ERROR ESTIMATES FOR CERTAIN PROBABILITY LIMIT THEOREMS!
By J. M. SHAPIRO

Ohio State University

1. Summary and Introduction. Consider a sequence of independent random
variables z,, %z, -+-, &, --- with mean O and variance o;. Let S, =
(1 4+ - -+ + x,)/s, where s = o1+ -+ + o> . The classical forms of the central
limit theorem state that, with certain assumptions, the distribution function
F.(x) approaches the Gaussian distribution

]' i —u2/2
B(x) = ’\/Zr f— . e du.
Berry [1] and Esseen [3] have studied the behavior of 0

M, = sup |[F.(z) — &)
—0lz< 0
and in their main theorems have obtained bounds on M, which involve the
moments of z; through the third.

More generally consider a system of random variables (xnx), bk = 1,2, - -+ , ks 3
n = 1,2, --- such that for each n, the variables z,1, - - - , Z., are independent.
Let S, = 2 + --- 4 Zu, and again let F,(z) be the distribution function of
S, . From a well known theorem of Khintchine [5] it follows that if the random
variables z,; are infinitesimal (i.e., lim, .o max;<i<r, P{|zm] > €} = 0 for
every ¢ > 0) then the class of possible limiting distributions of F,(z) coincides
with the class of infinitely divisible distributions.

Let F(x) be any infinitely divisible distribution function and let M, =
SUP—<o<e |[Fn(@) — F(z)|. In this paper we obtain bounds on M, in the case
where F(z) and the z,, have finite second moments. It is shown that under
necessary and sufficient conditions for F,(z) to approach F(z), the bounds on
M, obtained approach zero as n becomes infinite.

Throughout the paper, given the system (z.:) we shall let Fo.(x), ¢u(t), tar,
and o> be the distribution function, characteristic function, mean, and variance
respectively of Z.: , and F.(z), ¢a(t), #a , and o5 have the same meaning for the
random variable S, .

2. Some Preliminary Lemmas. The following lemmas will be used to obtain
the general result in the next section.

LemMma 1. Let z, and 2; be any two complex numbers such that |z1] < 1and |zs) < 1;
Then |21 — 22| < |logz — log .

Received March 11, 1955.
1 This paper is the revised form of a Doctor’s dissertation accepted by the University of
Minnesota, 1954, and presented to the American Mathematical Society December 29, 1954.

617

]

: Jz-sq

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%JSGQ
The Annals of Mathematical Statistics. MINGIS ®

www.jstor.org



618 J. M. SHAPIRO

This follows from the mean value theorem for complex functions (see [2]
page 115).
LemMA 2. Let

It 2) = (" = 1 — i)™

Jor real x and t. Then for all z, |f(t, z)| < 3* and |3f(t, x)/3z| < £ |¢|".
This follows from the fact that for real u,

n—1 r. \k n
e = ’Z:o (1’]?!) + 01—;—! where |6] < 1.

CoRrOLLARY. |f(t, ) — f(t, y)| < £ |z — .

Proor. We have f(t, z) = cos(tr — 1)/2* + 4 sin(tx — tz)/2* = R(@, z) +
I(t, z). By the law of the mean we have [R(t, ) — R(t, y)| < & |t*-|x — v
and the same inequality holds for |I(¢, z) — I(t, y)|. Thus |f(t, x) — f(t, v)| =
V24 [tz — gyl < Ef e — yl.

Now let F(x) be any infinitely divisible distribution function with mean g,
variance ¢°, and characteristic function ¢(f). According to Kolmogorov’s for-
mula [6] for the characterization of infinitely divisible distributions with finite
variance, we know that

2.1) log o(t) =iut + f_ T = 1 — i) 551‘2 46 ()

where G(x) isa bounded nondecreasing function. If we impose that G(— ©) = 0
and that G(r) is right continuous then the representation of log¢(¢) by this
formula is unique. (Also if G(— ©) = 0 then G(+ ) = o°)

Let A > 0 be such that —A and A are continuity points of G(z) and let
0 < 6 = 24. Define

22) m = m(4, s) = [2—54] 1

where [r] is the greatest integer function. Let
(2.3) A=< <2< - <zZm=4
be such that z,(¢ = 0, 1,2, --- | m) is a continuity point of G(z) and

max |z,— x| < 4.

T=1,2000,m

Let .
(24) > [t ) = 666
and ,
E(n, t, m(4, 8)) = 35|t'cn + o) + ‘2 ; |Ga(z) — G|
(2.5)
+ 216, (4 ) = Gad) + G+ ) — GU) + Gu(—4) + G(—A4)]

A
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with this notation and with f(¢, z) defined as in Lemma 2 we have the following
lemma.
Lemma 3. [[Z, f@t, z) d[Ga(x) — G@)]| < En, t, m(A, 8)) for any A > 0,
0 <6 = 24 and any choice of o, a1, -+, X, satisfiying (2.3).
Proor. First let
{xi , 7 odd
& =

Ty, Teven 1=1 -, m

and consider (forn = 0, 1, -+ with G(z) = Go(x)),

[ 100 i) = 3570, 16,@) = Gulai)|

m.

tim1

by the corollary to Lemma 2. Now (/,(z) is nonnegative and nondecreasing and
Qu(+ =) = o2 so that [Gu(z,) — Gu(zo)] £ o where we define o¢ = o°. There-
fore

< 3|t|%q .

[ 562 d@) = 316, 816@) — Gulai )

Now consider for n =~ ()

]:: It ) dG,(x) — [:f(t, x) d((z) !

m

= I [ :.f(t, x) dl.(x) — ;f(t, )G (x) — Go(xi)]

(2.6) + é:lf(l, )G (x) — Go(xi)] — 2f (¢, £DG(x) — G(zi)]

+ 2)’@, G (x) — G(wi-0)] — [ ) 1@, z) dG(z)

|
|

< 3)tf’s(or + o) + 2f(t,$i)[(;n(xi) — (o) — G(z:) +Gxiy)] ' .

Now from Lemma 2 [f(¢, z)| < 1f’ so that,

5= 1, D16 (e) — Gla) + Gla) — Cylai))|

e‘;ﬁ

@1 = [l(:m) e + G — Galarn)]

(S]]

1(m-2) /2]

+ 2 Z |Ga(2i) — G(x2i)l]~

1=
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Now if we let
[:c,- s 7 even
&, =
S .
1.@.;_1 , 7odd

we see that (2.6) still holds and that (2.7) becomes

T(@) + Glris) — (i)

@8) < [m (t) — Galeo)] + [Gan) — Gulon)]

2
[(m-1)/2])
+ 2 Z |G (22it) — G (22i-1)| ]

t=:1

Combining (2.6), (2.7), and (2.8) we find

U f@t, ) dG(x) — f j(t x) d(,(x)'
(H m
S 4% + o) + 5 2 1Gn(e) — GG,

Consider now [Z2 + [% f(t, x) d[G..(x) — G(x)]. We note that

11, 7)] = } [ - Udt’“zl“ll

so that
[+ 56 a6

zm

<o [+ [ v

n(+®)—(’(11)+(1,;( 4)]’ n=071727"

Thus

‘[_A + fj J(¢, ) dlG(z) — G(x)]
@10 |
< G+ ) = Gu(A) + G+=) = G(4) + Gol—4) + G(—a))

By (2.9) and (2.10) we see that

[ s0.2) di6,@) = 60| 5 25 + o)+ E 3 16 — 6o

+ 216, (4 0) — Gu(4) + G ) = G(A) + Go(=4) + G(—A)]
= E(n, t, m(4, d)).
Q.E.D. )



ERROR ESTIMATES 621

3. The General Result. The bounds we shall obtain on M, will be derived
from bounds on the characteristic functions of F, (x) and F(z) by using the fol-
lowing two theorems of Esseen [3].

TusoreM 1. Let M(z) be a nondecreasing function, N(z) a real function of
bounded variation on the whole real axis such that N'(z) exists and |[N'(z)] =
B< o, M(—») = N(—w) =0and N(+x) = M(+4=). Let m(t) and n(t)
be the corresponding Fourier-Stieltjes transforms and for any T > 0 let ¢ =
[Zr |(n(t) — m(t))/t|dt. Then to every number k > 1 there corresponds a finite
positive number c(k), only depending on I; such that |[N(x) — M(z)| < k-¢/2x +
c(k)-B/T.

TuroreM 2. Let M (x) be a nondecreasing step function and N (x) a real function
of bounded variation on the whole real axis such that

1) M(—w) = N(—w) = 0, M(4+®) = N(+=)

2) If N(x) is discontinuous at © = Ty(Ty < Tyy1, v = 0, =1, 42, ---) there
exists a constant L > 0 such that min (z,41 — 2,) = L,

3) |N'(x)] £ B < « everywhere except when z = x,(v = 0, £1, %2, ---)

4) M(zx) may be discontinuous only at x = xz,, (v = 0, £1, £2, ---). Let
m(t) and n(t) be the corresponding Fourier Stieltjes transforms and for any T > 0
let € = [Tr|(m(t) — n(t))/t| dt. Then to every number I > 1 there correspond two
finite positive constants ci(k) and ci(k) only depending on I, such that |N(zx) —
M()| = k(e¢/2m) + cu(k)-B/T, provided that T-L = cy(k).

Now using the notation of (2.1)-(2.4) we define

g(n, m(4,8)) = [3on max o + [B8(o% + oM
SkZkn

m 1/3
O [ 2 [6wi) G(on

+ [il (G(+) — Go(4) + G4 =) — G(A) + G(—4) + G(—A)}

1/2
+ 2|u, — ul] )

This leads to the general theorem.

TaEOREM 3. Let F(x) be any infinitely divisible distribution function with mean u
and variance o and with corresponding G(z) given by Kolmogorov’s formula (2.1).
Let (1) be a system of random variables, independent within each row with mean

Lz GNd variance oxp . Let F () be thedistribution function of S, = Tw1 + - -+ + Tu,
and suppose that dF(x)/dx exists and |dF(x)/dx| < B for all x. Assume that
o < 1,k =1,2, ---, k,. (The assumption o = 1 is really quite weak as
will be seen by Lemma 4.) Then it follows that for any a > 1
(3.2) M, = sup |F,(x) — F(z)| = I(a, B)g(n, m(4,s)) -

. —o00l 0

where k(a, B) is a constant depending only on B and on a > 1.
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Proor. For fixed n we first obtain an estimate on |log ¢,(t) — log ¢(¢)|, where
¢n(t) and o(?) are the characteristic functions of F,(z) and F(z) respectively and
then use Lemma 1 and Theorem 1 to obtain the bound on M, . (Since ¢(t) is
the characteristic function of an infinitely divisible distribution, we know that
log ¢(¢) is defined. In the course of the proof it will also become clear that log ¢, (¢)
is defined.) As in Lemma 2 let (¢, ) = (¢ — 1 — itz)/2” and define

kn

00 = it S+ [ 100,0) 6.

Now [log ¢a(t) — log ¢(t)| < [log ¢a(t) — ¥a()| + [¥ult) — log o(@)|. Let
Fri(z) = Fu(r + ) and let ¢,/ (¢) be the corresponding characteristic func-
tion. Let an(t) = ui(t) — 1. Now ni(t) = 1 + 1005:4° where [§] < 1 and
therefore

(3'3) lank(t)l = |0’ UnLt

Let T, = 1/g(n, m(4, 6)) and assume in the rest of the proof that |t < 7.,.
Then we see that |a..(f)] < # and that

log ¢(l) = amt) — % 29 )
so that
B logen(d - au] 5 5 1O <y Ol <510

Now we note [2., f(t, 2) dG.(x) = D_i%1 au(t), so that
by
(35) ’//n(t) = ’~21 (,I:t/-‘nk + a7zk(t))'

Also oni(t) = € .. (1) and thus log ¢.(l) = Zf.;l (Tt + log @ni(l)).
This together with (3.4) and (3.5) shows that

i ky kn |2
log ¢.(t) — ‘l/u(f) 2 ’ log () — ank(t am(t)l
But from (3.3) we see |au(1)| < Loait’ so that
4 kn
(3'6) llOg ¢n(t) - wn(t)l é ';l iy Z: 0-/l/c :"_.- g“ t‘()’i 1II}La)L( Uik
SkSkn

where o, is the variance of S, . Now log (t) = ut + [%. f(¢, z) dG(z).
Thus '
. & [ Y g |
Wa() — log o(f)] = |1 - ! Buk — #, + % [ J(t, ) dlGa(z) — G(x)]| .

k=1

Applying Lemma 3 we sce

ky
a(t) — log w(0)] = 11| - ‘; o = ] + B, 1, m(4, )
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and using (3.6) we have

llog ¢.(t) — log ¢(t)| < {5t'7n max aur + U] | — ul + E(n, t, m(4, 8))}

= h(t,n, m(4, 3)).

Now using Lemma 1 we have |,.(t) — ()| £ h(t, n, m(4, 8)) for |t| = Ta.
In order to apply Esseen’s Theorem 1 we consider

/_.T"lson(t) - ‘P;(Q dt < 2 T"w

o 11|

T } t dt é (](n’ 7n(A) 5))

Now applying Theorem 1 we see that for any a > 1,

sup_|Fo(@) = F@I S 5= gln, m(4, ) + @B g = k@, By, m(4,5))
where k(a, B) = a/2r + ¢(¢)B. Q.E.D.

We shall now examine, under suitable conditions the behavior of g(n, m(4, 8))
as n becomes infinite. To this end we state Theorem 4 (c.f. [4]) which gives the
condition for the distribution functions F,(z) to converge to a limiting distri-
bution and also gives the form of the limiting distribution.

TuroreM 4. Suppose that: the random variables (zn. — un:) are infinitesimal.
Then a necessary and sufficient condition for the convergence of the distribution
functions of sums S, = ur + - + Tum, of independent random variables with
finite variance lo a limiting distribution function with finite variance, and the con-
vergence of the variances of these sums. to the variance of the limiting distribution
is that there exist a bounded (non-decréasing) function G/(w) (with G(— ») = 0),
and a real constant u such that

kn u R .
D lim Y, [ 2 dFan(x + pax) = G (u) at all continuity points of G(u),

n—e0 k=1

kn 0 )
2) lim Y, f 2 dF iz + pnr) = f dG(u) = G(+ =) and

n-+» k=1

kn
3) lim Z Mnk = H.

n—0 k=1

The characteristic function of the limiting distribution is given by Kolmogorov’s
formula (2.1) using the constant u and the function (/(x) just determined.
Motivated by this theorem we shall assume

fa) (Tnr — par) infinitesimal,

37) lb) lim F,(x) = F(x)(at all continuity points of F(z)) and

c) lim azn = ¢

n-+M0
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and we see by Theorem 4 that, in the notation of (2.4),
1) lim G,(z) = G(z) at all continuity points of G(x),

n=—0

39) 2) lim Gy(+«) = G(+) and

kn
3) lim Z ok = U

n—0 k=1

where G(z) and u are the corresponding @ and p of Kolmogorov’s formula (2.1)
associated- with the infinitely divisible distribution function F(x).

We have the following lemma.

Lemma 4. If the system (x,) satisfies (3.7) then lim,., maxi<i<k, oue = O.
- Proor. We have

max o.; = max f 2 dF (x4 par).
1<k<k, 1<kgk, Y=o :
Let ¢ > 0 be given and let ¢ > 0 and —¢ be continuity points of G(z) such that

(3.9) 1G(e) — G(+ )| < gand |G(—c¢)| < ;

Now

max f 2* dF(x + pa) S max 2 AF i (x + por)

1<kSky Y=o 1Sk<kn «[ﬂé\/eﬂ

+ max f 2’ dFw(x + pa) + max f 2 dF (x4 par)
1SkZka YV €)1<| 2| <c 15kgk, Yiz)>e

=7+ ¢ max Pllos = wul > Ve/T} + Gu(=0) + Gul+ =) — G(0).
By (3.7) and (3.8) we may take N so large that n > N implies
maxi<k<in P{|Tue — pnt] > Ve/7} = ¢/7¢,
[Ga(—¢) — G(—c)| < /T, |Gu(+ =) — G(+=)| < &7

and |G(c) — Gu(c)| < ¢/7.
Thus we see using (3.9) that

max 0% < 26+ |Go(—c) — G(—0)| + [G(=0)] + |Gul+%) — G(+ )]

1<k<k, -7
+ |G(4+®) — Gle)| + |Gle) — G.(c)] £ ¢ for n > N.

Q.E.D.

With the notation of Theorem 3 we have the following lemma.

Lemma 5. If the random variables (x.:) satisfy (3.7) then for fixed A and 3§,
lim,,, > 74" |Ga(x:) — G(x:)| = 0, and lim,,., |, — u| = 0. This follows from
1 and 3 of (3.8).
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We see from Lemmas 4 and 5 that the first, third and last part of the fourth
term of g(n, m(4, 8)), (see (3.1)), approach zero as n becomes infinite under
(3.7). Intuitively we think of § being small and A being large so that g(n, m(4, 8))
will be small. We shall formulate this idea precisely. Let 1 > § > 0 be such that
+ (1/8)""? are continuity points of G(z), (G(z) is arbitrary but fixed), and con-
sider g(n, m(1/6"8)), (i.e. let A = 1/8"'%) and let m(1/8'"%, 8) = m(s). If 1 > &,
> 0 is any sequence of constants then under Theorem 3, we know that
(3.10) sup |F.(z) — F(x)| = k(a, B)g(n, m(5,)).

—0lzl0

The foregoing discussion leads to the following result which we state as a theorem.
TreoreM 5. If F(x) and the random variables (x.:) satisfy (3.7) and the hypoth-
esis of Theorem 3, then there exists a sequence {1 > 6, > 0}, 8, — 0 such that
(3.10) holds and such that lim, , . g(n, m(3,)) = O.
Proor. We know that (3.10) holds for any sequence 1 > 8, > 0 of constants.
By Lemma 5 we see that if +(1/ 6)”2 are continuity points of G(z) then
- m(8)

; |Ga(z:) — G(z)] — 0

as n — . Clearly we can find a sequence 8, — 0, =(1/8,)"" continuity points
of G(z) such that > 74" |G, (x:) — G(x:)] — 0. But then using Lemmas 4 and 5
and this sequence {8,} we see that g(n, m (5,)) — 0 as n becomes infinite.

A result analogous to that given by Theorem 4 of Berry [1] is contained in the
following corollary to Theorems 3 and 5.

CoroLLARY. Under the hypothesis of Theorem 5 if n is so large that

1/2

kn zg
5 [ P+ ) — @) | = 8
k=1 Y-

max oo < 8 and ltn — p| = o2
1<k<kn
then; there exists a finite positive number K, independent of n and & such that M, <
K.

Now of course Theorems 3 and 5 require dFF (z)/dz to exist so that in particular
F(z) is continuous. By use of Theorem 2 we can obtain a theorem weakening
the condition of continuity but which will require F,(z) to be a step function.
(As a special case where we require F(z) itself to be a step function we get a
stronger result due to the fact that dF(z)/dxz = 0 whereever it exists). Using the
notation of Theorem 3 we have the following theorem.

TueoreM 6. Let F(x) be an infinitely divisible distribution function with two
moments such that if F(z) has discontinuities ot x, ,

(@ < Tpg1,v =0, &1, £2, -+ ),

then there exists a constant L such that min (x,41 — x,) = L. Suppose that dF (z)/dx
exists everywhere except at x = T,, v = 0, £1, +2, - and |dF(z)/dz| £ B,
x # z,. Then if F,.(z) is a step function whose only possible discontinuities are
z=2x,,0=0 %1, %2 ---andif o = 1,k =1, 2,---, k,, it follows that
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for any a > 1 SUP_wercs|Fu(z) — F(z)|S k(a, B)g(n, m(4, 8)) provided that
L/g(n, m(4, 8)) = c(a) where cx(a) s the constant determined in Theorem 2
and k(a, B) has the same meaning as in Theorem 3.

The proof of this theorem is the same as that of Theorem 3 except that we use
Theorem 2 instead of Theorem 1.

Now if we define gi(n, m(4, 8)) = o5 MaXick<in 0ok + 8(ca + o) +

im0 |Ga(@i) — Gs)| + {Gu(+ ») — Gu(4) + G(+ =) — G(4) + G.(—4) +
G(—A)}/A + |p. — u| we have the following theorem.

TueoreMm 7. Let F(x) be an infinitely divisible distribution function with two
moments and further let it be a step function with discontinuities at & = 2,(x, < Toy1 ,

v=0,=%1 %2 -..). We assumethereexisis a constant L such that min (2,4, — z,)
= L. Then if F,.(z) is a step function whose only possible discontinuities are x = x, ,
= 0, &1, &2, -- -, it follows that for any a > 1 there exists a constant k(a)

depending only on a such that SUP_wcocw |[Fu(z) — F(z)| = k(a)gi(n, m(4, 8))
provided that maxi <k <, onr = L/c2(a).

Proor. Clearly the essential difference in this theorem and Theorem 6 is in the
absence of the roots in the expression ¢:(n, m(A4, 8)). The reason for this is that B
of Theorem 2 may be replaced by zero here. With this in mind if we define
T, = T = ¢(a)/L a proof analogous to that of Theorem 3 will hold here as well.

We remark that both Theorems 6 and 7 can be extended just as Theorem 3 was
and that the remarks and lemmas following Theorem 3 hold here as well.

4. Specialized theorems for the cases where the limiting distribution is
Gaussian or Poisson. In the special cases where the limiting distribution is
Gaussian or Poisson the results of the last section may be simplified. For the
Gaussian distribution,

1 z ’
4’(:1’) = *";:‘f e——;ﬂll du,

am

the @ of Kolmogorov’s formula (2.1) is given by

[ <0
4.1) G(z) = l
and for the Poisson distribution, F(z) = Eoék <z € \/L! we have
{ z <1,
(4.2) Gl) =
L)\, z = 1.
The simple nature of the G’s in both of these cases is the reason the results may be
simplified.
4a. The Gaussian distribution. In contrast to (3.1) we define (for any ¢ > 0)
¢:(n, & = [on max ow]" + [ max (o5, 1) "
1SkLhy,

1/8
+ [: 1-[1 I 2’ dF (x4 por) + }lon — ]I:I + (20
k= z| e

We have the following theorem.



ERROR ESTIMATES 627

THEOREM 8. Let {e, > 0} be any sequence of constants. If o, < 1,k =1, -+,
k. , then for any a > 1 SUP_w<ocw [Fu(x) — ®(x)| < k(a)gs(n, ,) where k(a) is a
constant depending only on a > 1.

Proor. The proof here follows the same lines as the proof of Theorem 3.
Suffice it to say that in estimating |[Z f(t, z) d[G.(x) — G(z)]| , where G(z) is
given by (4.1), we consider

[ 1.2 a6, - 6@ = [ 106,9) di6,@) - )

+ [ 169 d6,@) — €@+ [ 10,9 d6u@) — 6]

instead of using Lemma 3. Using integration by parts on [, and noticing that
on (— o, —¢,] and [e,, + ), G,(x) — G(x), is increasing we obtain

[ ena6,@ — 6@ s 5 [ o dPute + u)
— o0 1zl 2 en

k=1
2

+ fj o2 — 1] + §¢* max (0%, 1] ¢, .

Now if we assume (3.7) where F(z) is the Gaussian distribution ®(z), it follows
that for any e > 0.

n—oo k=1

kn
r1) lim > f 2’ dF u(x + pu) = 0,
1zl 2 e

(4.3)

A

kn
2) lim > me 2 dF(x + pu) = 1 and

n-+00 k=1

kn
3) lim 2 g = O.

n—w k=1

Thus, using an argument similar to that used in Theorem 5 we see that if we
assume (3.7) that there exists a sequence {e, > 0}, e, — 0 such that lim, ..
g2(ny fn) = 0.

In order to see more precisely how gs(n, e.) behaves, we shall consider, under
appropriate assumptions, finding explicitly a sequence {e,} which will make
g2(n, e.) approach zero as n becomes infinite. We assume that the random vari-
ables of the system (r.:.) satisfy (3.7) (and therefore (4.3)) so that in particular
by Lemma 4 we have lim, . max, <<, o2 = 0. Also assume that there exists
a p > 1 such that

(4.4) max —3— ([: @)? dF il + #nk)>1/p

15kgkn Tk
is bounded in 7, and let ¢ be determined by 1/p + 1/¢ = 1. Then it follows that
if we take
8/(843q)
|

(4.5) €&, = [ max o,
1<kskn
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that g2(n, €,) — 0 as n — . In fact the only term in gy(n, €,) that needs study is
Sk [l Sen 22 dF.(z + ua). But by Holders inequality this is

kn 1/p 1/q
Z (f (xz)p ank(x + ”nk)) <f ank(x + ”nk)) )
k=1 |z| = epn |zl Zen

and using Tchebycheff’s inequality we see this last expression is

2 1
, [ max o la
é B'O’n 1<k<kn

€n

IIA

where B is the bound on the expression in (4.4). Using (4.5) we obtain

kn
2 [ & dFui(z + pu) < B-onl max o,u]" "
k=1 Y|z| 2 ¢, 1k<kn
Thus using Theorem 8 we have proven the following theorem.

THEOREM 9. If o = 1,k = 1,2, - -+, k, and if the random variables satisfy
(4.4) then
sup _|Fu(z) — ()] = k() {foh max ol + 2] + 13 — DI

1<k<ky,

—<Lz<!

+ (% max (o3, DI"* + [Boal"®)[ max o]0}
1skskn
We remark that if the (r,;) are not assumed to have any moments and if the
limiting distribution is Gaussian or Poisson it is possible, using the method of
truncation to obtain an error estimate on SUP—w<s<w |Fn(z) — F(z)| and to
show that the estimate approaches zero under conditions analogous to (3.7). (To
show that the estimate approaches zero it is necessary to know (among other
things) that lim,. Zfﬁ’;l f1z15+ dFax(x) = 0 for some r > 0. This is not neces-
sarily true if the limiting distribution is not Gaussian or Poisson.)
4b. The Porsson distribution. Define (for any e > 0)

gs(n, &) = {Un max U'nk + |pa — N + Z f s 2’ dF u(x + pur)

k=1
+ lai — A + max (af.,)\)'e}

where \ is the parameter of the Poisson distribution. We have the following
theorem analogous to Theorem 8.

TueoreM 10. Let F(x) be the Poisson distribution and assume that F.(x) is a
step function whose only possible discontinuities are at x = 0,1, 2, --- . Then it
follows that for every a > 1 there exists a constant d(a) depending only on a such that
SUP_w<z<wo |Fa(x) — F(z)| = d(a)gs(n, €,) provided that max,<k<in onk = 1/c2(a)
where cy(a) is the constant determined in Theorem 2.

The proof of this theorem is essentially the same as the proof of Theorems 3
and 8 and will be omitted. We remark however that in place of 7, in Theorem 3
we let T = cy(a) and restrict |¢§] < T.
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Now if we assume (3.7) with F(x) the Poisson distribution, it follows that

( kn .
1) hm Z f z ank(x + I»"nk) =0
l2=1] 2 €

n—e k=1

kn
(4.6) 19) lim >° f & AF oz + i) = N
|z—1]<e

n—0 k=1

kn
3) lim Z Mnk = A

n—0 k=)

and the same type of remarks following Theorem 8 hold here as well. In particu-
lar, under (3.7), we see that there exists a sequence {e. > 0} such that
SUP_w<z<w |[Fn(z) — F(z)| < d(a)gs(n, e,) and gs(n, €,) approacheszeroasn — .
We could also consider finding an explicit sequence {e,} such that gs(n, e.)
approaches zero as n becomes infinite. In fact if {e, > 0, e» — 0} is such that
for some 7,0 < n < 1, and for some p > 1.

i/p
1 f ,
max _—_ P
1<k<kn 02 < Jz—1] = e x an’c(x + ”'nk)

nk \ 2zl 29

is bounded in n then (under (3.7) and hence (4.6)) gs(n, €,) approaches 0. This
follows the same way as the proof of Theorem 9.

As we have said, the simple nature of the G(z)’s defined by (4.1) and (4.2) is
the reason the error terms for the Gaussian and Poisson distribution are simpli-
fied compared to the general case. Evidently the same type of arguments used in
this section could be used for other limiting distributions, provided that the
corresponding G(z) is of this simple form. Let

ad, z=b

7 Gx) =
@D @ {O, z<b a# 0.

(If a = 0 this G(z) corresponds to the unitary distribution.) This leads to the
following theorem.

TueoreM 11. Let X be a random variable with infinitely divisible distribution
function F(z). Suppose that F(x) has mean p and finite variance a*-? Let the G(z)
of Kolmogorov’s formula (2.1) be given by (4.7). Then if b = 0, F(x) 1s the Gaussian
distribution, and if b = 0, the random variablez’ = (x — u + a’/b%) /b is Poisson
distributed with parameter a*/b’.

This theorem follows readily from an examination of the characteristic func-
tions of X and X’.

5. An example. We now consider a specific example, that is a specific system
of random variables (z,:). The system we define here is the system considered in

2 If X does not have any moments, then a similar theorem holds using the Lévy-Khint-
chine formula for the representation of infinitely divisible distributions [7].
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the classical Poisson theorem, that is x,; is determined by

A
P{xnk=1}=;t

P{xnk=0}=l—-): where )\=0,<§§1>,
n n

k=1,2,---,n. Wedefine S, in the usual way so that S, = 2 + :++ + Tan.
It is well known that the distribution functions F,(z) of S, approach the Poisson
distribution with parameter X. Using Theorem 10 we consider Sup—w<z<w |Fa(z)
— F(z)| . We note that p = A/n and o5 = A(1 — \/n)/n. Assume that n > 2\
and define ¢, = Ar/n where 2 > r > 1. Now consider the terms involved in

g3(ny E,,): ) .
A A
0'33 lglkals}’f G'ik = ﬁ(l - ;L) N hln - XI = 0,
2 L2
|af,-— )\| =%, max (af.,)\)-e,,=)\7r
and

k. 2 2
3 2 ™Y (1 =M= (1 =2
B[, 2t ()= -6 2)

Thus (for n = cy(a)-\) we see (since » may be taken arbitrarily close to 1)
2 3 4
&_&+q§01
—w0<zl® n n? n?

sup |Fa(z) — F@)| < d(a) [

where D is a constant.

We remark that although in the above example the system (z.x) is explicitly
given, by use of the theorems given here bounds can be obtained on M, without
actually knowing specifically the system z.; involved. Finally we remark that
analogous results to those presented here could be obtained by considering sums
St =2m+ -+ + 2w, — A, in place of S, = zu + - -+ + T, Where the 4,
are constants.
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