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1. Summary. The authors were prompted by a general problem concerning hit
probabilities arising in military operations to seek the distribution of
Qr = D imaxi, k = 2, 3, where the z; are normally and independently dis-
tributed with zero mean and unit variance, D a; = 1, and a; > 0. While the
distribution of a positive definite quadratic form in independent normal variates
has been the subject of several papers in recent years [6], [11], [12], laborious
computations are required to prepare from existing results the percentiles of the
distribution and a table of hit probabilities. This paper discusses the exact dis-
tribution of @, and then obtains and tabulates the distributions of @, and Qs,
accurate to four places. Three other approaches to the distributions are dis-
cussed and compared with the exact results: a derivation by Hotelling [8], the
Cornish-Fisher asymptotic approximation [3], and the approximation obtained
by replacing the quadratic form with a chi-square variate whose first two mo-
ments are equated to those of the quadratic form—a type of approximation
used in components of variance analysis. The exact values and the approxima-
tions are given in Tables I and II. The tables have been prepared with the original
problem in mind, but also serve as an aid in several problems arising out of quite
different contexts, [1], [2], [13]. These are discussed in Section 6.

2. Introduction. A general class of problems arises in military operations when
the hit probability of a weapon depends on the combination of two random
errors. Suppose random errors in predicted location or predicted position of target
and random errors in aim of weapon occur. For purposes of exposition let us limit
ourselves to errors in two dimensions. Denote the true position of a target by T,
the predicted position, or point of aim, by 4, and the point of impact of a weapon
aimed at 4 by I. Let z;, y:, be the components of the vector TA and z,, ¥,
the components of the vector 4 7. If we denote the radius of effectiveness of the
weapon by R, then the probability of a hit P is the probability that the resultant
vector T'I has length no greater than R, or

1) P = P{ai + y; < R*},
where 23 = 21 + 22, Y3 = 1 + V2.

Received July 2, 1954; revised April 18, 1955.

1 The tables in this report were computed at Columbia University and Stanford Uni-
versity with the partial support of Office of Naval Research contracts N6onr 271 Task
Order IT (NR-042-034) and N6onr 251 Task Order IIT (NR-042-993).
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TABLE I
P =1
az, a1

5,.5 6, 4 7, .3 8,.2 9,1 .95.05 .99, .01 1,0
09516 09693 1029 1158 1461 1813 2359 2482

1028 1345

1285 2037

1384 1381 2368
1813 1843 1943 2153 2594 3002 3384 3453

1942 2465

2126 2926

2023 2052 3114
’ 2592 2630 2757 3011 3494 3858 4115 4161

2756 3399

. 2871 3641

2691 2756 3811
3297 3340 3482 3755 4226 4521 4697 4729

3481 4180

3542 4248

3345 3444 4436
3935 3981 4128 4402 4831 5060 5182 5205

4127 4835

4146 4775

3963 4088 4986
4512 4559 4705 4968 5342 5513 5599 5614

4705 5387

4693 5240

4533 4677 5465
5034 5080 5221 5464 5780 5904 5962 5972

5221 5854

5187 5652

5052 5209 5883
5507 5550 5682 5901 6159 6246 6283 6289

5683 6251

5633 6022

5523 5693 6249
5934 5975 6095 6287 6491 6549 6570 6572

6096 6592

6037 6353

5950 6112 6572
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TABLE I—Conitinued

az, a1
¢
.5, .5 .6, 4 J,3 8, .2 9, .1 .95, .05 99, .01 1,0
1.0 6321 6358 6466 6630 6785 6819 68267 68269
6467 6886
6402 6653
6336 6493 6859
1.5 7769 7785 7826 7866 7858 7830 7801 7793
~ 7827 7900
7770 7781
7783 7881 7922
2.0 8647 8646 8638 8604 8527 8478 8438 8427
8638 8508
8606 8498
8749 8788 8700
3.0 9502 9487 9441 9365 9269 9219 9178 9167
9441 9234
9442 9283
9998 10000 9998
4.0 9817 9802 9761 9698 9624 9585 9553 9545
9760 9620
9770 9643
10000 10000 10000
5.0 9933 9923 9895 9853 9803 9775 9753 9746
9895 9812
9903 9817
10000 10000 10000

First entry in cell is exact to 4 decimal places.

Second entry is Hotelling’s result.

Third entry is ‘““components of variance’’ chi square approximation.
Fourth entry is Cornish-Fisher result.

~Now assume that the two random errors are each subject to a bivariate normal
distribution with zero means and with covariance matrix ||,o:;] and [|.04
respectively. Then x; and y; are components of a vector having a bivariate normal
distribution with zero means and covariance matrix [|;0:; + a0:;]] = [[Asj]|. For
the present, assume the components of each error to be independent; i.e., |04l
and [|,04;]| are diagonal. This restriction, which is not essential, implies that x;
and y; are independently distributed. If z = A\;;”? 23 andy = A5;"* ys , then 2* and
y* each have a chi-square distribution with one degree of freedom. We may then
write

(2) ) P = Plax’ + ay’ < t}
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TABLE 11
‘ P{Qs; = t}
as, 63, 61
Lth,  4.3,3 4,42 5.3.2 .6.2,.2 540 630 0,20 8.0,.1
03997 04146 04313 04385 05035 05169 05421 06062 07419
04048 04377 05564 05773
0470 0602 1150 1548
0697 0721 0945 1544
10357 1053 1094 1123 1217 1282 1338 1477 1803
1047 1122 : 1402 1483
1083 1275 1971 2416
1220 1265 1633 2336 -

17457 1763 1830 1873 2026 2081 2162 2357 2758
- 1763 1872 ‘ 2296 2458
1768 1985 2716 3155
1849 1916 2411 3137
24700 2491 2571 2624 2803 2852 2951 3179 3625
2491 2623 3159 3406
2474 2692 3397 3805
2529 2617 3200 3886
31773 3201 3287 3346 3541 3570 3679 3923 4353
3201 3346 3952 4273
3172 3375 4016 4381
3216 3319 3946 4596
38507 3875 3961 4023 4223 4228 4340 4584 4979
3875 4024 . 4663 5037
3841 4020 4580 4897
3880 3992 4623 5141
4505 4587 4649 4843 4825 4936 5169 5515

4505 : 4650
4471 4621 4909 5360
4506 4620 5214 5649
50637 5086 5161 5220 5402 5363 5469 5683 5974
5086 5222 5829 6239
5056 5175 5555 5776
5085 - 5195 - 5751 6088
5618 5683 5739 5902 5848 5945 6136 6371

5618 5740
5594 5682 5975 6152
5615 5718 6175 6471
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TABLE II—Continued

a3, a2, 01

4, 4,4, 4,.3,.3 4, .4,.2 .5,.3,.2 .6, .2, .2 5, 4, .1 .6, .3, .1 J,.2,1 8,.1,.1

1.0 | 60837 6102 6156 6206 6349 6282 6370 6535 6717

6102 6207 6697 7056

6083 6143 6355 6491

6097 6189 6619 6806

1.5 7881 7884 7901 7935 7863 7895 7935 7930
7881 7901

7885 7848 7776 7766

7876 7894 8042 8008

2.0 | 88839 8879 8853 8844 8808 8770 8760 8723 8663

) 8879 8844 8659 8527

8889 8820 8636 8558

8972 8931 8992 8888

3.0 | 97071 9698 9668 9645 9577 9591 9552 9477 9378

9698 9645 9394 9270

9702 9650 9477 9379

10000 10000 9933 10000

4.0 | 99262 9920 9905 9888 9841 9863 9831 9775 9703

9920 9888 9763 9734

9921 9896 9794 9724

10000 10000 10000 10000

5.0 | 99818 9979 9973 9963 9938 9954 9935 9900 9855

9979 9964 9916 9897

9979 9969 9917 9874

10000 10000 10000 10000

First entry in cell is exact to 4 decimal places.

Second entry is Hotelling’s result.

Third entry is ‘“‘components of variance’ chi square approximation.
Fourth entry is Cornish-Fisher result.

where 6> = Ay 4 A2, @; = \ii/o” and ¢ = R’/o". In the three-dimensional situa-
tion, we get by the same argument

3) P = Plax’ + )’ + a2’ < t},
where this time ¢ = A 4+ Mg + Az . Similarly, if we leave physical reality, we
obtain in %k dimensions

4) P=P{ilaix%§t}=P{Qk§t}

where ¢* = D_i\i; . Now remove the restriction of independence of errors; that
is, let the covariance matrix be an arbitrary positive definite matrix. Then there



DISTRIBUTION OF QUADRATIC FORMS 469

exists a real non-singular linear transformation [4], ¥ = CX, such that the
covariance matrix in the new variables y; is the unit matrix, and @, has the form
D taiy: , where the a; are the roots of the determinantal equation |4 — a7l =0,
and are all positive, A is the matrix of the coefficients of Q, considered as a form
in the variables z;, and A is the covariance matrix {)\;;} in these variables.
Thus in this paper only (4) is discussed since all other situations can be reduced
to it.

3. Exact distribution. Consider the positive definite quadratic form
Qi = Z'{ ax; , where the x; are normally and independently distributed about
zero with unit variance, Zai = 1,and 0 < a; = a.41 . Denote by Fi(¢) the dis-
tribution function Fi(f) = P{Q: = ¢}, and by f.(f) the probability density. Then
the Laplace transform ¢x(p) of fi(f) is

(5) o(p) = H (1 + 2a;,p)7"

From this, fi(t) and Fi(¢) can be obtained in various forms. The authors are
including only those which appear most efficient for computing purposes. The
following approach was found most useful. Inverting the transform (5) we obtain

©) 50 = o [~ 0utr) .

We now apply Cauchy’s theorem to the integrand in (6) taken along the closed
contour from —7R to ¢R along the imaginary axis, from R to — R along a quarter
circle around the origin, from —R to —1 and back along the negative real axis
with small clockwise semicircular identations of radius r to avoid the singularities
—14a;, and from —R back to —¢R along a quarter circle around the origin.
Letting B — « and r — 0, we obtain
—1/2a3,

™ 0 =22 0 [ ) ap,

—1/2a9p 1

1)k —1/2a;
fun® = S [ )

(8) —1/2a9p 41
+ 13 [ o) a.

T n=1 1/2a9,

We now let ¢; = 1/a;, and make the changes of variables

pl(x’ t) * - .’l?/t (_ o < Y4 < —%61),

p
P = pa(x) = I(cn—l — ¢)2 — }(Cn1 + ¢a), —ic,1 < p < k).

For even index we obtain

© - G v} [ X 0t 9 A
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where

_ . ;
(10) Gu(z, t, k) =™ T len + 2p.()]™"

. m=1lmzn—1,n

Integrating (9), we get

— (—l)k - e n Gzn(x’ t’ 2k) —
() Fa) =1+ 27 {]I;Il \/c—,} [1 ,Z; (=1 Py(x) V1 — o

Similarly, for odd index,

o = G (i ve)

Jj=1

(12) '
[1 ; (=1)"Genpa(z, t, 2k + 1) % + rapa(9),

where

13) raa® = l)k {2ﬁ1 Ve; }( ) PRt [ H(z, t, k)e™ dx,

and
2k

(14) H, t,k) = [T + 3 — cndt]?

m=1

Integrating (8), we get
( l)k 2k+1 )
Fun() =1+ {H x/c"}

5 . Gonpa(z, t, 2k + 1) dx
n Ton 1\ T,
[1 ; (-1 S b PR )
where ;
— (_l)k E24 } ( t ko —3cyt b H(x, t7 k) —z2
(16) R2k+l(t) = o {JI;II ‘\/EJ §) € - m e dx.

The integrals over the interval (—1, 1) are readily computed using the quadra-
ture formula [16]

(17) [ 5@ %—x = lim T 3 "),

n—o N i=1

where z{™ are the zeros of the Tchebycheff polynomials T,(r) of degree n.

Similarly, the zeros y¢™ and Christoffel numbers o™ of the Hermite polynomials
[14] can be used in computing r.(f) and R(f) with the quadrature formula [14],
(16]

19) [ 1w ay = 1im 3 s,

n—oo t=1
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These are usually small unless ¢ is also small, or the two largest coefficients
¢; and ¢, are almost equal. Except under these conditions, they can generally be
shown to be negligible by the inequalities

(19 17'2k+1(t)l < 57 O {H ! } e,
— Cm+1
(20) R (t)] < i {ﬁ ﬂl_.} et
%4 TC1 \m=1C — Cm41 !

which are obtained from (13) and (16) by making use of
2k
G, 6, 0] £ 1T (3o = et} I )] 2 301

For the original two-dimensional problem, we obtain from (9) and (11),

= -——1 —~3(cy+c {l dz
= 1(cyte)t 3(c1—c9) tz
(21) f2(t) 2 v + caé . e ‘ ——————1__ =,

etlc1—ca)tz dx

\ 2 erbent [
(22) Fz(t) =1 T &+ e -1 (61 + 62) - (cl - 62)2; \/Tl?’

which can be simplified to
(23) £O = 3o + 6L — o),

ey teo)t

(24) P = \/—;ET‘? [ e = 1a e

where I is the modified Bessel function of order zero. Although (23) is analytically
preferable to (21), (22) is easier to evaluate numerically than (24) except for
very small values of &.

The case k = 3 applies to the original problem in three dimensions. This time
(12) and (15) become

1 | /€1C2C5 —Aeatent
() = s 2 e

(25) fl gierents dz + )
“14/2¢5 — (2 +¢1) — (2 — e)z V1 — 2° B
and
Fi) = 1 = 2 V/Barosg e ¥
(26) 1 e—tlea—e)tz dz

Lillee + &) + (2 — e)zlv/2e — (c2 + &) — (¢ — ez V1 — a2
+ Ry(t)
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where

e dx
— e)t]lz? + 3(cs — c2)t]’

—_ .]_‘ 1 3 —c3t/2 ”
27 @) = - Viecete ‘Lo ViE T e

and

1
RO = 2 Viaaa it
(28)

e dx

[co (xz + cat/2)\/[x2 + %(63 — Cl)t][1§2 + %(03 '—' 62)t] '

Numerical evaluation of f.(¢f) and F,(f) becomes more difficult if the constants
c; are almost equal. In that case, however, an as yet unpublished method of
Hotelling [8] becomes effective. This will be discussed in the next section. On
the other hand, for f3(¢), if two of the constants, say c¢;, actually coincide, then
the problem simplifies and we obtain as the inverse transform of (5), [5]

29) W0 = 4 4/ 8 o et VI =

e T G

Hence

1 )
(30) Fi(t) =1 (75 ity — %) — A =2 — " erf /3o — o)l

C; — Cj

where I(u, p) is the incomplete gamma function as tabulated in [10]. The first
entry of each cell in Tables I and II was obtained from the quadrature formulas
given above and is correct to four decimal places.

There is an interesting relationship between the distribution of Q, and the
distribution of the measure of the random set given in [15]. If ,0,; = o4 for ¢ = j
and .0:; = 0 for 2  j and the vector TA mentioned early in the paper is con-
stant, say D, the graph labelled Figure 1 in [15] gives the desired probability if
we consider the abscissa values equal to D/o, and the ordinate values equal to
R/o. . Let us now return to our present problem but add the further restriction
00i; = o fori = jand poi; = 0 for 7 ¢ j. Then the probability density of D/¢,,
h(D/ay), is

@31) h (2) _ D oy (g)

Op Op Op

and

(32) P=P{Q2§%3%75}=/:9(§;E£)h(2>
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where g(R/os | D/o,) is the probability read from the graph in [15] and the co-
efficients of Q. are now both equal to 1. As an illustration, consider the following
four situations: (a) R/ve = 2, 03/0a = 3; (b) R/0a = 2, 05/05 = 1; (c) R/0a = 3,
op/oa = 2; (d) R/os = 3, o»/0s = 1; then in the table immediately following we
get the top entries from Table I, and the bottom entries by numerical integration
of (28).

(a) (b) (c) (d)

.3935 .6321 7769 .8883
.3971 .6328 7767 .8955

Thus, since only two place accuracy at best could be obtained by reading
g(R/oa| D/os) from the graph, a rather simple numerical integration yields
values extremely close to the exact values.

4. Hotelling’s method.” Let2g = Q) and modify Q: byrequiring Ea1 =k =2m
so that in our cases of special interest m = 1 or 3. The a, are now the ratios of
the latent roots of Qi to k times the trace of the matrix of @, where k is rank.
Then Hotelling states that the density of g is,

m—-l —g
(33) 5@ = Ty 2 Z b Li(),
where
_ riTm) [°

(34) b, = I’;*(m l f(@) L.(g) dg,
and L,(q) is a Laguerre polynomial defined by

_s(rt+m—-1) (-9
(35) AOED N (i )T
Now define
(36) u = 2_:1 (@; — 1)".

2 In a letter to one of the authors [8] in November, 1950, Hotelling outlined his method
for obtaining the distribution of quadratic forms. This letter was in response to a query
regarding a talk Hotelling gave in a seminar attended by one of the authors in Berkeley in
1947. Mention of this research also appears in an abstract by Hotelling in Ann. Math. Stat.,
Vol. 19 (1948), p. 119.
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Then

m=1,-q ) 2q q2
19 = I‘(m)q 1 {H- [ 17+m(m+1):|

_ 3 3¢ 7
mb m T mtm 1) mw+nm+m]

2
U

3 (u4 + —3) 3
1 4, 6 4
T [ tam D mm F D ¥ 2)

4
) q )
+mm+nw+mm+a]

_ 12us + Suyus [1 _ 5¢ + 104* 10¢°
5! m(m + 1) m(m+ 1)(m + 2)

5q4 595 ]}
: m(m F1)---m+3 mm + 1) --- (m + 4)
+ further terms requiring higher moments of the normal dlstrlbutlon

Rearranging Hotelling’s terms to make optimum use of the Hartley-Pearson
Tables [7], we get

Fit) = Plxs 22t)-1 +dp — ds + di — di]
+ P{x; =< 2t}-[—2d, + 3ds — 4d, + 5ds]
+ P{zs < 2t}-[dr — 3d; + 6dy — 10d;]

IIA

(38) . .
+ Plxzz =< 2t}-[ds — 4ds + 10ds]
+ P{ad < 2t}-[ds — 5d]
+ P{zi, < 2t}-[ds]
where
=2 &= 4 =3+ ), d5=1hs(12us + Suzus)
2—2, 3—-—6-, 4 = g\Us U2), 5 = 1T3o\ldUs U U3)

and z2 is a chi-square variate with n degrees of freedom. The values obtained
by this method using (34) are quite accurate. Using the fixed number of terms
in (34), the departure from the exact value depends on the variance of the
.a;’s. This is noted by a glance at the second entry in each cell of Tables I and
IT having more than one entry. Thus this method complements the method
given in Section 3 precisely in those cases where the most numerical difficulty is
experienced ; namely, when the variance in the a.’s is small.
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6. Approximations. Where a third entry appears in a cell of Tables I and II,
it is an approximation obtained in the following way. Let Qx = cz5; this is an
approximating device often used in components of variance analysis. Then,
equating the first two moments, we get

k

cn = Zla.—l czn=Z;a§.
Thus @ is approximated by ( Y.t a?)z* where 2° has n = 1/ _1 a} degrees of
freedom. To avoid the interpolation caused by fractional degrees of freedom we
can employ the Wilson-Hilferty approximation [17] which states that given a
chi-square variate with n degrees of freedom, say x% , then (x°/n)"* is approxi-
mately normally distributed with mean (1 — 2/9n) and variance 2/9n; thus we
may write

(39) . Plasd = P{(l -2, x\/mf < t}

as a modified approximation where z is normally distributed with zero mean and
unit variance. Finally we get

_ M (1-33kg
(40) PiQ. < 4 P{x sf=fols }

This result, together with Kelley’s Tables [9], was used to obtain the third
entry in the cells of the tables wherever they appear.

Where a fourth entry appears in a cell of the tables, it is an approximation
obtained from the Cornish-Fisher [3] asymptotic expansion of @ in terms of
normal variable. This approximation requires the cumulants of @, but these
are easy to obtain from the cumulants of the chi-square variate with one degree
of freedom by applying the additive properties of cumulants. Computation of
the values in Tables I and II is based on all terms in the asymptotic expansion
of orders through 1/k”.

6. Applications. In discussing applications there is, of course, the obvious one
which motivated this paper. As an illustration, assume 4011 = 100, 4022 = 400,
o011 = 100, 5000 = 1400, and R = 40. In this case the usual assumption of circu-
lar symmetry is certainly not realistic. Here a; = .1, a; = .9, and ¢ = .8. Thus
the probability of a hit is read as .6159 from Column 5 in Table I. Moreover,
Tables I and IT make it possible to compare the relative effects of changes in
weapon radius with changes in aiming and location errors.

In [2] it is demonstrated that the usual chi-square tests for goodness of fit
do not have a limiting chi-square distribution when the maximum likelihood
estimates of the parameters are based on the original observations rather than
on the cell frequencies. The asymptotic distribution in this situation is that of

j—s—1 j—1 ‘
(41) 2 vit+ 2 e,
N = i=j—s
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where j is the number of cells, s is the number of parameters to be estimated,
and the coefficients 6, are between zero and one and are the roots of a determi-
nantal equation. In the usual “goodness of fit’’ situation in statisties, distribu-
tions rarely contain more than two parameters to be estimated from the data.
Thus Tables I and II are singularly appropriate if the number of cells is kept
down. In an illustration given in [2],

(42) P = P{zi + .87 + .225 = 3.84}

is desired, and P = .12 is given as a lower bound. This can be quickly modified
so that Table II can be used, for dividing through by two in (38) we get

(43) P = P[5z + 4z + 125 = 1.92).

From an Aitken seven point interpolation in the (.5, .4, .1) column in Table II,
we get P = .1344.

In [1], the limiting distribution of nw’ is obtained as the distribution of the
quadratic form Q. = D_¢ ax: where a; = 1/i°z°, and «’ is the von Mises criterion
for goodness of fit between a sample cumulative distribution function and a
specified population distribution function. In [13], it is shown that a simple
variant of the o’ criterion for the two-sample test has the same limiting distribu-
tion. While a table of this distribution is given in [1] it should be possible to use
Table II to some advantage, even though this means neglecting all terms from

= 4 onwards. Since D v a; = 2 = .1667 and Y i a; = 49 /367" = .1379, a
reasonable upper bound should be given by Table II. For example take ¢ = .046,

= .101, and ¢ = .405, then the table in [1] yields .10, .42, and .93 respec-
tively while from Table II we get using

2 2 2
1 2 3 36 361r
(44) P{,?+f;_1.-2+§?2§t} { x1+ xz"" =49 t}

that the probabilities are .28, .54, and .94 respectively. These values are obtained
by interpolation and are correct to two places. However, the upper bound is not
too sharp when P is small. Also Table II is constructed with ¢ as the argument

while the table in [1] has P as the argument and thus may be more useful in some
contexts and, of course, less in others.
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