SOME MINIMAX INVARIANT PROCEDURES FOR ESTIMATING A
CUMULATIVE DISTRIBUTION FUNCTION!

By Om P. AGGARWAL
Purdue Unaversity and Unaversity of Washington

1. Summary. Some invariant procedures, which are essentially step-functions,
are considered as estimators of the cumulative distribution function of a one-
dimensional random variable on which a finite fixed number of observations are
given, for various loss functions. Two principal classes of loss functions are
considered and it is shown that for a special loss function in one class the optimum
procedure is the usual sample cumulative function.

2. Introduction. Suppose that a sample X, , X,, - -+, X, of a one-dimensional
chance variable X is given. In a recent paper, Birnbaum [1] has discussed various
techniques for deciding whether X has a completely specified continuous cumula-
tive distribution function (c.d.f.), H(z) = P(X = z). In this paper is discussed
an allied problem, viz., that if F(x) = P(X =< z) is the unknown continuous
cdf. of X and if F(z) be an estimate of F(z) based on the sample
X1, X,, -+, X., what would be the best estimate F when certain forms of the
loss function are given.

Consider the loss function

) wr, B = [ 1F@) - P ds,

where r is an integer = 1. It is almost obvious that the only invariant procedures
for estimating F under the group of all one-to-one monotone transformations of
the real numbers onto themselves which leave the sample  values X,
(z=1,2, ---,n) invariant are those which estimate F(x) by a step-function

(2) F(x) = consta.nt, say c; fOI' X(J') § z < X(j+l),

where X < X® < ... < X™ are the ordered observations and X and
X™* denote — » and + « respectively.
Using this estimate F, we get

n x (i+1)
e D =X [ 1@ - ol dF @)

j=0 Jx (i)
3) 1 < GFDY GHDY g
m j;o (F(X ) CJ)IF(X ) Cj I

—_ (F(X(j)) - Cj)lF(X(j)) — Cj lr]
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MINIMAX INVARIANT PROCEDURES 451

and the right-hand side of this equation is a symmetric function of
F(X,), F(X,), ---, F(X,) where X, X,, ---, X, is the unordered sample.
Using the probability integral transformation, it is clear that the distribution of
L(F, F) does not depend on F for F continuous. Hence the risk R, being the
expectation of L with respect to the distribution F, is constant and independent
of F itself. We can thus take F to be a rectangular distribution over (0, 1) and
write

no o rXis1
4) R=EZ[ e — ¢;| dz,
j=0 JX;
where X; < X; < --+ < X, is an ordered sample of size n from this rectangular

distribution over (0, 1), X, and X, denote 0 and 1 respectively, and
the symbol E denotes that the expectation is taken with respect to the rectangular
distribution over (0, 1). In the rest of this paper, we shall use consistently the
letter E to denote the fact that the expectation is to be taken with respect to the
rectangular distribution over (0, 1).

The same argument applies when the loss function is of the form

*|F(z) — Fl@)[

and in this case by taking F as in (2) we obtain
(6) R= Eg fx’“ Lx(l- 18

where X;, j=0,1,---n -4 1, are the same as in (4).'

It is obvious that since risk R is constant, a minimax procedure among the
class of invariant procedures being considered will be to choose ¢;,
j=20,1, .-+ n, such that R is minimum. We consider in this paper the values of
¢; when the loss function is of the form (1) for all integers » = 1 and when the
loss function is of the form (5) for r = 1 and when r is an even integer =2.
The case when r is odd in (5) seems to be rather complicated.

3. The loss function L(F, F) = [*, [F(x) — F(z)]" dF(xr) where r is any posi-
tive even integer. Let r = 2s, then

L X j+1 n
(7) R=EZ[ (z — ¢)" dx = 2 Q;,
j=0 VX ; 7=0
where
1 2841 2 1 i
®) O =57 1Ez§<sk+ >( o) X = X5
forj =0,1,2,---, n.

Since the distribution of the jth order statistic X; in a sample of size n from
the rectangular distribution over (0, 1) is a beta distribution with probability
density

1

9 ) p(y) = BGn—7F0D v 1=y 0=y

IIA

1,
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it is easily seen that for any positive integer r,

10 B(X]) = JG+1 - (G+r—1)
(10) (X7) mn+1)n+2) - (nFn’
rG+DG+2) - G+r—1
forr 1
1 2) ... ’
1) EXpy—x7) = FDE+D -t
n-ll-l forr = 1. j=0,1,---,n.
Substituting from (11) in (8) we obtain
1, 1 <2s + 1)
Qj_n+10j +2s+1k§; K
(12) : (=) kKG+1) ---G+k—1)

(n+1) - (n+k)
_ b T RN 28 N, e G - GHE—1)
—n+1[c] +l§(k—1>( Cj)+ (’n+2)~-~(n+k) ].

For conciseness we introduce the following notation somewhat similar to the
binomial and distinguished from it by an asterisk. Let

_G,‘I‘lq‘_q 4 1)k q)q_kka,+i
(13) <t b—~—+1> -—t+k§l( 1) (k‘ Hb+i,

for fixed real a and b and a positive integer q. For ¢ = 0, let (13) be equal to 1.
Tt is easily verified that for any positive integer 7,

’q(q—l) e (g=r+1)

(g—n)*
(t — Z—_—?—i) when r = ¢,

d a+ 1
(14) 7 (t ~h T 1)

0 when r > gq.

Using this notation we can write
1 i+ 1\
1o o=t (v - 1)

We have to choose ¢; so as to minimize R. Since R = >_; Q;, and from (7)
we see that for each j, Q; is positive and depends only on j, it is obvious that
minimizing R is equivalent to minimizing Q; separately for each j. We obtain

an _ 2s . _j + 1)(23—1).
" E"n+1<”] nta)

3'Q; _ 2s(2s — 1) < i+ 1>(2s—2).
(17) 5 = n %= T
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Since Q; = E [3i*! (x — ¢;)* dx > 0, it is clear that

9Q; Xivt 2o
(18) Y= 2025 = DE [ (@ — )" dz > 0.
aCj X

Let f(c;) = 0Q;/ dc; . It is easily seen that f(0) is negative and f(1) is positive,
and since f'(c;) > 0 for all real c;, f(c;) is a strictly increasing function of c¢;.
Hence f(c;) = 0 for one and only one real value of ¢;, and this ¢, necessarily
lies between 0 and 1. Thus we find that @, , and hence R, is minimized by setting
3Q; / dc; = 0 and solving for c¢; the resulting equation

A A N
(19) (c, T 2) =0.

This equation has one and only one real root which lies between 0 and 1. The
minimax invariant procedure for the loss function of this section is thus to esti-
mate F(x) by

(20) ’ p(x)=cj; Xj§x<X]'+17 j=0717“'7n>

where X;, j = 0,1, ---,n 4 1, have been defined earlier and ¢, is the real
root of (19). It can further be seen from (19) that the equation remains un-
changed if we replace j by n — jand ¢; by 1 — ¢;. Hence ¢._; = 1 — ¢;, and
we see that in practice the number of equations to be solved is about half the
sample size.

Special case for r = 2. When r = 2, the equation (19) reduces to a linear
equation

LS\
@1) (c, 4 +2) o,

which has the unique solution ¢; = (j 4+ 1) / (n + 2). This result can, however,
be obtained directly by writing the risk R from (7) and (12) for s = 1 in the form

_ 1 1 ( _j+1y
@2) R_ﬁ(n+2)+n+1jz-;o<c’ n+2>

We see thus that R is minimized by choosing

i+ 1 .
(23) cj:Jh_ﬁ’ i=01,---,n,
and hence the minimax invariant procedure is to estimate F(z) by
7 I+ 1 .
(24) F(x)r-';/—_i_——é’ Xj§x<Xj+1, ]=0,1,...’n’

where (X, X, - -+, X,) is the ordered sample and X, and X, stand for — «
and + o« respectively.

The minimum risk corresponding to this procedure is seen to be 14(n + 2).
It is of some interest to note that the risk corresponding to the usual procedure
of taking ¢; = j/n is given by lgn.
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4. The loss function L(F, F) = [*.|F(x) — F(z)| " dF(x), where r is any
positive integer. In this case

(25) k=83 [k -af i =30,
where
(26) Qi = ——El(Xj1 — ¢)|Xj11 — ¢i|” — (X; — ¢)) |X; — il

+ 1
Using (9) we obtain
E[(X - c,) lX bl c,['] =]( )[[ (y — CJ)r+1 - 1(1 ),,_j dy
(27)
| - -,; (e =)™y — )" dy],
and similarly,
ElXjn1 — ¢) | Xjn — ¢l = (n — ])< )
08

[_/; (y - cj)r+1yi(1 — y)n—-i—-l dy — j{; (Cj _ y)r+lyj(1 _ y)n—j~1 dy].

From (27) and (28) we obtain

Q = Hl_ ] (';) l: f : — )y — )"y — ) dy

(29)
+ (=1) fo (y — )™y — )"y — ) dy]-
Again it is obvious that to minimize R is equivalent to minimizing @; for

each j. Further we see that the conditions for differentiation with respect to ¢,
under the integral sign in (29) are satisfied, and we obtain

0 _ _ (’;) [ f j (y—e)y (1 — 9"y —J) dy

o) %
0 [ = ey - ey - ay ],
aa’g, = r( >[ f (— )y — 9"y — ) dy
(31) !

+ (=1) fo (y — )Y@ — )"y — ) dy]

Xj41 2
r(r — l)Ef e — ¢ dz, for r = 2
X

2 (j) a1 —¢)" 7, for r = 1.
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Define a function f by f(c;) = 0Q; / dc; . We see by straightforward computa-
tions that

nl(r + 7 — 1)!
Jir + n)!

nllr+n —j— 1)!
(n —Dir + n)!

Since from (31) it is seen that, for all = 2, f'(c;) = 8°Q, / dc; > 0 for all real
¢; (the special case for » = 1 is given at the end of this section), f is a strictly
increasing function of ¢; and assumes the value zero for one and only one real
value of ¢;, and this value of ¢; necessarily lies between zero and one. Thus we
find that @; and hence R is minimized by setting dQ; / dc; = 0 and solving for
¢; the resulting equation

f(O) = —-r <0’

fa) =r > 0.

1

[ =y — gty - i ay

(32) .
+ (=1 f W — &)y = 9)"Nny — j) dy = 0.

Thus the problem reduces to that of solving the above equation for
7 = 0,1, .. n The general solution of (32) giving ¢; explicitly in terms of
J, m, and r does not seem to be possible. We shall, however, simplify the equation
so that it should not be too difficult to obtain the solution in any given case. It
can, however, be proved from (32) that ¢,—; = 1 — ¢;, so that the number of
equations to be solved in practice will be about half the sample size.

We can write (32) as

1
[ = eary™a - o=y - a
(33) .y
=1 - (=11 fo =)y (1 — 9" 7y —j) dy.

The left-hand side of equation (33) can be expressed as

(34 53k (]) —erBG + ki — 5 + 1),

k=0

which indicates that the coefficient of c; is zero. For &k > 0, we can utilize the
fact that () k = r ({”1) and reduce it further to the form

o S(r=1\ oy JG D Gk — D)
85) rB(j,n J+1),§<k-1>( U ) S RS OF

which by making use of the notation introduced in (13) can be written as

Ny . Y N
(36) i (=)™ BG4+ 1,n—37+1) (Cz m)
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When r is even, the right-hand side of the equation (33) reduces to zero and
cancelling out the nonzero coefficient (—1)"rB(j + 1, n — j + 1) from the
left-hand side as expressed by (36) we obtain ¢; as a root of the same equation as
(19) obtained earlier by a different method.

The right-hand side of the equation (33), except for the factor [I — (—1)7],
can be written as

o L) ot [TE e (M) a

and by making use of the relation

(38) I;( N()T = B(t,r + 1),
it can be reduced to
(39 07 S - (M7 7) Bl 4 s 4 0

Using (36) and (37) we can, thus, write the equation (33) as

(r—1)*
B(j+1,n—j+1)< “‘1)
T2
(40)

1= 015 0 (M) B+ D
This equation is to be solved for ¢; to get a minimax invariant procedure for
estimating F when the loss function is given by (1). When r is even, the factor

1 — (—=1)" = 0 and we get an equation of degree (r — 1). When r is odd, the
factor 1 — (—1)" = 2 and the equation reduces to

& -0 (" 79) BEs + s+ g

(41) ==° =+
. . J+ 1\
_%B(J‘i‘l,n‘—]'i‘l)(%——:é) =0
which is an equation of degree n -+ r. In either case there is one and only one

real root which lies between 0 and 1 and the set of such roots forj = 0, 1, , 7
minimizes R.
An alternative way of expressing the rlght-hand side of (33) is to rewrite (39)

in the form:

n—j . r+,1+s
42) (=1 ”Q( U G+s+DG+s+2)---G+s+r)
It is easily verified that (42) is equal to

(—)™n 3 (<1 (” S‘J) f [ f 4% dn - der

(43) . ci pzr z9
' = (—1)"17*![ f f A0 — 20" dey - -+ de..
0 0 0
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The equation (40) can, therefore, also be expressed as

. . R o A N
BG+1,n—j+1) (C: m)
(44) cj zy zg
-1 = (=16 — 1)1]0 fo fo A0 = 2)" day - dar.

Special case forr = 1. When r = 1, (30) is easily seen to reduce to

(45) g—% = 2<’JL> [fOCjzf(1 — 2" dz —BG + L,n —j + 1)],

from which follows easily the result given in (31), viz.,

w "= (M) - o

2,
ac

Setting 9Q; / dc; = 0 and solving we obtain ¢; as the median of the beta dis-
tribution with density

1

= i -z <z<
47) g(2) B(j+1,n—j+1)z(1 2", 0z=1,
forj =0, 1,2, ---, n. Since (46) shows that 3’Q;/ac; > 0for0 < ¢; < 1, it
follows that this solution for ¢; in fact minimizes Q; for j = 0, 1, --- , n, and

hence minimizes R. The equation (44) for c; obtained for r = 2 thus holds good
for r = 1 as well and the minimax invariant procedure is seen to estimate F (z) by

(48) F(Q‘)=CJ‘; Xisr < Xju, J=0,1,---,n,
where (X1, X,, -+, X,) is the ordered sample, X, and X, stand for — o« and
+ « respectively, and ¢; (5 = 0, 1, ---, n) is the median of the beta distribu-

tion with density (47). It is rather interesting to note that the value
(j + 1)/ (n + 2) for ¢; obtained in the last section for » = 2 is the mean of the
same beta distribution.

The actual computation of the values of ¢; (j = 0, 1, ---, n) can be easily
carried out, for a given n, with the help of the tables of the incomplete beta
function [2]. In the notation of those tables

fx 21 — ) dx
(49) L(p,9) =5
fo 2?71 — 2) N de

Thus we have to find the value of  for each j such that
Using the relation

(61) I.(p, q) = 1 — I,_.(q, p),
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TABLE I
Valuesof ¢; (j=0,1,---,n)forn=1,2, ---,12
¢j
”
co (4] Cc2 c [} cs ce c1 cs (7] c1o al c12
1 20 N
2 .21 .50 .79
3 16 .39 .61 .84
4 13 .31 .50 .69 .87
5 11 .26 .42 .58 .74 .89
6 .09 .23 .36 .50 .64 .77 .91
7 .08 .20 .32 .44 .56 .68 .80 .92
8 .07 .18 .28 .39 .50 .61 .72 .82 .93
9 .07 .16 .26 .35 .45 .55 .65 .74 .84 .93
10 .06 .15 .23 .32 .41 .50 .59 .68 .77 .8 .94
11 .06 .14 .22 .30 .38 .46 .54 .62 .70 .78 .8 .94
12 .05 .13 .20 .27 35 .42 .50 .58 .65 .73 .80 .87 .95

it is seen that as in the general case,
(52) Cnj=1— Cj.

The valuesof ¢; (j=0,1, ---,n)forn =1,2, ---, 12 correct to two decimal
places are computed and tabulated as shown in Table I.

6. The loss function L(F, F) = [*, [F(z) — F(z)] / F(z)[1 — F(x)] dF (z)
where r is any positive even integer.

Let r = 2s; then

s [Tt (@ — )
(53) R—EJZ‘,OLJ s da = EIOQ,,
where

(54) Y

x; (1 — )

dz.

Since Xo = 0 and X,41 = 1, it is clear that in order to obtain finite risk it is
necessary and sufficient that ¢, = 0 and ¢, = 1. For j £ 0, n, we can write

28—2
Q=E [E g SO — X + ' (log Xiua — log X))
(55) a

— (1 —¢)*{log (1 — X;41) — log (1 — Xi)}],

where

28—2—h 2s A
(56) Gp - Z (,i)(—ci)‘; h=0;1’2:"°!28_2~

=0
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The probability density of X ;is given by (9), from which we obtain
1
(67 E(log X;) =3 <n) f v 71— 9" log y dy.

In order to evaluate (57) we use the followmg lemma.
LeMMma 5.1.

(58) fo v —y)"logydy =
where (k) = TV(k) / T(k).

Proor. Let f(a) = [iy* (1 — y)" ™’ dy. The left-hand side of -(58) is f'(a)
evaluated at « = j as can be seen by differentiating under the integral sign. But
flae) = T(@)T(n — 5 + 1)/ T(a+ n — j+ 1), and the desired result is ob-
tained by evaluating the logarithmic derivative of f(a) at « = j.

From the lemma 5.1 and (57) we get

(59) 7 E(log X;) = ¥(j) — ¢(n + 1).
In the same way, we obtain
(60) Elog(1—X,) =y —j+1) — ¢+ 1).

Further, since T'(k + 1) = kT'(k), I"(k + 1) = T'(k) + kT'(k), we see that
y(k+1) = I"(k 4+ 1) /T(k + 1) = 1/k + ¢(k), and hence the function y
satisfies the difference equation

(61) vk + 1) —y¢(k) = 1/k.
From (59), (60), and (61) we get
(62) E(log X1 — log X;) = 1/, forj=1,2,--- n,
and ,
(63) Eflog (1 — Xj41) —log (1 — X)] = —1/(n — ),
forj =0, 1, - 1.
Substltutmg from (11), (62), and (63) in (55) we get
(64) 2,2_:2(7%% ,.+1 2’+n1_j(1—c,~)2',

and substituting from (56), we can write

6 =25 GER ST o (B)d+ L o e

This is a 2sth degree polynormal in cJ Collectlng the coeﬁiclents of hke powers

of ¢; we obtain, for k = 0, 1, 2, , 28 — 2,
o n 25 25 251 = k
(66) Q= im=7 Cj n—7 ¢+ 1§ gk Ci,
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where
_ (k1 (28] | ! "G+ ! _ 1
(67) g = (=1) (k>|:7; Z (n+h+1)! n—j]’

To simplify (66) further, we state and prove the following lemma.
LemMma 5.2. If j and n are positive integers and j < n, then

'S (J+ ) 1 [ q-1j+a:l

68 s ] =——|1- 2.

(68) D 2 ey w1 Rl d RSP O
Proor. The left-hand side is equal to

(VLSBT = ()L 0 o

— (?) fol (@ — 21 — x)n—i-l dx

= the right-hand side, after simplification.
Substituting in (67) from (68) when ¢ = 2s — 2 — k, we obtain

_ 1 (2\* Y i+ a _
(69) g = (-D"— Ae II T a fork =0,1,2,---,2s — 2,
- a=1

and substituting now in (66) we obtain

Q= -—~ [c?’ + g <zs> (—c¢)" “sﬁ I+ a]

im =35 azt N+ «a

)
=5\ — = y
jm —j) n

using the notation introduced in (13).
Now with the same reasoning as in Section 3 it will be seen that @; and hence
R is minimized by setting dQ; / dc; = 0 and solving for ¢; the resulting equation

(71) (c; — j/m)™" = 0.

(70)

This equation, by the same argument as in Section 3, has one and only one real
root which lies between 0 and 1. Since for j = 0, (71) reduces to c; * = 0 giving
co = 0 as the only real root, and for j = n, it reduces to (¢, — 1) = 0, giving
¢, = 1 as the only real root, it follows that we can say that the minimax invariant
procedure for the loss function of this section is to estimate F(x) by

Flz)y=c;; X;=z<Xjn, =0 1,--, n,

where X;, j=0,1,---,n 4+ 1, have been defined earlier and c; is the real
root of (71). Again the number of equations to be solved in practice will be
about half the sample size since it can be easily seen that (71) remains unchanged
by replacing jbyn — jand¢; by 1 — ¢;,sothate,—; =1 — ¢;.
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Special case for r = 2. When r = 2, the equation (71) reduces, for each j, to
a linear equation
(cj - j/n)lt = 0)

which has the unique solution ¢; = j/n. This can also be seen by using (35),
(70), (62), and (63) for r = 2 and writing the risk R in the form

1 n—1 n ] 2
(72 R=—'+ .———‘<C""—>.
) At Him -\
Thus the minimax invariant estimate # for the loss function in the special case
for r = 1 in this section turns out to be the usual sample cumulative function
(73) F(x) = ¢; = j/n, when X, <z < Xjn, j=0,1---,m,

where X; < X, < -+ < X, is an ordered sample from the c.d.f. F, X, and
X .1 standing for — « and + « respectively. The actual value of the risk corre-
sponding to this estimate is 1/7.

6. The loss function L(F, F) = [*,|F(z) — F(x)|/Fx)[1l — F(z)] dF(z).
In this case we obtain

n X j+1 n
(74) R=EZf ]x—cj|/x(1—x)dx=ZQ,-,
j=0 YX; j=0
where
X j41
(75) G=E[ "le—el/2 - o) da.
Xi

As in the last section, it will be seen that for finite risk the necessary and
sufficient condition is that ¢, = 0 and ¢, = 1. For j # 0, n, we obtain

Q; = Elc; |log ¢; — log X;| —c; |log ¢; —log X ;1]
(76) +(1 — ¢j)llog 1 — ¢;) — log (1 — X ;11|
—(1 — ¢cjflog 1 — ¢;)—log (1 — X|].

The distribution of X ; has probability density p(y) given by (9) and the dis-
tribution of X;;; has the probability density

1

-t i — n—j—1
q(y)——B(j_l_l’n_j)y(l )M 0

@)

A
<
IIA

Using (9) and (77) we can express @; in the form

(78) Q; = (?) Uo' glei, y) dy — f: g(ci, y) dy],
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where
79) glc;,y) = [ciloge; + (1 — ¢;) log (1 — ¢j)
—cilogy — (1 —¢j) log 1 — Yl — )" — ny).

Straightforward integration leads to

f g(c, y) dy = y'(1 — y)"le;(log ¢; — log y) + (1 —¢;)(log (1 — ¢))
(80)
—log 1 — y)l + f (c; — »)y"'A — y)" " dy + constant,

which enables us to obtain Q; as

(81) = (1;) [fo’ (c; — »)y™ A — 9" dy

- f : (; — Yy =y~ dy],

forj =1,2,---,n — 1. Since Q and @, are fixed, and each @; is positive and
depends only on j, minimizing R is equivalent to minimizing @; for each j. We
see that

a_;Q’. = n) o s YTt — n) : =101 _ ,\n—i-1
(82) aCj_<j _[0 y Q-1 dy (j ‘Ly a-y dy,

(83) a2Q] = 2(’3’:) c;:—l (1 — ci)il—i—l

ac%
Setting 9Q; / dc; = 0 and solving we obtain c; as the median of the beta distribu-
tion with density
.
forj = 1,2, ---,n — 1. Since (83) shows that 3’Q;/ ac: > 0for0 < ¢; <1,it
follows that this solution for ¢; in fact minimizes @, and hence minimizes R.

To summarize, the minimax invariant procedure for the loss function considered
in this section is to estimate F(z) by

(85) F‘(x)=ci; Xi§x<XJ'+l, j=0’1""7n’_

(84) h(z) = 271 — 2™, 0<z=1,

where X;, 7 =0,1,---,n + 1, have been defined earlier, ¢y = 0, ¢, = 1 and
forj =1,2,---,n — 1, c;isthe median of the beta distribution with density
(84). Again it is interesting to note that the value j/n for ¢; obtained in the last
section for » = 2 is the mean of the same beta distribution.

Further it is obvious that ¢._; = 1 — ¢; and only about half the total number
of ¢ values are to be actually computed. These can be obtained with the help
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of the tables of the incomplete beta-function [2] as indicated in Section 4. How-
ever, if a table for ¢ values like Table I has been constructed, no fresh computa-
tions are needed, since the valueof ¢; (= 1,2, ---,n — 1) for any n in this
case is equal to the value of ¢;_; for n — 2 in Table I. For example, when n = 10,
the valuesof ¢; (=0, 1, ---,10) correct to two decimal places are

(86) 0, .07, .18, .28, .39, .50, .61, .72, .82, .93, 1.

I am thankful to Professors Z. W. Birnbaum and H. Rubin for some helpful
discussions during the preparation of this paper.
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