ESTIMATES OF BOUNDED RELATIVE ERROR IN PARTICLE
COUNTING!
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Summary. A statistical problem arising in many fields of activity requires the
estimation of the average number of events occurring per unit of a continuous
variable, such as area or time. The underlying distribution of events is assumed
to be Poisson; the constant to be estimated is the unknown parameter A of the
distribution.

A sampling procedure is proposed in which the continuous variable is observed
until a fixed number M of events occurs. Such a procedure enables us to form
an estimate [, which with confidence coefficient o does not differ from A by more
than 100 v per cent of A. The values of v and « depend on M but not on .

Modifications of this procedure which are sequential in nature and have pos-
sible operational advantages are also described.

These procedures are discussed in terms of a chemical problem of particle
counting. It is clear, however, that they are generally applicable whenever the
basic probability assumptions apply.

1. Introduction. The following problem arising in chemical research is typical
of a statistical problem occurring in many fields of activity. A set of inert par-
ticles is randomly distributed over a microscope slide of area A. It is assumed
that the probability of m particles falling in a subset of area a is

P\(m|a) = ¢ (\a)™ / m!

and that distributions in disjoint areas are independent. On the basis of particle
counts in subareas of A, we want to estimate the unknown parameter A. With
this estimate we can, by performing the indicated multiplication, also estimate,
if desired, N = A\, the expected number of particles on the slide. In addition,
we would like to make a confidence statement about the reliability of our esti-
madte.

In general, in discussing the reliability of an estimate, we would like to bound,
at a given confidence level, either the absolute or therelative error of the estimate.
That is, for a selected estimate ¢ of an unknown parameter 6, we would like to
say with confidence coefficient «, either

t—06 =<8 or |t/6—1 =7, ie,(1—9v)=St/6=(1+7),

where « and B (or v) are suitably chosen numbers which do not depend on 6.
In the present problem, it seems reasonable to be concerned with the relative
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BOUNDED ERROR 277

rather than the absolute error of the estimate, since this error is independent of
the units in which the area is measured and is the same whether we are estimating
A, or A), the expected number of particles on the slide. What we would like,
therefore, is an estimate ! of N such that we can say with confidence coefficient
a that ! does not differ from A\ by more than 100y per cent of A\, where neither
a nor v depend on the true value of A. Such an estimate we call an estimate of
bounded relative error. Moreover, among all estimates of this type we would like
to choose one possessing some optimal properties.

2. Fixed area sampling procedure. In estimating X in problems of the present
kind, it often has been the practice to select n non-overlapping subareas of 4,
each of size a, , with » and a, determined in advance, and to count the particles
in the selected subareas. The usual estimate of ) is then

1 n
Z = n——ao 2 X;
where z; is the number of particles observed in the ¢th subarea. It is easy to see,
however, that for a given value of v,

PN1 — ) £ 1221 + )}

is a function of the unknown parameter A, so that no confidence statement con-
cerning a bound on the relative error of ! can be made.

On the other hand, from the observed value of I, we can determine values for
two functions L, and L, defined by

i exp { —L,(Dnao} (L,()nao)’ _l—a

j=nagl j! 2 ’
¥ exp {—L,()nao) (L)na))’ _ 1 —
i=o J! 2 -

Then, we can say with confidence coefficient approximately « that

LJl) £ X 2 L),
ML = ~@D] =10 <A1+ +Q),

where

2L L) o = O = LO
LO + Lo’ " L0 + L0

It follows that if we estimate A\ by i(l), we can say with confidence coefficient
approximately a that the relative error of () is bounded by ¥(l), but this quan-
tity is a chance variable whose expected value -depends on the unknown value
of \.

Since a fixed area sampling procedure does not yield estimates of bounded
relative error, we consider the possibility of using another type of sampling

) =
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procedure. (Some properties of fixed count and fixed time experiments are dis-
cussed by Albert and Nelson [1] for the case of counter data for radioactivity.)
By a suitable adjustment of the microscope, the aperture can be increased
gradually so that the area under observation increases continuously from a
point to any desired magnitude, within the limits of the area of the slide.

If the area is expanded only until a fixed number of particles is counted, the
magnitude of the observed area becomes a chance variable with an attached
probability distribution. In this distribution, the parameter \ appears as a
scale parameter. It has been shown [2] that if the single unknown parameter of a
distribution is a scale parameter, estimates of bounded relative error exist, and
among them one possessing specified optimal properties can be found. By
adopting a fixed particle count procedure and applying the general theory, our
problem is formally solved.

In the following sections, a fixed particle count procedure is explicitly defined
and an estimate of bounded relative error is proposed. For the given value of v
and number of particles counted, it maximizes the value of the confidence co-
efficient a. Some modifications of this procedure are also discussed.

3. Fixed particle count procedure. Suppose in counting particles under a micro-
scope, the area under observation is expanded until a fixed number of particles,
M, is counted. The magnitude of the area so obtained, say a, , is a chance vari-
able with an attached probability distribution. Since we have assumed that the
probability of m particles falling in a subset of fixed area a is

Pi\(m | a) = (\a)"e* / m),
the probability that an area of size z/\ has fewer than M particles is

_ llz—la:~ —lM—l
P{Aau>x = J=0]' '—f (M—l)’

It follows that Aax = X has the density function
ful@) = 27/ (M — DL

That is, Aay has a gamma distribution with parameter M, or 2\a, has a chi-
square distribution with 2M degrees of freedom.

Suppose now that an observation a, is made, and we form the estimate [ of
\ defined by | = b/ax, where b is a given positive number. If v is the desired
bound on the relative error, the probability, before the observation is made,
that

Q=" =sIA=sQ0+7)
is given by

b b/1—7y M—l —:c
<\ =
d {1 = = } = A=y % = ¥ M), sy
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The quantity ¢,(b, M) does not depend upon A, so that for all A, I is an estimate
with relative error bounded by v at confidence level ¢, (b, M). Clearly, we would
like to find that value of b, say b*, for which ¢, (b, M) is a maximum.

As b varies from 0 to «, the value of ¥,(b, M) increases continuously from
zero to a maximum value ¢, (b*, M), and then decreases again to zero. To deter-
mine b*, we consider

a 9 b/1=—vy xM—l e—z b/1+v xM —le—z
a5 V(& M) = %[/o ar =% "fo or = 1)1‘“]

bM——-l —b/(1—7) —b/(1+7)
- W - [(1 - O+ w"]'
The maximizing value is the single finite positive value of b for which

0y (b, M) /ob = 0;

that is,
2
3.1) pr=MA =) 1ty
2y 1 -y
For b*, we have
xM—le—:c
¥y (b*, M) = ‘/S)W":l—)!dx = y3(M), say,
_[MQ -, 1+y MQ+7) l-I—v-:l
:D—-[ 5 logl__’y, o logl_'y..

For a fixed value of v, the function ¢% is a single-valued monotone increasing
function. The monotonicity of % follows from the fact that ay is a sufficient
statistic for a;,- -+, ax . It follows, therefore, that if we define M, to be the
least integer such that % (M) = «, then My = 7,(a) is a single-valued monotone
increasing function of a.

With these considerations in mind, we propose the following fixed particle
count procedure. The desired values of v and a are specified in advance, and
from these we determine M = 7,(a). The area under observation is expanded
until M particles are counted, resulting in an observation ay . We estimate A,
the average number of particles per unit area, and N, the expected number of
particles on the slide with total area 4, by

I =b*/aw, N*= Al*

where b* is defined in (3.1). In either case, the relative error of the estimate is
bounded by v at confidence level at least &, regardless of the true value of .

If our estimation problem is formulated as a decision function problem in
which our action space is the positive half of the real line, that is,

{I: 0=1< o},
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and our loss function is
0 if N — 1] £,
Low D ( i ) =1
it - 1>,

the proposed estimate I* is the best invariant estimate. Since the loss function
is bounded, it is also minimax [3]. The risk when we estimate A by I*is 1 — ¥*(M).

4. Values of v, M, and ¢ (M). Table 1 gives values of (M) for four values
of v and for M < 40. For M > 40, the distribution of (\/4\ay — V4M — 1) -
approximately normal with zero mean and unit variance. In this case, therefore,

VA ~<1>(1/4M(17+ M jog 1 E - VA1 1)

(4.1)
- ¢(4/4M<;7— D10 LT — /i 1),
where ®(u) = [“o (2m) %" dt. Since 0 < v < 1, we have
5 log 12 = 1+ 4T 4T
3 5 7

¢$(M)~¢[\/ZA_4(§;4~7+ )]—cp[\/m(g;—g—ggf)].

For values of v and « which are generally of practical interest, a good approxi-
mation for the required value of M is given by the relation

(42) NZi (g + 73> _—

where z, = ' [A(1 + a)], that is, ®(z,) — B(—2.) = o

Fory = .10 and « = .90, .95, and .99, respectively, this approximation yields
the same values of M as those determined from (4.1), while for y = .05, the
values differ only slightly:

90 95 99
v = .10 269 382 660 (4.1) or (4.2)
- 05 f 1081 1535 2651 4.1)
= 1 1081 1534 2650 | (4.2)

6. Modified fixed particle count procedure. Instead of expanding the area
continuously until M particles are counted, it may be more convenient to adopt
a sampling procedure consisting of k¥ subsamples. In the jth subsample, the area
is expanded continuously until a fixed number of particles m; is counted, with
> %m; = M, and with the provision that areas observed in the different sub-



BOUNDED ERROR 281

TABLE 1
1 M—1 —x
Values of ¢5(M) = —— f 2 e dr
¥y (M) T =1y ,
| MQA =), A4+y) MA4+1v), (1+4)
D = log , log .
2y 1 -9 2y a-9)
Y
M 1
ot { 05 l 10 ‘ 20

2 .0108 .0541 .1083 .2165

4 .0156 .0781 .1558 .3084

6 .0193 .0962 L1915 .3753

8 .0223 1114 L2211 .4292
10 .0250 1247 .2469 .4746
12 .0274 .1367 .2700 .5140
14 .0297 .1476 .2909 .5487
16 L0317 .1578 .3102 .5796
18 .0337 .1674 .3281 .6075
20 .0355 .1763 .3449 .6329
22 .0373 .1849 .3607 .6560
24 .0389 .1930 3757 L6771
26 .0405 .2008 .3898 .6966
28 .0421 .2082 .4033 7146
30 .0436 .2154 .4162 7313
32 .0450 2223 .4286 .7468
34 .0464 .2290 .4404 .7612
36 .0477 .2355 .4518 7746
38 .0490 .2418 .4628 L7871
40 .0503 .2479 .4733 7988

samples are nonoverlapping. If a¥ :) is the area observed in the jth subsample,

we now estimate \ by

k
Iy =0* E all ]) .
j=1
Since each of the a,(,f;.) is independently distributed in a gamma distribution
with parameter m;, their sum, because of the reproductive property of the
gamma (or chi-square) distribution, is again a gamma distribution with param-
eter Z’{ m; = M. The theory now goes through as before.

6. Sequential Procedure. For practical purposes, it may be convenient to
modify the sampling procedure in the following manner. The desired bound on
the relative error, v, and the confidence coefficient a are specified, and the cor-
responding value of M required for the fixed particle count procedure is de-
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termined. The area under observation is now expanded until a fixed number of
particles, r, is counted; 1 < r < M.

Let a, be the size of the area so observed. Subsequently, non-overlapping
areas of fixed size ca,, where c is a given positive number, are examined suc-
cessively, and the number of particles in each area is counted. Let »; be the
number of particles counted in the sth area of size ca, . Sampling stops with the
nth such area if

N<M-r=N=M-—r+u,

say, where

n—1

N'=ZV.', N=Z"i-
=1 =1

In this procedure, the quantities a., 1, - - , v», and n are all chance variables.

‘When sampling stops, we estimate A by

oo M+ 00 -7 og LT
2va.(1 + nc) 11—~

That is, we estimate A in the same manner as before, but replace M and a, by
(m + u) and a,(1 + nc), respectively. We state with a confidence coefficient at
least as large as a that the relative error of I* is bounded by 7.

This statement is justified as follows: the joint probability density of » , - - -,
v, ,nand X = Aa,is given by

—z r—1 n —C vy
ez e “(cx)”™
d’(Vl""’Vn)n;x): H( ))

(7‘ - 1)' i=1 V,'!
n—1 n

ZV{<M—T§.ZW.
1=1

=1

(6.1)

(The density is with respect to discrete measure for », -+, v,, n, and to
Lebesgue measure for z.) This can be written as

—z (1+4nc) r+N_r+N—1
€ 14+ n)™x
¢’(V17 )Vn’n7x)"‘ (T—I-N—l)'

'h(l/]_, e ,y,,,n).
The probability before any observations are made that

*
1—7§%§1+7

is equal to

= . . j[l—y 1+ v _Aa(l 4 no)
Elzh(”l’ ’V"’n)Pl o Iog1_7= TN

1+ 1+
2y 10g1~v]

IIA
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0

2 2 hGn, ooy vm,m) Y + N)

n=1

\b’:(M)gZh(Vl, te 1Vn7n)

It

v

= .

All the sums without indices are over all sequences », - - - , v, satisfying (6.1).

7. Probability distribution of n. For any sequential procedure, it is of interest
to determine, if possible, the probability distribution of n together with its ex-
pected value. For the proposed procedure, this distribution is given by

g(n) = Zh(”ly A ’Vnyn)
> (r+N-=1tc"
T =Dyt s A F )
© M—r—1 tn_1

>

tpn=M—r tp_1=0 t,_9=0

t

2 (r+4to — 1)t
0 — Dltn — tac)! + o« (2 — B) 1011 + ne)

©  M—r—1 (r+t, — ]_)!ctn(n -1 tao1
ta=M—r tn_1=0 (7' - l)l(tn - tn—l) g Ay (1 + nc)r*l"n

2 M M 4w — 1)1 ™™ (n — 1)?
o (r = DIM — r 4+ u — ta) Haa! (1 + ne)M+e”

As before, all sums without indices are over all sequences »;, - -« , v, satisfying
(6.1).

Since
M—r—1 ¢ 1 M—r—1 u
- (n _ 1) -t — o M—rtu ¢ (1 bl t)
t,,_Xl-;\) tn_ll(M —r4u— tn-1)! - v/;—lln (M - r - 1)!u!dt’
-3 M + w — 1)l(ne) f‘ Mer1g
gtn) = 2 O =7+ = DG = D1l F 7% Jr/n @ —nadt

_ fl (M _ 1)!(nc)M—r <tu—r-—l
Ty M =7 =D = D! A + ne)x

~M+u—=D nc \* Y
[g Of = Dlul (1 +,w> a-9 ]dt
_ fl (M . 1)!(nc)M—-rtM—r—-l dt
" e T =7 = DI = DA F nel)*
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Writing » = net / (1 + net), we have

— (M - 1)! M—r—1 r—1
o0 = e oIar = = 1)1./;)’ A =" dn,

®=Lj%&PD’Lfm]

From this we determine the expected value of n as a function of M, r, and c.

E(n) = ;ny(n) = n:z;y(n) + gg(n) 4+ .-

= (M—l)' c M—~r—1 r—1
_(r-1)1(M_r_1)!Z.;fsr 1 = dr,
_| et —1)
S—[TFEFFﬁJ]

8. Modified sequential procedure. Yet another sampling procedure yields an
estimate of A\ with relative error bounded by v at confidence level «. This is the
procedure in which we first obtain an observation a, and then count the number
of particles falling in a given number n, of non-overlapping areas, each of size
ca, , where n, is determined by the selected values of v, e, ¢, and r. From the ob-
servations a, and »,, -+« , v,,, We estimate A by

. 1-7 - 1+
(8.1) I* = S T v [r + gvi:' log 17— S

We state, with confidence coefficient «, that the relative error of i* is bounded
by v. Consider the confidence coefficient with which we make this statement for
any arbitrary value of n, . The joint probability distribution of a, and v, - -~ ,
Vs, is defined by the function ¢ given in (6.1), with no restrictions on the values
of the v; and with n = n,. Hence, the probability, before any observations are
made, that

1—y< */AS 144y

is given by

© 0 0 no

Z E ce Z 30:(7"!'21'1) 'h(”ly te ”’"o"no)y
v1=0 =0 v,,O—O =1

and is independent of A. For fixed values df r and ¢, this is a monotone increasing

function of ne . By a proper choice of 7, the value of the confidence coefficient

can be made as close to 1 as desired.

9. Estimate of bounded relative error for the variance of a normal distribu-
tion. In all of the sampling procedures yielding estimates of bounded relative
error for the problem of particle counting, the function ¢% plays an important
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part. This function also appears in the problem of estimates of bounded relative
error for the variance of a normal distribution. Suppose we have N independent
observations w1, - - - , &y on a chance variable X, where now X is normally dls~
tributed with unkno“ n mean p and variance ¢2. Our problem is to estimate o°,
and we would like our estimate to be of bounded re]a,’clve error.

If w' = X1 (x, — %)% the distribution of w */ " is a chi-square distribution
with N — 1 degrees of freedom. In this distribution, ¢’ appears as a scale param-
eter and is the only unknown parameter in the distribution. With the use of

, therefore, we can find an estimate of bounded relative error possessing
spemﬁed optimal properties. For given values of y and n = N — 1, the estimate

4" which maximizes the confidence coefficient with which we state that

1 =728/ <14y

1s given by

w_|nrl+v, 144y n(l—v) 1+7]
CD_[ 2y 101— 2y gl—

Thus, making the substitution n = 2M, Table 1 gives us for n = 4, 8, -+, 80,
values of the confidence coefficient with which we assert relation (8.1). As
before, we can determine n so that ¥%(n/2) = a with « chosen in advance. For
larger values of n, v/2x2 — v/2n — 1 is approximately normally distributed
with zero mean and unit variance, and corresponding approximations can be
made.
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