ON THE MAXIMUM NUMBER OF CONSTRAINTS OF AN
ORTHOGONAL ARRAY!

By ESTHER SEIDEN
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1. Summary. R. C. Bose and K. A. Bush [1] showed how to make use of the
maximum number of points, no three of which are collinear, in finite projective
spaces for the construction of orthogonal arrays. In particular this enabled
them to construct an orthogonal array (81, 10, 3, 3). They proved on the other
hand that, in the case considered, the maximum number of constraints does not
exceed 12 [1], (Theorem 2C). Hence they state: “We do not know whether we
can get 11 or 12 constraints in any other way.”

This paper shows first that a 10-rowed orthogonal array, constructed by the
geometrical method, cannot be extended to an 11-rowed orthogomal array. It
then shows that the number of constraints does not exceed 11. The problem of
construction of an orthogonal array with 11 constraints remains unsolved.

This summary should serve, as well, as a correction to the statement made in
the abstract, ““A remark on the geometrical method of construction of an orthog-
onal array,” published in the Annals of Mathematical Statistics, Vol. 25 (1954),
p. 177-178, which claimed the nonexistence of an orthogonal array of 11 con-
straints also.

2. Introduction. The proof is based on an algebraic property of orthogonal
arrays, pointed out by Bose and Bush [1]. Let n%; denote the number of columns
belonging to an array consisting of k rows that have j coincidences (j elements
equal) with the 7th column. A necessary condition for an array (\s', k, s, t) to
be orthogonal is that whatever be the number i such that 0 < h = ¢, the follow-
ing equalities hold
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where the (’s are binomial coefficients.

In the case considered, the equalities become, for¢ = 1,2, --- , 81,
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Equations (1) will be used throughout the proof in the special case of ¢+ = 1.
Moreover, it will be assumed, without loss of generality, that the first column
consists of zeros only.

3. Derivations.

LemMma 1. An orthogonal array (81, 10, 3, 3), with 10 constraints and ny =0
for 7 = 5 cannot be extended to an 11-rowed orthogonal array.

Proor. The third and fourth equations of (1) becomes in this case

2n1) + 6nls = 720 — 12ni
6niy = 1440 — 24nly .

Since niy = 0 and niy = 0, both equations imply nis £ 60. On the other hand,

subtracting the second equation from the first gives nis = 60. Consequently
niy = 60 and nls = ni; = 0. Then the second and first equations of (1) imply
nil = 20 and nig = 0, respectively. It remains to show now that an array satisfy-
ing this solution cannot be extended to an 11-rowed orthogonal array. We ob-
serve first that this solution implies nis = ni3 = O and thus all other n’s are
uniquely determined, namely ni; = 9, nig = 60, niy = —10, =y = 21,
which is clearly impossible.

THEOREM 1. A 10-rowed orthogonal array constructed by the method employed
by Bose and Bush [1] cannot be extended to an 11-rowed orthogonal array.

Proor. Since the maximum number of points of which no three are collinear
in the projective plane considered is equal to four, it is easy to see that the
method of construction cannot lead to a column having more than four coin-
cidences with the first column. Hence the theorem is an immediate consequence
of Lemma 1.

LemMa 2. The number of coincidences between any two columns of a 6-rowed
orthogonal array is less than six, provided that\ = s = t = 3.

Proor. Consider equations (1) for k¥ = 6 and ¢« = 1. Express nio, M1, Nie
and 7}, in terms of nls , nys , and nis . The equations become

nd =4 + nl + 4nls + 100k,  nd = 36 — 4n%y — 15n% — 36nks,

ndy = 6ndy + 20nSs + 45nl,  nl = 40 — 4ni, — 10nf — 20m%.
If n¥ > 0, all the n’s are uniquely determined, namely

n‘l;s = 1, 71"1;5 = ng4 = 0, n?a = 20, ni’g = 45, ’I’L?l = O, nfo = 14.
This means that every 4-rowed subarray must satisfy the equality ni = 1, and
again all n’s will be uniquely determined as ni; = 4, ny = 30, i = 28, and
ni = 17. Hence, if we delete from the original array any two rows, the number
of columns which have no coincidences with the first column will increase by
three. Since n!; = 0, every pair of rows will contain exactly six zeros, contained

in three columns each having two zeros. Moreover, different pairs must contain
zeros belonging to different such columns. The number of pairs of rows is equal to
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20. Hence ni; would have to be equal to 60, contrary to the assumption that
ndy = 45. This proves Lemma 2.

CoROLLARY. Any orthogonal array (81, k, 3, 3) satisfies the equalities n; = 0,
provided thatj = 6 and 1 < 7 < 81.

LemMma 3. An orthogonal array with 11 constraints satisfies one of the mine
solutions

nij
Solution
ny n s o nh o
I 11 55 0 0 11 3
II 12 52 2 2 8 4
111 13 49 4 4 5 5
v 13 50 0 10 1 6
A\ 14 45 0 10 6 5
VI 14 46 6 6 2 6
VII 15 42 12 2 3 6
VIII 16 39 14 4 0 7
IX 17 35 20 0 1 7

Proor. In view of Lemma 2, equations (1) imply

2n1y + 3n1i; = —110 + 10n3,  3nii + 2ni; = 88 — 5nis .
Hence, 11 < ni; £ 17, since all the n’s are nonnegative. All solutions which
could be satisfied by an orthogonal array with 11 constraints can now be easily
enumerated. For instance, we may express nig, ni1, niz, and nj; in terms of nis

and ni. Then

niy = —96 + nii + 4ni;, i = 396 — 4niy — 15ms,

niy = —b50 + 6nii + 20nis,  miz = 330 — 4nli — 10n5;.
Consider now, for example, ni; = 11. By the last equality, ni; < 55, and by the

third equality, ni = 55. Hence ni; = 55 and all other n’s are uniquely deter-

mined.
LemMa 4. If an orthogonal array of 12 constraints exists, it must satisfy one of

the two solutions

|
Solution
n ‘ I I
T
r 27 42 2 ’ 0 3 ‘ 6
180G 28 | 3 4 2 o | 7

Proor. Equations (1) imply for k = 12
3nis + 2ns = —264 + 10nis,  3nii + 2n1; = 144 — 5ni .
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Thus 27 < ni; < 28. The same method as before shows that I’ and I’ are the only
solutions of equations (1) for k¥ = 12 and nj; = 27 or ni; = 28.

THEOREM 2. The number of constraints of an orthogonal array does not exceed 11,
provided that \ = s = t = 3.

Proor. It is enough to prove that neither Solution I’ nor II” can be satisfied
by an orthogonal array. As to solution I’, since ni; = 6, every 11-rowed subarray
would have to satisfy the inequality nis = 6. Hence it remains to consider solu-
tions IV, VI, VII, VIII and IX. It is easy to rule out all except VII since the rest
could lead to 12-rowed arrays for which, if ni; = 6, ni; could be at most equal
to two, contrary to the assumption that it is three. Hence, every 11-rowed sub-
array of an array satisfying I’ would have to satisfy VII. This is impossible,
since ni; # 0. Thus, if we delete from the array a row which contains a zero be-
longing to a column having just one zero, we must get an 11-rowed subarray for
which njp = 7.

The proof regarding solution II’ is analogous. Here every 11-rowed subarray
would have to satisfy either VIII or IX. Solution IX is impossible, since it
could lead to a 12-rowed array for which, if nj3 = 7, ni; is at most equal to one.
As before, it is impossible that every 11-rowed subarray of an array satisfying I1’
will satisfy IX, because deletion from this array of a row containing a zero
belonging to a column which has two zeros only must yield an 11-rowed subarray
for which nii > 0. This completes the proof of Theorem 2.

It is easy to show that no 1l-rowed orthogonal arrays exist which satisfy
solutions II, ITI, or V. As to the remaining solutions, the problem is unsolved.

I wish to thank R. C. Bose for making accessible to me his unpublished work
on this subject.
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