NOTES

FURTHER REMARK ON THE MAXIMUM NUMBER OF
CONSTRAINTS OF AN ORTHOGONAL ARRAY

By EsTHER SEIDEN!

Howard University

1. Summary. R. C. Bose and K. A. Bush [1] showed how to make use of the
maximum number of points, no three collinear, in finite projective spaces for
the construction of orthogonal arrays. In particular, this enabled them to con-
struct an orthorgonal array (81, 10, 3, 3). They proved, on the other hand, that
in the case considered the maximum number of constraints does not exceed 12.
Hence they state, “We do not know whether we can get 11 or 12 constraints in
any other way.” A partial solution to this problem was given by the author [2].
It was shown that the number of constraints cannot exceed 11. The purpose of
this paper is to give a complete solution to the above stated problem, namely,
to prove that no way exists which could give a number of constraints, of the
considered orthogonal array, greater than ten. As a consequence of the proof it
follows also that any orthogonal array with ten constraints satisfies a unique
algebraic solution. It is not known, however, whether the arrays constructed
by the geometrical method form the totality of orthogonal arrays of the con-
sidered type.

2. Introduction. The proof is based on an algebraic property of orthogonal
arrays, pointed out by Bose and Bush [1]. Let n¥; denote the number of columns
belonging to an array consisting of k¥ rows that have j coincidences (j elements
equal) with the ith column. A necessary condition for an array (\s', k, s, ) to be
orthogonal is that, whatever be the number % such that 0 = & =< ¢, the follow-
ing equalities hold.

k

k j k t—h . t
Zn,-,-ch=ch()\s —1), ’L=1,2,"',8,
J=0

where the ¢’s are binomial coefficients.
In the case considered the equalities become, forz = 1,2, -+ -, 81,

k k
2 n¥; = 80, 2 (G = Oml; = 8k(k — 1),
F=0

2
I .
Dok =26k, 2 (i — (G — 2nk; = 2%k — 1)k — 2).
J==0 7=0
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Use will be made of Lemma 1 proved in [2] which asserts that an orthogonal
array (81, 10, 3, 3) for which nij = 0 for j = 5 cannot be extended to an eleven-
rowed orthogonal array. It will be assumed without loss of generality that the
first column consists of zeros only.

3. Derivations.
LeEmMa 1. If k = 4, then ni, is equal to zero or two fori = 1,2, -+, 81.
Proor. Equations (1) become in this case

nio + ni + niz + nis + nig = 80,
ni + 2nis + 3ni; + 4ni, = 104,
2niy + 6ndy + 1205, = 96,

6nis + 24ni, = 48, ¢=1,2, ---,8l.

Thus an orthogonal array with four constraints has to satisfy one of the follow-
ing solutions.

nij
Solution

4 4 4 4 4
54 ni3 iz "1 750

I 0 8 24 32 ] 16
I 1 4 ‘ 30 28 17
III 2 0 | 36 | 24 ' 18

It is seen that Lemma 1 reduces to showing that solution II is impossible.
Clearly it will be enough to show that Lemma I holds for ¢ = 1. Let us assume
furthermore that the first three rows have the form

000000000000000000000000000
000000000111222111222111222
000111222000000111111222222

111111111111111111111111111
000000000111222111222111222
000111222000000111111222222

222222222222222222222222222
000000000111222111222111222
000111222000000111111222222

where the middle and last thirds of each row are printed below the first third.
Assume now for the sake of the proof that the fourth row has a zero in the first,
second, and fourth columns. Then the remaining zeros will be distributed as
follows.
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Number of zeros

Serial number of the columns in fourth row

10-15
16-21

22-27

28-30, 55-57
31-33, 58-60
34-36, 61-63
37-42, 64-69
43-54, 70-81

R Goncotom o m

Consider now the fourth column of the array. The assumptions made imply that
n4e = 0. Hence for ¢ = 4 solution I will have to hold. This means that ni = 16
and ng; = 24. It will be shown that nf, = 16 implies nf, = 26, which is impos-
sible. Let us find first the position of the sixteen columns which have no coinci-
dences with the fourth column. It follows from the distribution of zeros that
seven such columns will be found among the columns 37-42 and 64-69. Thus
the remaining nine columns will have to be among the columns 49-54, 70-81.
This in turn implies that the fourth row will have to have three zeros among the
columns 49-54 and 76-81.

Let us count now the number of columns which have two coincidences with
the fourth column.

Number of columns
Serial number of the columns having two coincidences
with the fourth column

3

5-9

10-15

16-21

22-27

28-30, 55-57
31-33, 58-60
34-36, 61-63
43-48, 70-75

8[*&»&»—-0:;&-»‘0\)—

This concludes the proof of the lemma.

TaEOREM 1. The number of coincidences of any two columns of a five-rowed
orthogonal array s less than five provided that A = s = ¢ = 3.

Proovr. Suppose that there exists a column which has five coincidences with
some of the remaining columns of the array. We may assume that this column
is the first column of the orthogonal array. Consider now the solutions of equa-
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tions (1) for ¢ = 1 and & = 5. It is easy to see that there are only four sets of
such solutions. Namely,

ny
Solution

"?5 i ”i,4 ”?3 ”i‘z ”?1 ”go

|
I 1 2 2 52 7 16
11’ 2 0 0 60 0 18
IIr 1 1 6 46 11 15
v’ 1 0 10 40 15 14

It will be shown that none of these solutions can give rise to an orthogonal array.

Let us assume without loss of generality that the first three rows are the same
as considered in Lemma 1 and that the fourth and fifth rows have also a zero
in the first column. Consider first solution I’. In this case n5s = 1 and n5, = 2.
Thus the five-rowed array contains a three-rowed subarray in which n¥; = 3;
but this contradicts the fact that A = 3. It will be shown next that the set of
solutions II’ cannot lead to an orthogonal array. Consider two triples of rows,
namely the triple consisting of the second, third, and fourth rows, and that con-
sisting of the second, third, and fifth rows. Since A = s = ¢ = 3, each of these
triples of rows has to include three columns of each of the following four types.

The column has a zero in the fourth or fifth column, respectively, and one
of the four possible couples consisting of one’s and two’s only in the second and
third rows. By II’ n}; = n3, = 0. Thus each of the last twelve columns of the
first third of the orthogonal array will have a zero either in the fourth or in the
fifth row but not in both. Hence these twelve columns will be divided into two
groups each consisting of six columns of the considered types such that one
group belongs to the triple of rows including the second, third, and fourth rows,
and the other to the triple containing the second, third, and fifth rows. These
groups are clearly not identical in respect to their content—one’s and two’s—
in the second and third rows. The remaining six columns of the considered types
will have to be among the last twelve columns of the second and third parts of
the array. Since n3; = 0, these six columns will have to be identical regarding
their content in the second and third row. This is clearly impossible.

Finally, the nonexistence of the orthogonal array satisfying solution III’ or
IV’ follows immediately from Lemma 1. Clearly, if we delete from an array
satisfying III’ one row with a zero in the column having four coincidences with
the first column, we will obtain a four-rowed subarray satisfying solution I. In
the case of solution IV’ any four-rowed subarray would have to satisfy solution I.
This establishes the theorem.

COROLLARY. Any orthogonal array (81, k, 3, 3) satisfies the equalities ni; = 0,
provided thatj = 5and 1 £ 7 < 81.

TueoreEM 2. The number of constraints of an orthogonal array (81, k, 3, 3) can-
not exceed 10.
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Proor. Theorem 2 is an immediate consequence of Theorem 1 and Lemma 1
of [2] which established that if, for some 7, n;; = 0 for all j = 5, then such an
array cannot be extended to an eleven-rowed orthogonal array.

Remark. It was also shown in Lemma 1 of [2] that if & = 10, then the array
satisfies a unique set of solutions. Namely, ni§ = 60, nis = nis = 0, n}; = 20,
nio = 0,foralls = 1,2, ---, 81. Hence any array constructed by the geometri-
cal method developed by Bose and Bush [1] will satisfy this set of solutions.
The problem of obtaining the totality of orthogonal arrays was investigated
neither in the considered case nor in related cases.

In conclusion, we wish to remark that this paper restores the validity of the
abstract published in Ann. Math. Stat., Vol. 25 (1954), p. 177, which was unduly
corrected in [2].
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A THEOREM ON CONVEX SETS WITH APPLICATIONS!
By S. SHERMAN
Moore School of Lilectrical Engineering, University of Pennsylvania

1. Summary and introduction. T. W. Anderson [1] has proved the following
theorem and has given applications to probability and statistics.

TurEOREM 1. Let E be a convex set in m-space, symmetric about the origin. Let
f(x) = 0 be a function such that i) f(z) = f(—=x),i1) {z | flx) = u} = K. is convex

for every uw (0 £ u = «) and iil) ] f@) dox < o, then
E

1) ff(a; + ky) dx = ff(x + y) dx for 0=k <1

The purpose of this paper is to prove what can be considered a generalization of
Anderson’s Theorem and to give different statistical applications.

Functions in L, satisfying the hypothesis were called unimodal by Anderson
and he noted in [1] that if we let ¢(y) be equal to the right hand side of (1) then
¢ is not unimodal in his sense insofar as it does not necessarily satisfy 7 (i.e.,
there exist f, E, and u such that {z|¢(x) = wu} is not convex). His example is
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