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A BIVARIATE SIGN TEST

By J. L. HopGgs, JR.
University of California, Berkeley

1. Introduction. The sign test has proved to be a very useful means for judging
the significance of treatments. Suppose that on each of » individuals (or pairs
of individuals) measurements are made under two conditions, for example,
before and after treatment (or on a treated and a control subject). Denote the
two measurements for the ¢th individual (or pair of individuals) by z; and ;.
We formulate the null hypothesis that ; and z; are identically and independently
distributed, but wish to make no assumption concerning relations between the
distributions of z;, 22, ---, Z», nor concerning relations between those of
Zy, %z, *-, Ln,save that each set is independent. The alternative to the null
hypothesis is that the second measurements z; are generally shifted, with
respect to the first measurements x;, in the same direction for all (or most) of
the individuals. The test is carried out by counting the number S of the differ-
ences z; — &; which have positive signs. Under the null hypothesis, S is bi-
nomisally distributed with p = %, assuming there are no cases with z; = z.,
or that such cases of equality are broken randomly. Under the alternative, S
would tend to have large values if the second measurements are generally in-
creased relative to the first, small values if they are decreased. We may then
reject for large S, small S, or either, according to the alternative against which
we wish the test to have power. The great advantage of the test, aside from its
simplicity, is the generality of the conditions under which it is valid.

The present paper proposes a bivariate analog of the two-sided sign test,
which can be applied when two quantities are measured on each individual.
We now have measurements z; and y; in a first circumstance, z; and y; in a
second. Do the 4n measurements justify our concluding that the two circum-
stances differ? The null hypotheses is that the bivariate distribution for (z;, ¥s)
is identical with that for (z:, y:), and that these vectors are independent. The
alternative of interest is that in the second circumstance the bivariate distribu-
tion has been shifted relative to the first, in generally the same direction for all
individuals. The direction of this possible shift is, however, unknown.

To illustrate, suppose we measure blood pressure and blood sugar before and
after treatment with a new drug on a number of individuals. We wish to know
whether the drug influences these quantities, but have no preconceived notion
concerning the direction or relative amount of the influence on either quantity,
should it exist. The joint distribution of the quantities has an unknown form,
and is presumably different in different individuals. The quantities are pre-
sumably dependent, but in an unknown way.

If we knew the direction of a possible shift, it would be easy to reduce our
problem to the sign test. We could simply project the vectors of differences
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(xi — z:, y: — y:) onto the given direction, and count the number S of pro-
jected vectors having the given sense. Our problem arises just because we do not
have a given direction, but must derive one from the data.

The idea of the proposed test is to consider all possible directions, and calcu-
late S for each. Let M be the maximum of the values thus calculated. We shall
use M as our test statistic, rejecting the null hypothesis if M is too large. That is,
we shall judge that a shift has occurred if there is some direction in which most
of the measurement pairs have shifted; we shall judge that no shift has occurred
if the shifts are in various directions with no heavy concentration.

The distribution theory for M under the null hypothesis is worked out in the
following sections. Presumably it would be desirable to generalize the proposed
test to more than two quantities. The multivariate analog of the statistic M is
easily seen, though in more than three dimensions it would be difficult to com-
pute M from the sample, and its null distribution might be troublesome.

2. Reduction to a combinatorial problem. We shall suppose that none of the
n vectors (x; — z;, yi — y.) lies on the same line, and take the n lines on which
these vectors lie as given, with all probability calculations conditional on the
given lines. Under the null hypothesis, the distribution of (xi — z;, yi — y:)
is the same as that of (z; — i, y:; — yi), so that there is probability & for the
ith vector to be oriented in each of its two possible senses. As the n vectors are
independent, we conclude that the 2" possible orientations of the vectors are all
equally likely.

It is easily seen that the value of M for a given set of orientations is independ-
ent of the angles between the lines and of the lengths of the vectors. Therefore,
for simplicity we may suppose that the lines are equally spaced and the vectors
all are of unit length. We imagine a circle on whose circumference 2n equally
spaced loci are given. We are to distribute n plus signs and # minus signs among
these loci, subject to the condition that diametrically opposed signs are opposite
in sense. We shall call such an arrangement a cycle. We think of a cycle as being
rotatable about its center into 2n positions, each being itself a cycle. For each
position we count the number s of positive signs among the n uppermost signs;
m is the maximum of the 2n values of s thus obtained. Our problem is to count
the cycles having a given value of m.

It is clear that n < m < n. We shall denote n — m by k; thus k is the smallest
number of minus signs which can be uppermost. The operation of rotation
carries one cycle into another, generating equivalence classes of cycles. The
largest possible class has 2n members. Smaller classes are possible, since there
may exist cycles which are carried into themselves by a rotation through r
positions, 0 < r < 2n. However, the smallest such 7 must be of the form r¢c = 2n
where 3 < c is odd (since opposite signs are of opposite sense); thus cycles in an
equivalence class smaller than 2n will have k = n/3. As our interest is primarily
in the tail of the distribution (% small), we shall simplify by restricting k < n/3,
whence we can assume every class to have 2n members.
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To count the classes, we shall select from each class a representative member,
called the pattern for the class. This member is the unique one which satisfies
two conditions, which can be expressed in terms of the n uppermost signs.
These signs are arranged in a semi-circle, and we are particularly interested in
the signs forming a consecutive set of fewer than n signs at either extreme of the
semi-circle; we call such a set a (right or left) fazl. The two conditions are:

(a) There is no right tail in which there is a majority of minus signs.

(b) There is no left tail in which the plus signs are not in the majority.

The conditions serve to insure that the pattern has the maximum number m
of positive signs uppermost; if it were possible to rotate it into a position with
more positive signs uppermost, there would have to be a tail with a majority
of minus signs. The conditions also insure that only one pattern is selected from
each class; if there were two representatives of the class, (i.e., a cycle appearing
in two positions) one of these would contradict condition (a). In general it is not
true that every class has a member satisfying these conditions (consider a cycle
with alternating signs), but it is true under the restriction ¥ < n/3.

3. Counting the patterns. We may obtain a formula for the number P(n, k)
of patterns most easily by identifying our problem with the classical problem
of gambler’s ruin. A pattern, read from right to left, may be interpreted as the
record of a penny tossing game in which a gambler with initial capital h = n — 2k,
playing against an adversary with unit initial capital, is ruined at the nth toss.
The probability of such ruin is on the one hand P(n, k)/2"; but on the other
hand formulae for it are well known (see, for example, [1], p. 304, problem 6).
In fact,

(1)  P(n,k) = (wn + Wanya + Wonya + +++) — (Wye + Wonss + Wens + -+ ),

where h = n — 2k, and
w = ° n
o \}n —2)

is the number of ways in which a gambler with initial capital z can be ruined
at the nth toss when playing against an infinitely rich adversary.

If we take advantage once more of the restriction ¥ < n/3, only two terms
of (1) differ from zero, so that

@ P(n,k)=n;2k<z>_n;2k+_2<kﬁl)

n

Let Q(n, k) denote the number of patterns with at most ¥ minus signs upper-
most. Summing (2) we obtain

e R W B (e }

Recalling that there are 2n cycles for each pattern and 2" cycles in all, while
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under the null hypothesis these 2" cycles are equally likely, we find
Pr{K <k} = (n — 2k) (2)/2"“

The table gives values of Pr {K =< k} to 5D for n = 1(1)30, and k < n/3.

Table of Pr {K < k}, fork < n/3.

k
0 1 2 3 4 5 6 7 8 9
1 | 1.00000
2 | 1.00000
3| .75000
4| .50000 1.00000
5| .31250 .93750

6| .18750 .75000

7| .10938 .54688 .98438

8| .06250 .37500 .87500

9| .03516 .24609 .70312

0 .01953 .15625 .52734 .93750

11 | .01074 .09668 .37598 .80566
12 | .00586 .05859 .25781 .64453
13| .00317 .03491 .17139 .48877 .87280
14 | .00171 .02051 .11108 .35547 .73315
15| .00092 .01190 .07050 .24994 .58319

16 | .00049 .00684 .04395 .17090 .44434 | .79980
17 | .00026 .00389 .02698 .11414 .32684 | .66095
18 | .00014 .00220 .01634 .07471 .23346 | .52295
19 | .00007 .00123 .00978 .04805 .16264 | .39922 .72450
20 | .00004 .00069 .00580 .03044 .11089 | .29572 .59143

21 | .00002 .00038 .00340 .01903 . 07420 | .21347 .46575
22 | .00001 .00021 .00198 .01175 .04883 | .15068 .35578 .65057
23 | .00001 .00012 .00115 .00718 .03167 | .10429 .26474 .52605

2410 .00006 .00066 .00434 .02027 | .07094 .19254 .41259

25 .00003 .00038 .00260 .01282 | .04750 .13723 .31517 .58020

26 .00002 .00021 .00155 .00802 | .03137 .09606 .23525 .46559

27 .00001 .00012 .00092 .00497 | .02045 .06616 .17202 .36390

28 .00001 .00007 .00054 .00305 | .01318 .04491 .12350 .27789 .51490
29 0 .00004 .00031 .00186 | .00841 .03008 .08722 .20786 .41055
30 .00002 .00018 .00112 | .00531 .01991 .06067 .15263 .31987

Although Pr {K < n/3} tends to 0 as n — «, it does not fall below 5 per-
cent until » = 72, or below 1 percent until n = 102. If the test proves useful, it
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may be desirable to consider the distribution of K for £k = n/3, where the re-
sults are likely to be less simple and neat.
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ON THE CONVERGENCE OF EMPIRIC DISTRIBUTION FUNCTIONS!
By J. R. BLum

Indiana University

1. Summary. Let u be a probability measure on the Borel sets of k-dimensional
Euclidean space E; . Let {X,},n = 1,2, -+, be a sequence of k-dimensional
independent random vectors, distributed according to u. For eachn = 1,2, - .-
let u, be the empirie distribution function corresponding to X;, ---, X, , i.e.,
for every Borel set A ¢ E;, we define u,(A) to be the proportion of observa-
tions among Xy, - -+, X, which fall in 4.

Let @ be the class of Borel sets in E; defined below. The object of this paper
is to prove that P{lim, ., sup.. |u.(4) — u(4)] = 0} = 1.

2. Introduction. Let F(x) be a distribution function on the real line and let

{X.},n=1,2, -+, be a sequence of independent random variables distributed
according to F. For each n = 1, 2, --- let Fu(r) be the empiric distribution
function corresponding to X;, ---, X, . The well-known theorem of Glivenko-

Cantelli (see, e.g., Fréchet [1]) states that
P{lim sup |Fa(z) — F(z)] =0} = 1.

n—0 —0lz<0

Fortet and Mourier [2] have proved several theorems on the convergence of
empiric distribution functions in a separable metric space E. In particular, they
show that if E is a Euclidean space and u is a probability measure on E which is
absolutely continuous with respect to Lebesgue measure, then

21 P{lim sup [un(4) — p(4)| = 0} =1,
where @ is the collection of open half-spaces in E. Wolfowitz [3] proved that
(2.1) holds without any assumptions on u. In this note we prove that if u is
absolutely continuous with respect to Lebesgue measure, then (2.1) holds for a
considerably more general class of sets.

To avoid repetition we shall assume from now on that every set considered is

Received October 29, 1954.
1 Work done with the support of the Office of Ordnance Research, U.S. Army.



