0 subject to
Eazl‘{ fw F(B, T, U)Q:(3) dT dv < 0, k= 0.

Here w is the region on the surfaces of B;; where aM; — bM, = c. It is easy to
see that the distribution of the statistic aM; — bM; under any hypothesis is de-
pendent on A only, thus ensuring the validity of the arguments used in the der-
ivation of the regions.

The distribution problems connected with the test criteria developed here
have yet to be tackled. Some results obtanied by Wald [22], Harter [5] and Sit-
greaves [18] in the reduction of distribution of the discriminant function and dif-
ference of two quadratic forms will be extremely useful in the study of these
problems.
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