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0. Introduction and Summary. In many statistical decision problems, the
observations can be summarized in a single sufficient statistic such that the
likelihood ratio for any two distributions in the family under consideration is a
monotone function of that statistic. This paper assumes, accordingly, that the
statistician’s decision is to be based upon a single observation of a random
variable X, whose distribution is given by (1) and satisfies the inequality (2)
in Section 1. As examples of this family of distributions, we have the exponential
family such as the normal, binomial, and Poisson. Other kinds of examples are
given in Section 1.

In connection with the ordinary testing problem, Allen [1] showed that for
the composite testing problem of the one-sided type for the special case of the
exponential family of distributions, an admissible minimax procedure must be
of the form: choose action 1 (accept the hypothesis) if + < zo and choose action
2 (accept the alternative) if x > z,. If + = x,, randomization may be required.
Sobel [2] and Chernoff obtained partial results for the same class of distribu-
tions when the set of decisions is finite.

This paper unifies, extends, and strengthens these results and treats of a wide
variety of stati stical decision problems for which the densities have a monotone
likelihood ratio’

In Section 1 the fundamental definition and preliminaries are introduced.
In particular, the conditions imposed on the loss functions and the densities
are delimited and some simple properties of these quantities are developed.
In Section 2 we establish some of the basic lemmas. Noteworthy are Lemmas
1 and 2 which express the variation of sign diminishing properties of the densities
which possess a monotone likelihood ratio.

The essential completeness of the set of all monotone strategies (see Section
3 for the definition) in the class of all statistical procedures is demonstrated in
Section 3 for the case of a finite number of actions. Section 4 deals with the
problem of determining the form of all Bayes strategies for the statistician.
The important problem of admissibility is studied in detail in Section 5. In
the next section a study of the Bayes strategies for nature is made for the case
of two actions. In Section 7 the complete class theory is carried through for the
case of an infinite number of actions. This is accomplished by employing an
argument involving a limiting procedure from the case of finite actions as
treated in Section 3. The eighth section presents an analysis of the nature of
the Bayes strategies for the case of an infinite number of actions. The final

Received February 16, 1955.
272

]

; ng

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. RIKORS ®

WWww.jstor.org



MONOTONE LIKELIHOOD RATIO 273

section entails a brief discussion of the connection of invariance theory and the
conditions of monotonicity as are required throughout this paper.

Further extensions of these ideas in a different direction, which involves
relaxing the conditions on the loss functions and strengthening the requirements
on the densities, can be found in [3].

1. Definitions and preliminaries for the case of a finite number of actions.
Let the observed random variable, usually a sufficient statistic, be denoted
by z and the unknown state of nature by w. It is supposed that both variables
traverse subsets of the real line, X and ©, respectively. The set € can be taken
as an interval, without loss of generality, as will be shown in Lemma 1 below.
Let the cumulative distribution, when the true state of nature is described by
the parameter value w, have the form

(6] Plz|w) = _[z p(¢] w) du(®) (u is a o-finite measure on X),

where if ; > 2, and w1 > w2, then the density function satisfies

@) P(@1 | w)p(z2 | w2) — p(a1 | wo)p(xz | @) = O.

Without loss of generality, the spectrum of u is assumed to be all of X.

Any distribution of the form (1) which satisfies (2) will be said to possess
a monotone likelihood ratio (M.L.R.). Throughout this paper we shall be
concerned only with such distributions. The most noteworthy such class of
distributions consists of the exponential family of distributions, e.g.,

x| w) = Blw)e™.
Then,
P | w)p(xz | w2) — p(@1 | w2)p(22 | w1) = Blwr)B(ws)le

which is positive if #; > @, and w1 > w; . A more general class of distributions
for which (1) and (2) hold is given in [5]. This class includes as special cases
the noncentral ¢ and noncentral F densities. Other examples of considerable
interest, which occur in many practical situations and possess a M.L.R., are
as follows: du(z) = dz,

(z1—z9) (01—wg) __ 1].e=1wz+=wl
y

nz* 7/ ", 0<z<w >0, na fixed positive integer,
p(z|w) =

0, elsewhere,

n—2

n(n — 1)—x—n—(w— ) 0<z<w >0 naninteger = 2
p(z|w) = w

0, elsewhere,
plz, @) = 37, —0 <z < W, —o <w< o,

e z >

p(z, ©) ={ ’

07 xéw.
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This last distribution is known as the exponential, or waiting time, distribution
and occurs in some models of life-testing experiments.

The first few sections treat the statistical decision problem where the statistician
has only a finite number n of actions. Let the loss function corresponding to the
ith action be denoted by L.(w) when the true parameter value is w. The following
requirements are imposed upon L; :

A. The Li( = 1, - -+, n) are defined throughout Q.

B. The number of changes of sign of L; — L, is at most one for ¢ = 1,

.+, n — 1. (A point wp is called a change point for a function A if in some
neighborhood of wp ,

hw)h(w*) = 0,

whenever & < wo < w*, and for some w; < wo < wi , h(wr) # 0 and hwt) = 0

with w;  w! .) The number N(h) of changes of sign of the function A is the

supn N(h(w:)), ¢ = 1, -+, m, where N(h(w:)) is the number of changes of
sign of the sequence h(wy), h(ws), - -+ , h(wn) With w; < wiy1 and otherwise arbi-
trary.

C. Let S; denote the set of w in @ where L;(w) = min; L;j(w). We assume
for each S; that S; < S, for¢ < j, where § < T means that the part of S not
in T lies to the left of T'.

D. Let each function L; — Ly have precisely one change point, which we
denote by w; ..

Let us define the spectrum of p by

oo = {2 | p(x|w) > 0}.

Then we may observe

Lemma A. If 2 < y < z2and 2 € 0wy, Y £ 0wy, aNA Y € 0wy , then w1 < w2 and
z 2 0., and similarly with “>” for “<”.

Proor. Note that p(z | w1)p(y | wz) > 0 = p(z | w2)p(y | 1), and since z < y,
we must have w; < wz. Also 0 £ p(z| we)p(y | 1) — Py | we)p(z | w1), but this
can happen only if p(z | @1) = 0. A similar argument holds for the opposite sign.

CoroLLARY. The set o, for any w is a relative interval in X, i.e., the inlersection
of an interval and X.

A direct consequence of Lemma A is

LemMA B. If w1 < we, then ou; < 0w, -

DEFINITION. © is called statistically connected if whenever w < ' there
is a sequence w = wo < wy < +-+ < wn = &’ such that

P(ouwipy | wi) >0 fori =0,1, ---,n — 1.

We see that if @ is not statistically connected, it can be decomposed into
statistically connected sets Q.. If X, = U.@, 0o, then P(X.|w) is zero if
w 2 Q. and one if w & Q. Thus, for statistical purposes, we may as well deal
with each Q, separately, since from any observation z we can recognize in
which X, it lies and hence in which Q. our unknown parameter value lies. It
is also clear from this that, without loss of generality, Q. can be considered an
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interval. Throughout the remainder of this paper we assume that Q is sta-
tistically connected.

LemMa C. If w < o and P(o. | w) > 0, then there exists a constant K such
that for all  and for all 6, w < 0 < o,

p(x|6) = Klp(z | w) + plx| )]

Proor. Since (by the corollary to Lemma A) o, and ¢, are relative intervals,
the hypothesis yields the existence of an interval I such that ¢, n o, = I'n X.
Moreover, as P(o, n oo | w) > 0, there exists an z and a y > z (fixed from
now on) in o, n gw such that p(z | w), p(z| '), p(y | w), and p(y | &) are all
positive. Let A = (—,z), B = [z,y],C = (y, »)and letw < 6 < o'. Ifzis
in 4, then

() plz|0) < %'—‘” = @] w),
and if z in C,
(b) p(z|6) < ’L(—z;!g/—)l”—w%i"—) = dO)p| ).

Also if zisin B,

(© p(z]6) = ﬂ%%%o;_lo_) = c@plz| )
and
plz] )p(y [6) _ o
(d) p(z]0) = 2] ) d®)p(z| o).

We obtain from (c) 1 = P(B|6) = c(0)p(B|w) or ¢c(§) < 1/ P(B|w) for all
w £ 6 £ . Similarly, from (d) it can be inferred that d(6) < 1/ P(B | «').
Now if zisin B

p(z| w)p(y | 6) o) Pwl0 ply|)
pl0) = (Y| w) kAl )p(ylw') p(y|w)

(e)
< dO)ap(e| @) = prpTy el
where @ = p(y | &) / p(y | »). Finally, (a) and (b) become for z in 4
1
() p|6) < PBa) Pz | w),
and for z in C

1 ’
(g) P(zlﬁ') §WBI—;,‘)Z7(Z|CO)

The three inequalities (e), (f), and (g) readily imply the result of our lemma.
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CoroLLary. If Q is statistically connected and 6,, 6, are in @ with 6; < 6,,
then there exist w;, -+, w, in Q@ and a constant K such that for all z and all
6 <6<6,

pe|6) = Kgp(zlw,-).

This result will be used in section 6.

2. Fundamental lemmas. The following lemma is a fundamental tool to be
used extensively throughout the sequel.
LemMma 1. If h changes sign at most once, then for F a measure,

o) = [ pa| h(w) AP

changes sign at most once.

Proor. Let wo denote a change point for h. Suppose for definiteness that
h(w) £ 0 for w < woand h(w) = 0 for w > wo. Define hi(w) = h(w) for w > wo
and hy(w) = 0 for w £ wp and he(w) = M(w) — h(w). Let

gi(@) = f p(x | Whi(w) dF (w).

Clearly,
gi(r) = 0.
Consider for z; >

gl(flh) gz(xz) - gz(xl)gl(xz)

3 wy o
B[] o 9p(es 9  ples ol N0 dF ) PO 2 0
on account of (2). As a consequence of (3), we cannot have g(z;) > 0 while
g(z1) < 0. Otherwise, 0 < gi(z1) < ¢g2(z1) and 0 = go(m2) < g1(22). These last
two inequalities lead to an obvious contradiction of (3). Let xo be the supremum
of the set of all z* such that g(x) £ Oforz < 2* (— = 2y = ). In view of
the facts established above, we find that g(z) < 0 for z < z and g(z) = 0
for x > o . This clearly implies that g changes sign at most once Q.E.D.

ReMARK 1. It is useful to note that g changes sign in the same direction as
h if it changes sign at all.

From now on, unless stated to the contrary, when a function changes sign,
then it will be assumed that the function changes from nonpositive values to
nonnegative values as the independent variable increases.

A careful study of the proof involved in Lemma 1 also shows

COROLLARY 1. If g(z0) = 0, but g1(x0) = g2(x0) > 0, then g(x) = 0 for x = o
and g(x) < 0forx < xo.

In an analogous manner by defining ¢; and ¢, from ¢, we obtain
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Lemma 2. If ¢ changes sign at most once in X, then
V) = [ pe| o) dute)
changes sign at most once. Moreover, if ¥ (wo) = 0 while
e = [ 9| edut) > 0

where Y(w) = Ya(w) — Yo(w), then Y(w) = 0 for w = woand Y(w) < 0 for w < wp .
CoROLLARY 2. Assuming the integrals are well defined, then the functions

0:@) = [ p@|@)Liw) ~ Lualw)] dF()

with F a measure, change signs at most once. Moreover, if some w in Q, where
L; — Ly 5 0, belongs to the spectrum of F and strict inequality holds in (2),
then g; is zero at most once.

Since L:(w) satisfy assumptions B, C and D, an application of Lemma 1 im-
plies the statement of this corollary.

ReMaRk 2. If ¢, = X for all w in @ and strict inequality takes place in (2)
for z; in X and w; in @, then the proof of Lemma 1 shows easily that ¢ can have
at most one zero, provided F does not concentrate its full mass in the set of
zeros or change points of 4. A similar comment can be made concerning Lemma 2.

Lemma 3. Let 0 < ¢* < 1 and [p(x | @)¢*(x) du(x) = ¢(0 < ¢ £ 1). There
exists an xo and 0 = \o =< 1 such that if

1, r < X,
(3a) $'(@) =1, o= @
O’ x > Zo,

then
= for w = @,
@) f p(z|w)lg* — ¢ du(x){é w <

If 0o = X for all w, then the monotone strategy of the form (3a) satisfying (4) is
unique except for at most one point.
Proor. Case 1: 0 < ¢ < 1. Let zo be a such that for

zo+ . zo—
[ relda@zez [ oal due),

Such a value clearly exists. Define Ay(0 < \o < 1) so that

)

(4a) [:0— (x| @) du(x) + Nop(xo | D)ufze} = ¢

(Ao represents the amount of randomization necessary at z, for equality.) The
randomization is only necessary When u{zo} > 0. In the case when uf{z,} =
we always take Ao = 0. Define ¢’ in terms of o and Ao as in (3a). The number
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of changes of sign of ¢ = ¢* — ¢° is at most one. Furthermore, ¢ = ¢1 — ¢,
where ¢; = ¢* for z = zoand ¢; = O for z < x, while ¢ = ¢1 — ¢ is zero for
x> x. If [p(x]|@)¢i(x) du(z) > 0. then by virtue of Lemma 2 the result (4)
is confirmed. Consider now the possibility of [p(x | @)¢:i(x) dz = 0. It follows
from Lemma B that o5 = X n [z, , 22], where 21 < 2o < 7, and ¢1(x) = ¢(z) = 0
for zy = ¢ < x» . Since

[ ol @le* = ¢ du@ =0,

we must have ¢*(z) = 1 forz; £ 2 £ 2. As 0w < 05 forw < @ and ¢ = ¢*
when z = 20, we conclude that

[ vl = ) dute) < 0.

On the other hand, for w > &, 6, > o5. As¢*(z) = 1 for z; £ 2 < 20, we infer
that ¢*(z) = ¢’(z) for £ = z; and thus

[ 2106 — O@ @ = 0.

This completes the proof of Case 1.

Case 2: ¢ = 0. Define ¢° = 1 for x < x;, =0 for x > z;, where oz =
X n [z1, 2], while ¢"(z1) = 0 or 1, according as ; is in oz or not. The condition
¢ = 0 implies that the set S = {x|¢*(x) > 0} is disjoint from ¢ . Again, for
w <@, 00 < 05,80¢ = ¢*forxz < . Consequently,

[ pla) @ — ) du) <0 )

If w > &, then ¢, > o5, and since ¢*(x) > ¢"(z) whenever £ > z;, we con-
clude that

[ pa]6)6* — ¢ dut@) = 0 0z 6

The proof of the last part of the lemma is obvious.

The greater detail in the above proof is necessitated only by the zeros possible
in (2). If the conditions of Remark 2 are satisfied, the conclusion of (4) is im-
mediate by virtue of the construction in (4a) and Lemma 2.

3. Essential completeness. A strategy for the statistician is a collection of
functions ¢ = {¢:, ¢ = 1, ---, n} depending on the observed variable where
é:(x) equals the probability of taking action ¢ when x was observed. Of course,
0 < ¢i(x) £ 1and D 1 ¢i(x) = 1. A strategy ¢ is called monotone if there
exists a set of numbers z;(x; £ 2,1t =0, -+ ,n), 2 = —,and Top = + )
with

¢i(x)={l, TS T < T, =1, n

0, z<x; o > Ziq1,
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Randomization for a monotone strategy thus can only occur at the boundary
values x; which describe the particular monotone strategy. Note that if ; = x4
and ¢:(z;) = 0, then action 7 could never be taken according to strategy ¢.
We shall frequently describe a monotone strategy merely by the set of boundary

values (x;).
Let w; denote the change point of L; — L, . By assumptions C and D we
have that w; < wipn,2=1,2,---,n — 1.

LemmMa 4. For any strategy ¢ = {¢:} there exists a monotone strategy ¢’ = (¢}
such that

®  [rela (e - 5 ew) de {gg or o

Proor. For each i with w = w; and ¢* = 21 ¢;(x) by virtue of Lemma 3
there exists a strategy

Wi,y
Wi,

IV 1IA

! 1, r < z;,
vi@) =9\, T =T
0, x> i,
such that
$ ZO, é 7y
© [relo (4@ - Low@)ae  {Zpe5 e

As w11 2 wi, () yields

02 [ 56 | () = 2 00)) duto)

) i+l
2 [ plel v (4a) — 2 4e)) .
Since
1, r < Tiy1,
V(@) =4 N, T = Tiga,
0) z > Tiy,

and on account of (6) and (7), we see that ¢:41(z) = ¢:(x) and z;41 = ;. Define
¢i1(x) = Yip(r) = ¢i(2),7 = 0,1, .-+, n — 1, where we have set yo(z) = 0.
It is an easy matter to verify that ¢’ = {¢¢} is a monotone strategy characterized
by the boundary points z; and that the inequalities (5) are satisfied.

TuroreM 1. The collection of all monotone procedures constitutes an essentially

complete class of strategies.'

1 For the exponential case, this theorem was proved in [4].
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Proor. Let ¢ = {¢:} denote an arbitrary strategy, then the risk when nature’s
choice is » becomes

oo, 8) = [ 2] ) T d(@Lile) dua)

= [ pe 19 { B 6O = L] + L) o)

Writing Li(w) — La(w) = D j=i [Lij(w) — Lju(w)] and interchanging orders
of summation, we get

n—1

® oo 9) = [ 2o 1) {5 0 L) B 80} 4 Lule) .

We seek to find a monotone strategy {¢°] so that p(w, ¢°) < p(w, ¢). The
difference becomes

p(w, ¢) — plw, ")
n—1 i [
9 = ; [Li(w) — Lipa(w)] f p(z | w) (,2.; ¢i(x) — ; ¢§(x)> du(z).
By Lemma 4, the monotone strategy ¢)(z) is constructed so that

But, also, by assumption

2 0’ iy
Li(w) — L,-+1(w){2 0 : Z Z
= H L 2

Conseoquently, every term in the sum of (9) is nonnegative and hence p(w, ¢) =
p(wy é).

ReMArK 3. It is important to observe for later use that the monotone strategy
¢’ constructed to dominate ¢ depends only on the specified points w; and in
no other manner on the loss functions L; .

More precise results can be obtained if the number of actions n equal 2.

TaeoreM 2. Let ¢, = X for all w and suppose Ly — L, has precisely one change
point w, and no other possible zeros, then every monmonotone procedure ¢ =
(61, 1 — ¢1) is dominated by a unique monotone strategy.

Proor. In order for any strategy ¢’ to dominate ¢, then according to (9)

(10) 0 £ p(w, ¢) — plw, ¢") = [L1(w) — La(w)] f p(x | @) (g — ¢1)(x) du(z).
Since both factors must change signs at the same point w1, we must have
>

[ oo e = @ { 28

Applying Lemma 3 leads immediately to the conclusion.

wgwly
w = w.
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4. Bayes strategies. In this section we further assume that L; — L; (j > %)
has precisely one sign change. Also, we suppose that L; possess enough smooth-
ness properties to ensure the existence of all integrals involving these quantities.
Furthermore, assume that o, = X for all w. Let F denote a distribution function
possessing more than one point in its spectrum. Define

M) = [ 5 | W) — Li(w)) dF () G > 9.

Let us suppose that the relation (2) holds with strict inequality. By virtue of
Corollary 2, \;; changes sign at most once in the direction of negative to positive
values and A;; has at most one zero. Therefore, if F' represents a given distribu-
tion for nature, then action ¢ is preferred to action j whenever \;i(z) < 0, and
r was observed, while the reverse situation holds when A;;(z) > 0. If \i;(z) = 0,
then for that observed z the statistician is indifferent in choosing between action
7 and j. Summarizing, action ¢ is chosen over j provided z < z, and action 7 is
desired over action ¢ when x > x, for some appropriate z, (zo is the change
point of A;;). This analysis is valid provided j > 7. Therefore, for a given distri-
bution of nature the optimal Bayes strategy requires that if z is observed and
action ¢ is favored over some other action j(j > 7), then for all larger  the same
is true. This leads readily to the result that if action 1 is ever taken, then it
must be taken when z < 2, for some suitable z; . Continuing the same reasoning
yields the existence of values z; such that

_ 1, T <z <z,
¢i(z) = {0, z<xiy Oor T> x4,
(xo = — =) represents the unique Bayes strategy against F. This optimal

monotone procedure is unique with the exception of n — 1 possible values
{r;, 2 = 1, -+, n — 1} where randomization for the statistician may be al-
lowed. Summing up, we have established

TuroreM 3. If F is an a priort distribution for nature which does not concentrate
its full mass at a value w, where Li(w) = L;(w), for some ¢ < j, and L; — L; changes
sign precisely once, then the Bayes strategy ts monotone and uniquely determined
except for at most n values of the variable x.

(It was assumed here that ¢, = X, and that strict inequality holds in (2)).

Examples can be given of Bayes strategies in which some actions are never
taken. Let Ly(w) = o — 6 for w > 6;, 0 elsewhere; Ly(w) = 6; — w forw < 6;,
w — 6 for w > 6, 0 elsewhere; Liy(w) = 6, — w for w < 6, , 0 elsewhere; where
b= 2,00 = 4,p( | ) = ¢, du(@) = ¢ / /2 d5, X = @ = (=, ).
If F concentrates at 5 and —5 with probability § each, then it can be easily
shown that the Bayes strategy has the form that action 1 is taken if ¢ > 1

. . —10; . .
and action 3 is taken when ¢~ < 1. Here action 2 is never taken.

6. Admissibility of monotone procedures. To determine when the monotone
procedures form a minimal complete class is, in general, very complicated. In
this section we obtain several results which provide the answers to the question
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of admissibility in some specific circumstances. These examples point out the
dependence of the question of minimality on the loss functions involved.

1. Admissibility for n = 2 actions. Throughout this section we assume that
o, = X and that for z; > x5, w1 > wy, 2;in X, and w; in Q,

(@1 | w)p(@e | we) > Py | wo)p(az | wr).

Ticorem 4. If the loss functions Ly — L. change signs precisely once with wq ,
the change point, such that wo 1s interior to @, and Ly — L, possesses no other possible
zero in the neighborhood of wy except possibly wo , then every monotone procedure s
admissible.

First we establish

LemMma 5. Under the assumptions of Theorem 4 every monotone strategy tnvolving
both actions is unique Bayes (except for at most one value of x) against a two-point
distribution F for nature. Moreover, the two points wy and wy can be prescribed
arbitrarily subject only to the condition vy < wo and we > wo .

Proor. If w; < wp and w: > wp, then by hypothesis Li(w) — Ly(w) < 0 and
Li(ws) — La(wy) > 0. Let ¢° = (41, 1 — ¢7) denote a monotone procedure deter-
mined by the point xo in X, viz.,

1, T < X,
(11) 1 = { N\, T = I, 021, 7o interior to X
0, T > %,

Determine p by the relation
(12) pp(@o | w)[(Ln — Lo)(wr)] = (1 — w)p(2o | w2)[(Le — Ly)(wn)].

It follows from (12) that 0 < u < 1. Let F be the distribution concentrating
at ; with weight x and at w with weight 1 — u. Equations (8) and (9) yield
the result that

0@) = [ 2z | WIx(e) — La(w)] dF(w)

vanishes for £ = 2. By Corollary 2 and Theorem 3, we infer that g(x) > 0
for z > zp and g(z) < 0 for x < 20 . This means that the unique procedure for
the statistician in minimizing the risk is to take action 2 for > xo and action 1
for x < o . If z = =, then either action yields the same expected return.

Proor oF THEOREM 4. It will now be shown that the monotone strategy
described by (11) is admissible. To this end, if ¢* is a strategy dominating ¢
for all w in ©, then on account of Lemma 5, ¢* = ¢’ except possibly for z = o
Let the value of ¢*(m) = A*. Observe that for all w

0 = p(¢* @) — pl, w) = P(@o| W)A* — N)[Li(w) — La(w)lu{zo}-

Since Ly — L, changes sign in the interior of @ and our assumptions imply that
p(x0 , w) > 0 except at the left endpoint of @, \* — Nu{ze} = 0, so that p(¢*, w) =
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p(¢, w) for all w. The admissibility of the special monotone strategies¢ = {1, 0}
and ¢ = {0, 1} is a trivial fact to establish. This completes the proof.

II. Admissibility for n = 3 actions. The objective here is to study the case of
3 actions. Such problems occur in many practical situations and are of interest.
For instance, the two-sided testing problem is of this form where the loss for the
alternative hypothesis depends on which side of the hypothesis the true param-
eter value lies.

Throughout the remainder of this section we specialize the class of densities
to the exponential family, i.e., p(z | w) = B(w)e*".

The following further restrictions are placed upon L, , L, , and L; .

AssumptioN E. It is required that L;, ¢ = 1, 2, 3, do not grow exponentially
and that they do not simultaneously in any region exponentially, approach zero.

Lemma 6. If Assumption E is satisfied and Q contains infinitely many w values
tending either to + or — infinity (for definiteness let w; — + o belong to Q), then
every monotone strategy tnvolving all 3 actions is unique Bayes (except for at most
two values of x) against a three-point distribution F for nature.

Proor. Let w1, ws, and w; be chosen from the sets S;, S;, and S; (see con-
dition C) such that (L; — Ls1)(w;) # 0 for ¢ = 1,2 and j = 1, 2, 3. Consider
the following system of equations in the unknowns \;, Az, and A; with z, > z;
prescribed and w; , w;, and w; selected as above.

MLy — L2)(wn)e®™ 4+ No(Ly — Lo)(we)e“®™ + Ng(Ly — Lg)(ws)e“*™ = 0,
M(Le — Lg)(wi)e®™ + No(Ly — Lg)(wn)e“*™ + Ng(Lz — L) (ws)e®** = 0.
The determinant

(Ly = Lo)(wpe“™  (Li — Ly)(wp)e“®™ (L — Ly)(ws)e®*™

Ly — Lg)(w)e**™  (Lp — Lg)(wp)e“*™ (Ly — Ls)(ws)e™*™

ax [22) a3

(13)

has the property that when the vector a = (a1, az, a;) is equal to the first or
second row vector, then it vanishes. From this fact, we deduce that \;, A,
A3 can be chosen proportional to the co-factors of the last row, respectively.

Noting that (Ll - Lz)(wl) < O, (Ll - Lz)(wz) > 0, (Ll - Lz)(wa) > O,
(Lz - L3)(w1) < O, (Lz - L3)(w2) < O, and (Lz - La)(ws) > O, we readi]y find
that the co-factors of a; and a3 are positive. The co-factor of a, is

—[(Ln = Lz)(en)(Le — Lg) ()™ 7% — (Ly — La)(ws)(Le — L) (wr)e” 5]
— e+w1z2+w3z;[(L2 _ Ll)(wl)(Lz _ L3)(w3)e(waW1)(zz—¢1)
= (I — Lo)(ws)(Ls — Ly)(wr)].
In view of Assumption E, if w; is chosen sufficiently large then this last expres-

sion is positive and hence A\ > 0. Put u; = k\; / B(wr), w2 = KkX\z / B(wz), and
us = k\s / B(ws), and normalize u; by suitable choice of k so that D u; = 1
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with p; = 0. Let F be a distribution concentrating u; at w; ; then equations (13)

become

f ¢*"8(w)[La(w) — Lo(w)] dF(w) = 0,

[ @) — L) aF() = o.

Corollary 2 and Theorem 3 imply that

s >0, x> X1
fe ﬁ(w)[Ll(w) - Lz(w)] dF(w){ < 0’ r < Ty
and
wz >0, T > Ty
f ¢*“"B(w)[Le(w) — Ls(w)] dF (‘*’){ <0, x < 2.

Consequently, the optimal procedure is to take action 1 when x < z;, action 2
for z; < xz < z2, and action 3 for + > x.. Indifference exists between actions
1 and 2 for + = x, and between actions 2 and 3 for £ = z, . Thus, if a monotone

strategy ¢ = {¢1, ¢z, ¢} with

1, z <z, 0, z < g,
¢1 = }\1, x = 7, ¢3 = 1, Ty < zx,
0, T > T, >\3, = X3

is prescribed, then we have constructed a three-point distribution F against
which the given ¢ is the unique Bayes strategy with the exception of two possible
values for the random observation z. The proof of the lemma is hereby complete.

TueoreM 5. Under the assumptions of Lemma 6 every monotone strategy in-
volving all 3 actions is admissible.

Proor. If ¢* is any strategy which dominates the given ¢, then by Lemma 6
¢ = ¢* except possibly at * = z; and x, . Suppose u{z:} or u{x,} is positive
(otherwise, Theorem 5 is established). By (9)

0 = p@g*, @) — o9, ©) = B (e — Mufw}La(w) — La(w)]
+ 05 — M)p{we} [La(w) — Ls(w)]}.

Letting w — 4+ and observing that the second term dominates, we conclude
that (\3 — A)u{z:} = 0. Examining w in S; on account of (14) compels
(AF — M)u{z:} = 0. Finally, evaluating relation (14) for w in S,, using the
established facts that (A5 — \)u{zs} < 0and (AF — N)u{z:} = 0, yields that
O — Mp{m) = 0 = \F — A)u{x.}, whence p(¢*, w) — p(¢, w) = 0 for all
w, and the proof is complete.

The above theorem does not treat the special monotone strategies which
involve only two possible actions. These strategies will now be shown to be

(14)
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admissible For. instance, suppose ¢ represents a monotone strategy which
involves only actions 1 and 3. Precisely, let ¢1(x) = 1 for 2 < 21,0 for z > 2;;
és(x) = 1forxz > 2;,0forz < z;;and ¢, = 0. Suppose¢° is a monotone strategy
which dominates ¢ determined by the critical values x7, 2 . Three cases will
now be considered.

CasE 1. 2§ < 2, < 3. In view of (9)

02 68,0 = o) = ~[La(e) — Taw)lBCa) [, ¢ dua)

+ ale) = T(@I() [ e duto).

Since the second term dominates as w — -+ «, we arrive at a contradiction.
CasE 2. 2; < 2] < z3 . By (9)

0 2 p(¢", @) — o, @) = [La(w) — La(w)1B(w) fz s du(z)

+ [a(e) — LIS [ o du(a).

However, this inequality is impossible for w in S;.

CasE 3. #§ < 23 < ;. This case can be handled similarly to that of case
2 above by examining w in S; .

The other types of monotone strategies involving at most two possible actions
are treated similarly. This argument can also be extended to yield the conclusion
of Theorem 5. The result of Lemma 6 is, however, stronger and possesses inde-
pendent interest.

We now produce an example to show that when the state space of nature w is
restricted to a finite range, the conclusion of Theorem 5 is not valid. Let ¢ =
(61, @2, ¢3) be a monotone strategy given by ¢1(x) = 1 on z £ 1, 0 else-
where; ¢2(z) = 1 onz; < « < 2, and zero elsewhere, with¢; = 1 — ¢ — ¢2.
We desire to construct a monotone strategy ¢° = {¢1 , ¢ , ¢3} which dominates ¢.
Let ¢° be determined by the critical values z{ and 23 with 27 < z; and 23 > ..
Consider, according to (9),

p(¢", @) — p($, )
= 8 { (1 — L@ [ 186) — 60 o

(15) U= 1) [ 16+ 8 = 1 — ol duta)

- ﬁ(w){ ~(Ix ~ L)) [ e dua) + (s — L)) [ g dm)}.
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In the region S:, (15) is automatically negative. In region S;, we choose the
loss functions so that

[(Ly = Ly)(w)| j;:l €™ du(z)
f 3 ™ du(z)

r2

| (Le — Ls)(w) | >

and Li(w) > Ly(w). This can be done since w ranges over a finite interval and
hence the integrals are continuous and bounded away from 0 and o . Similarly,
we determine in S; the loss functions L, L,, and L; so that

e (e~ W] [ dut@)
L1 - L2 w)| > - z1 =2
fz , € du()

1

With these determinations of the loss functions. L;, L,, and L;, we see that
(15) is always negative for the region of w under consideration. Thus ¢ is not
admissible. Intuitively, for any monotone strategy defined by critical values
z; and 73 , loss functions can be chosen so that one wants to take action 2 more
often than prescribed by the given strategy. An example, where the natural
range of the distribution is a finite interval and where the above construction is
valid, is obtained by setting du(z) = ¢”'*! dz. In connection with Assumption E,
examples can be constructed to show that the growth restriction is essential in
order to ensure the validity of Theorem 5.

III. Admissibility for n = 4 actions. Our next task is to analyze the case of
four possible actions. Again assumption E is to hold.

Lemuma 7. If the parameter space w contains arbitrarily large values of w tending
to + and — infinity, then every monotone strategy involving all four actions is
unique Bayes, except for three possible values, against a distribution F(w) involving
four points.

Proor. Let a monotone strategy ¢ be given, defined by the critical dividing
numbers z;, T2, and 23(x1 < 22 < x3). Choose w; < w; < wy < ws from the
four regions S;, S:, S;, and S;. Consider the system of equations in the un-
knowns A;, A2, A3, and A\ given by

With Ll(w) < Lg(w).

4
(16) 2 M(Li — L) (wpei™ = 0, i=1,23.
j=1

As in the proof of Lemma 6, the solutions \; are proportional to the co-factors
of the last row in the determinant

I(Ll — L,) (wl)ewlzl (L, — Ly) (wp)e“*™ - .. (Ly — Ly)(wge“**
i(Lz — Ls)(wy)e“*™ (L, — La)(lﬂ’z)emzz2
(Ls — L) (wn)e“™™ «++ (Ls — Ly (we)e®

i
‘

| a1 [12 as Ay
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Choosing w; sufficiently large negatively and w, sufficiently large positively,
the signs of the subdeterminants are determined by the signs of the principle
diagonals. It readily follows that by such a choice of w; and ws we get Ay > 0,
A2 > 0, A > 0, and Ay > 0. Define pu; = k\;/ B(w;) with X u; = 1 and F a
distribution concentrating u; at w;. It is easy to see by (16) that the given
strategy ¢ is unique Bayes against F' with the exception of three possible values
of z.

TureoreM 6. Under the conditions of Lemma 7, every monotone stralegy vs ad-
masstble.

The proof can be patterned, with some slight modification, after that of
Theorem 5, and the remarks following Theorem 5. We omit the details.

The assumption in Lemma 7 concerning the parameter values w extending to
+ o is essential. If this condition is removed, an example can be produced
which permits w to range to + «, and is bounded on the left such that suitable
monotone strategies are not admissible. The construction is similar to that
shown in connection with three actions where we make use of the exponential
for w — . This example will be left as an exercise for the interested reader.

In the case of 5 actions, even if the parameter range for w is the full infinite
interval, loss functions can be defined so that not all monotone procedures
are admissible.

IV. Admissibility for n actions. We now present some examples of general
interest for n actions where the monotone strategies are all admissible. Let the
loss functions L; satisfy the conditions of A, B, C, and D and the further property

a7 Li(w) = Lip(w) forweS; or Siy.

Of course, by condition D, L;(w) < Lj{w) for ¢ 8;. We shall now show that
every monotone strategy ¢ = (¢:) is unique Bayes except for n — 1 possible
values against an n-point distribution. Indeed, select vy < wy < w3 < + -+ wa,
and w; in S,‘. Note, Li(wi) - L,~+1(w,-) < 0 and L,-(wi.,.l) - L,~+1(w,-+1) > 0.
Let the strategy (¢:) be described by the critical values z;(x; < zi41). Consider
the system of linear equations in the unknowns A; :

(18) PNLi = L) (w))e™ = 0, i=1,-,n— 1.
j=1

The solutions \; are proportional to the co-factors of the last row of the deter-
minant

(L1 — L) (@)et™t  (Ly — La)(wn)e”?™! 0 . 0
0 (Lg — L) (we“®™®  (Lg — L) (wi)e"®™®  --- 0
0 (Ls — Ly)(wp)e 3

0 0 0
: : : (Lnz — Lay) (wn ) en—1"n-1

0 0 0 e (Ln—l - Ln) (wn)ew"z"_l

a az as oo Qn
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The zerosappear in this determinantal expression asa consequence of (17). We
deduce easily that \; are all of one sign. Put u; = k\; / 8(w:) > 0and D p; = 1.
Define F to concentrate weight u; at ;. Equations (18), Corollary 2, and
Theorem 3 imply that ¢ is unique Bayes, except for n — 1 possible values of x,
against F(w). Thus we have established

TueoreM 7. If the loss functions L; satisfy the additional property (17), then
every monotone strategy ¢ = {¢:} ts unique Bayes, except forn — 1 values of z,
against a distribution concentrating at n points w;. The parameter values w; can
be chosen arbitrarily provided only that w; tsin S; .

TueoreM 8. Under the conditions of Theorem 7, every monotone strategy s ad-
misstble.

Proor. If ¢ = {¢:} is a monotone procedure determined by the critical values
zx; £ :41), then by Theorem 6, ¢ is Bayes against a distribution concentrating
on n values. If ¢* is a monotone procedure which dominates ¢, then by Theorem
7, ¢ = ¢* except possibly for x = z;. Let ¢*(z:;) = of and ¢(x;) = a;. Con-
sidering w in S; we find, since

0 < plg, ©) — p(@*, @) = Blw)e ™ (e — af)Li(w) — La(w)lu{z},

that (a1 — af)u{z:} < 0.
Examining the risks for w in S;, we get

0 = B(w) (e (a1 — o) La(w) — Lo(w)luf{a} + e“**(ar — 03)[La(w) = La(w)lu{zs} }

which implies as (&1 — af)p{z:1} < 0 that (e — a3)u{zs} < 0. Continued ap-
plication of this analysis by successively looking at win 8; (¢ = 1, --- ,n — 1)
we conclude that (a; — of)u{z;} < 0. Finally, for w in S, , we conclude that
(ny — oam)ui{zs} = 0 and working back we find successively that
(a; — a¥)u{z;} = 0. Consequently, p(¢, w) — p(¢*, ) = 0 for all w, and the
proof of the theorem is complete.

An important application of Theorem 7 arises when we consider the situation
where Li(w) = a for w £ S; and Li(w) = 0 for w £ S;. In other words, the sta-
tistician is penalized a fixed amount if the wrong decision is made independently
of the action taken, with zero loss if the correct decision is made. Then the
conclusion of Theorem 8 can be stated as follows: The collection of all monotone
procedures form a minimal essentially complete class.

This section is closed with the further enumeration of some examples of
minimal essentially complete classes. In an n action case if Liw) = |7 — 7|
a for w in 8;, then the collection of monotone procedures constitutes a minimal
essentially complete class. This is a situation where the penalty of a wrong
decision is proportional to how far the decision is from the correct action. The
proof of this last fact is omitted.

6. Minimax strategies for nature. In this section we characterize the form of
the minimax strategies for nature in the case of two actions. The underlying dis-
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tribution, as before, has the form
Pale) = [ p|e) dute),

where p satisfies the condition given in Section 1. We now require further that
p(x | w) is continuous in w for each fixed x. The loss functions L; and L, have
the properties A through D (see Section 1) and are in addition continuous.
Without loss of generality, they may take the form L;(w) = Oforw < 6, Li(w) > 0,
w > 6, while Ly(w) > 0 for v < 6, Ly(w) = 0, w = 6, where 6 is interior to Q.
Let p(¢, F) denote the expected risk when nature chooses a distribution ¥, and
the statistician follows the procedure ¢. Lebesgue’s convergence criterion, in
view of the continuity assumptions on L., implies that p(¢, w) is continuous
in w. Let the smallest interval containing @ be denoted by [a, b]. The points
a, b may or may not belong to @ and the values d=« are not excluded. If a
does not belong to ©, then we assume that for any monotone strategy ¢ for
which ¢ # 0,

(19) tim Z(w) [ (1 = 6(0lp(¢] @) dut) = 0.
Similarly, we assume that if b does not belong to @, then for any monotone
strategy ¢ with ¢ #£ 1,

(20) lim Z(w) [ ¢t ) duty = o.

If a belongs to @, then we do not impose condition (19). A similar statement
applies to the endpoint b.

If L; and L. do not grow exponentially and the family of distributions belongs
to the exponential class, then it is easy to verify the validity of conditions (19)
and (20).

Consider the game G, defined as follows: Let w range over the interval [w, , wx]
where w, < 8 < wx . If a belongs to @, we take w, = a and if b belongs to @
take wi = b. Otherwise let w, — a and wi — b. Let the strategy space for the
statistician consist of all monotone strategies and let the strategy space for
nature $, consist of all distributions on the closed interval [w, , wx]. The payoff
is the risk p(¢, F) which is continuous in ¢ and in ¥ in the usual weak topology
imposed on these sets of strategies. The reason we can restrict ourselves to the
monotone procedures in the consideration of the game @, is a consequence of
Theorem 1. The following facts will be used in the course of the subsequent
analysis: Suppose ¢.(z) — 1 for every «, where ¢.(z) = 1,2 < z,, = 0,2 > =,.
For any set of w where w £ @ n [®, @*] = W with both & and &* interior to @, it
follows that

(21a) [t = 6@ |w) du@)
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converges uniformly to zeroin W asr — « . Similarly, if ¢,.(x) — 0 where ¢,(z) = 0,
z <z, =12 > z,, then for any set w of the form W, it follows that

(21b) [ @] w) dutz)

converges uniformly to zero.

That we obtain pointwise convergence in (21a) and (21b) follows from
Lebesgue’s convergence criterion. The uniformity of the convergence can be
secured with the aid of the Collorary to Lemma C in Section 1.

Since the spaces of strategies are both compact, it is a well-known result
that the game is determined. Let ¢9 and Fg denote minimax strategies for the
statistician and nature respectively. If v, denotes the value of the game, then

plps , F) £ v, all Fin 8, ,

(22)
p(®, F§) = v, all monotone ¢.

Let T, denote the set of all w satisfying p(¢e , w) = v, . The set T, cannot be
fully contained in either of the intervals IT = [w,, 6] or I7 = [0, wr]. Indeed,
if T, C [6, wxl, then since the spectrum of Fy must lie in 7', by examining ¢ =
(¢1, 1 — ¢1), where ¢, = 0, we secure, using the fact that Ly(w) = 0 for w = 6,
that p(6, F¢) = 0, an impossibility. Hence, T', contains points of both intervals
It and I7 . This last analysis also implies that the monotone procedure ¢; is
not identically 1 or 0. Choose w; in IT n T', and w; in I7 n T, . In view of Lemma
5, there exists a distribution #"(w) with spectrum consisting of w; and ws such
that ¢o is Bayes against #”. Since w; and w. belong to T, we get that v =
p(¢6 , F*) = ming p(¢, F™). Hence F" is a minimax strategy for nature involving
only two points. Allow n to go to infinity and select a limit monotone strategy
¢o = lim;,o¢¢’. It will now be shown that ¢° = (¢5, 1 — ¢7) cannot have
#1 = 0 or ¢; = 1. First note that by choosing any two-point strategy F(w)
for nature, it follows that v, = a > 0. Consider the case where ¢; = 1. If z,,
represents the critical dividing point for the strategy ¢, °, then x,; must converge
to the right-hand endpoint of X. But,

p(65%,0) = In(w) [ (1= 62| 0) du(e)

tends uniformly to zero for w < 6. This is a consequence of assumption (19)
and equation (21a). As v,; = a > 0, we deduce for n; sufficiently large that
T., must lie wholly in the interval I2*, contradicting the fact established above
that T, intersects both I7% and I3*. A similar argument using (20) and (21b)
eliminates the possibility that ¢3 = 0. This completes the proof of the assertion
made.

In view of conditions (19) and (20), we find easily that p(¢’, w) >0 asw — a
and b, if @ and b do not belong to ©. It is clear that there exists infinitely many
n: which we enumerate through m such that ¢ < ¢} or ¢I' = 1. Without



MONOTONE LIKELIHOOD RATIO 291

loss of generality, let us consider the case where ¢7' < ¢1 . It follows now that
for all m > my there exists a subinterval U = [o’, "] depending on ¢ < a with
o', " interior to @ such that forw £ U and m > mo, p(¢™, w) < ¢ < a. Conse-
quently, all the two-point distributions F™ constructed above have the property
that their spectrum is simultaneously contained in U. A limit two-point dis-
tribution F can now be selected with spectrum in U as U is compact. By con-
sidering an appropriate subsequence n; = k, it follows that }clm w=v,p¢ F) <0

for every F, and p(¢;F) = v for any monotone strategy ¢. These last inequalities
can be expressed in the following theorem.

TueoreM 9. If the loss functions and distributions satisfy (19) and (20), then
the game with risk function p(¢, F) as ¢ ranges over all strategies and F ranges
over all distributions on Q is determined, i.e.,

(23) min max p(¢, F) = max min p(¢, F).
¢ F Foe

Moreover, there exists a minimazx strategy F for nature involving only two points of
increase.

A careful study of the proof actually shows

CoroLLARY. If (23) holds and there exists a minimax strategy for nature, then
there exists a minimazx strategy for nature with a two-point spectrum.

The conditions (19) and (20) were imposed to ensure the determinateness
of the game p(¢, F) as given in (23).

Another type of result is to study Bayes distribution for nature against a
given monotone procedure. We limit ourselves for P(x | w) to the exponential
class and we assume that L;(w) are such that (19) and (20) hold. For simplicity
put 8 = 0. ’

The yield, if the statistician employs the procedure ¢1(z) = 1,z < 20, = 0,
z > o, becomes

(1%
L

W) [ du@) for «
(23) H() =

B | & du 6 <0,

I\

For definiteness, let us assume that the endpoints are &=« when open at that
respective end. By (19) and (20), as w — ® or w — — © H(w) —0. Also H(0) = 0.
If L; were analytic, then H could achieve its maximum at most a finite number
of times and since it is a Bayes distribution with probability one at the maximum
values, every Bayes distribution against a monotone procedure involves only a
finite number of points. Examples can be produced which show that the number
of points involved in a distribution may be more than 2. However, for certain
distributions and suitable loss functions we can show that every Bayes distribu-
tion involves at most two points.

ExampLe 1. Suppose that p(z|w) = 1/ (v/2x)e™ 2= ond for w > 0,
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Ly(w) satisfies the condition that L;(w)/ Li(w) is nondecreasing and that
Ly(w) / Ls(w) is nondecreasing, in w < 0. We now show that

z0 1 z0 _ —
[ € du(z) —_21r[ ¢ e
Li(w) T = L(w) Y2
(24) [ & d[l,(x) _\/2_#‘/; e—-l/z(z—w)z dx

= Ly(w)®(x0 — )

has a unique maximum for » = 0 where ® is the cumulative standard normal
distribution. Differentiating (24) yields

(25) —Ly(w)® (x0 — w) + Li(w)®(zo — w).
Dividing by Li(w) and & (zo — «), we have
_ Ll(w) @(xo - w)
Li(w) " @' (@ — w)°

It is an easy matter to show for w > 0 that the second term is decreasing and
thus (25) has at most one zero.
Hence for w > 0 (24) has a unique maximum. A similar analysis shows that

L) [ ¢ du(e)

has a unique maximum for w < 0. This implies that for any monotone strategy
for the statistician the Bayes strategy for nature concentrates at most at two
points. )

ExampLE 2. Imposing the same assumptions on the loss conditions, we now
give a general sufficient condition on the distribution to ensure a unique maxi-
mum in each of the regions w = 0 and w < 0. Let

ue) = [ o o).

By (23)
H(w) = B(w)Bzy(w)L(w) for 0> 0.

Let m(w) = B(w)Bz(w). We deduce by analogous reasoning to that of Example 1,
that if —m(w) / m’(w) has the property that it is strictly monotone decreasing
for w > 6, then H has a unique maximum as H(0) = 0 and we make assump-
tions on L, so that H(w) — 0 as w — . However, m(w) / m'(w) is increasing
if and only if log m is concave. But

log m(w) = log B(w) + log B (w).

Let y denote the random variable with density 8(w)e”® with respect to x and
Yz, denote the random variable with the same density except that we alter u
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so that u(z;, ©) = 0. In other words, ¥, is the truncated random variable
where we do not allow observations z > 2. The variances of these random
variables will be denoted by

o) and  oh(Ya)

when the true parameter value is w. Since d* / dw log 8(w) = o5 (y), we obtain
that log m has a negative second derivative if and only if

(26) ca(¥) > 0u(Ys0).

Thus if (26) holds for every o, then H(w) has a unique maximum. In order for
H in (23) to possess a unique maximum for w < 0, a corresponding condition to
(26) must be satisfied when the random variable is truncated on the other side;
namely, when we take u(— «, z) = 0. Thus a sufficient condition for at most
two maxima for H is that (26) hold for every truncated variable on the left
and right. Some instances where (26) holds for the exponential class are the
normal, gamma, Poisson, and binomial. However, examples of exponential
distributions can be constructed in which the seemingly natural condition (26 is
not satisfied. We leave to the reader the task of constructing such examples.

7. Essentially complete classes for infinite number of actions. An analysis
of essentially complete classes of decision procedures for distributions with
monotone likelihood ratio for an infinite number of actions will now be carried
out. The parameter space w for nature will range over an interval @ as before.
The action space A will also consist of a closed subset of the real line. The loss
function L(w, a)(w in Q, @ in A) is assumed to satisfy the following properties:

(i) For each w, L(w, a) attains its minimum as a function of a at a point
a = ¢(w) which is a monotone increasing function of w.

(ii) For each w, L(w, @) as a function of a increases away from that minimum.

Without loss of generality we may take L(w, g(w)) = 0 for every w.

Particularly important examples of decision problems whose loss functions
satisfy (i) and (ii) are furnished by the estimation problem. Here a commonly
used loss function is given by L(w, @) = | @ — a |*(k > 0) where both » and a
traverse the infinite real line. The function ¢(w) is evidently equal to w.

A decision procedure or strategy for the statistician in this case is a proba-
bility measure »(x) on A specified for every observation z. A monotone strategy
is defined in this general situation as follows: If z; > z, and C; and C; are open
sets with C lying to the left of C, , then either

V(Cl l xl) =0 or V(Cz l xz) = 0.

This definition agrees with the meaning of monotone strategy for a finite number
of actions given previously. In the case of convex loss functions (e.g., the estima-
tion problem introduced above) where nonrandomized strategies are frequently
employed, we obtain that a monotone decision procedure can be identified with
a function ¢ with values in 4 such that ¢ is monotone nondecreasing.
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The risk for w and a given strategy » has the form
o, ) = [[ Liw, 0) dola] p(z | w) du(a).

Our main objective in this section is to establish the essential completeness
of the monotone strategies for the case where A is infinite and closed. The proof
will be carried out in three stages: First, the theorem will be demonstrated for
the case that L(w, a) is continuous and bounded in a for each fixed w; second,
when L(w, @) is 0 or 1, and then the general case.

The method of proof for the case where L(w, @) is continuous in @ entails
a limiting argument by using the essential completeness theorem for a finite
number of actions.

Let & be the collection of all non-null finite subsets of A partially ordered by
set inclusion, i.e., B = C if and only if B D C, where B and C are members
of . Let 3C be any subfamily with the properties:

(a) If B ¢3¢ and C ¢ 3C, there is a D in 3¢ such that Bu C £ D

(b) Usepe Bis dense in A.

The family of finite sets 3C in view of (a) and (b) form a directed system and
therefore we can speak of convergence with respect to 3C.

We shall construct for every B in 3¢ a new loss function Lz(w, b), preserving
the monotone properties of assumptions A through C for the case of a finite num-
ber of actions. For a given decision procedure v, we shall then construct a new
decision procedure vz concentrated on B. This will have the property that vz
converges to v as B gets large and that if L is bounded and continuous in a for
each w, p(w, vz) converges to p(w, »). With the aid of Theorem 1 we can then
produce a monotone strategy »3 concentrating on B better than v and if we
take »* as a cluster point of v} , p(w, v3) will converge to p(w, ¥*) with p(w, ¥*) <
p(w, v) and »* a monotone procedure. The conclusions will then be extended
to the case of loss functions L(w, a) not necessarily continuous in a. The above
discussion indicates the direction of the proof; we now proceed to develop the
details.

For each a in A, define Iz(a) to be the smallest closed interval whose end-
points are in B and which contains a (the endpoints may coincide), if there is
such an interval. If there is no such interval, let I B(a) be the set consisting of the
nearest clement of B.

For a¢ in A and b in B, put

0 if belg(a),
27 fsa,b) = <A if Is(a) = [b,e] or [eb],
a=+4+ (1 —Ne

The function fa(a, b) will be used to distribute the probability of a over B. In
fact, set

(28) ve(S|z) = %;g/.fg(a, b) dv(a|x).
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The probability of »(a | x) concentrated at a is distributed to the points b and ¢
of B, where a ¢ [b, c], proportional to the distance from a to b and ¢ respectively.
In forming »5(S | z) this is done for every @ in A.

The loss function is now altered as follows: Set

_ [L(w, b) if b £ In(g(@)),

(29) La(w, ) = {0 if b e Ln(qw)).
The function L(w, b) is only different from L(w, b) in the neighborhood of ¢(w).
Moreover, L(w, b) is changed at most for two adjacent values of b and it is readily
seen that for each fixed w, Lg(w, b) converges uniformly to L(w, b) on B.

It is readily verified that the loss function Lg(w, b) satisfies the conditions of
(A) through (D). By Theorem 1 there exists a monotone procedure 3 concen-
trating on B such that for the loss function Lg(w, b)

PB(wy V;) = PB(“’) V*)'

It is important to note that the constructed monotone strategy »» depends only
on vz and on ¢ and not on the nature of the loss functions elsewhere. This was
pointed out in the remark following Theorem 1, for the change points used there
can be made to depend only on q.

Since the space of measures is compact in the weak * topology we can
select a measure »*(a | x) which is a simultaneous cluster point of »3(a | z) for
every z. In view of the continuity of L(w, a) as a function of a, we get for every w

pw,) = [[ Lo, 0) dr3(al p(@] ) du@)
(30)
- [ L6, @) dr*(a] 2) (e | ) dute) = plo, ).

As Lz(w, b) converges uniformly to L(w, b), we also find that

pa(,7s) = [[ Lo, 0) doala | p(a | @) du(a) — o, »2)
(31)
= ff L(w, @) dvs(a | 2)p(x | w) du(z)

can be made as small as we desire for each fixed w by choosing B sufficiently
large. Our next task is to show that p(w, vs) — p(w, »). To this end, define for
fixed w

(32) #s) = [ vls | D)p(a | o) dula).

The set function 7 is a probability distribution on A induced by the action v if
w is the state of nature. Then clearly

(33) o) = [ Llw,a) ds(a).
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We also see from the construction of »5 that for each b in B
VB((_ ©, b) l x) § V((_ ©, b) l x))
va((—=,b]|2) = »((—, b] | 2).

The same inequalities persist for 75 and 7. Hence for any ¢ in U5 B, we have

(34)

5) lim sups 73((— =, ¢)) = 5(—, ¢),

lim infz 55((— o, ¢]) = #(— =, c],

and hence 75 converges to 7 in the sense of measures. As L(w, a) is continuous in
a, we now conclude from (35) that p(w, vs) — p(w, »). Combining (30), (31),
(35), and the fact that ps(w, ¥5) < ps(w, v3) yields finally that

(36) pw, v*) = p(w, »).

Again, we emphasize the fact that v* depends only on » and ¢ and in no other
way on the nature of the loss functions. We next show that »* is monotone and

completely additive. .
(a) Proof that »* is monotone: Let z; < z., C; and C; be two open sets where
C lies to the right of C; . For any given ¢ > 0 there exists a B such that

vﬁ(C;lx,-) > v*(Cilxi) — € 7= 1, 2.

Since for every B either »5(Cy | 21) or v5(C: | z2) is 0, it follows ‘that v*(C1 | 21)

or »*(Cz | x5) is 0.
(b) Proof that v* is completely additive for almost all = for each w. Consider

K@, z) = 1 — limyse v*((—N, N]| 2).
Let L.(w, a) be a sequence of new loss functions with the properties:

(1) La(w, a) increases to L (v, a),
(2). limgsiy Ln(w, @) = n,
®) [ Lolw, @) d5(a) < =,
(4) L.(0, a) = L(6,a) for 6 # w.

For any completely additive measure there always exists a function increasing
to infinity at the endpoints such that (3) holds. The L.(w, @) are so constructed
that each remain bounded but converge to L. (w, @). The loss functions for L(6, a)
are not altered for #  w. On the other hand, only L(w, @) is replaced by a se-
quence of L,(w, a) tending to infinity at the endpoints preserving q. Since the
v* depended only on » and ¢, we obtain

pa0,) Z a7 = [[ Lafo, @) d¥(a | p(a | @) dut@)

2 (n— o) [ K6 0o | o) du(a).

'
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In view of (3) and (1), we find that p,(w, ») < « and therefore
[ K6* 2)p | ) aute) = 0.

Consequently, K(v*, ) = 0 for almost all z for each . But this is equivalent to
the countable additivity.

Combining all the previous conclusions leads to

TrarEOREM 9. Given any decision procedure v, there is a monotone decision
procedure v* depending only on v and q such that if L(w, a) is a bounded continuous
function of a for each fived w satisfying (i) and (i) with the prescribed g, then

plw, v*) = plw, v)

Sor all w.

From the easily seen fact that every function whichisOon I and 1 on I, u I3,
where I, I;, and I; are disjoint intervals covering (— «, «), can be approxi-
mated by a sequence of continuous functions which are all 0 at a specified point
of I, , monotone away from that point, and bounded by 1, and from the Lebesgue
convergence theorem, it follows that the »*, whose existence was established in
Theorem 9, alse works for all loss functions which only assume the values 0 and 1
on intervals of the form I;, I, , and I, specified above.

Now if A > 0, we define
0 if L(w, a) < A,
INw, a) = ’
1 if L(w, @) = A.

On account of property (ii) for L(w, a), we see that L (w, a) is O on an interval
I, and 1 on two intervals I, and I, all disjoint, which together cover (— o, »).
Thus

p(w, ¥*) = pa(o, »).
But,

L(w,a) = fo " e, @)

and since the order of integration can be reversed, we have

P(w7 V*) = P(wy ")'

Thus we have established
TuroreM 10. Given any decision procedure v, there is a monotone decision

procedure v* such that for all monotone L(w, a) satisfying (i) and (ii) with a given
g, v* dominates v.*

2 This theorem was proved by a more complicated method in [5].
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8. Bayes strategies for the case of an infinite number of actions. In addition
to the conditions imposed on L(w, a) in the previous section, we assume that
for any two actions a; < a2, L(w, 1) — L(w, a;) changes sign at most once in
the direction of negative to positive values and has at most one zero. For example
this condition is satisfied when L(w, @) = |w — a|* (k > 0). The conditions
(i) and (ii) almost imply this requirement. Furthermore, we require here that
o, = X and the inequality in (2) be strict.

By Lemma 1, for any two actions,

() @) = pu@ = [ 1L, 0) = Liw,)p(a | o) dF () @ < a)

changes sign at most once in the direction of negative to positive values. Hence,
if, for a given xo , min, p.(xo) is achieved for a set A4 (xo) with g.l.b. equal to ao,
then for ¢ < ap and x > z,, by virtue of (37) we have

Pag (.’E) < Pa(x)°

Thus the minimum of p,(z) for z > x, is attained for a set of values of @ with
a = ao . Since any Bayes strategy must for x concentrate its full measure in the
set A(x), we deduce from this last fact that the Bayes strategy must be a mono-
tone procedure. Thus we have shown

TureoreM 11. If L(w, a) satisfies (i) and (i) of Section 7 and if L(w, a1) —
L(w, az) changes sign at most once for a; < az and has at most one zero, then any
Bayes strategy against a distribution F is a monotone procedure.

9. Invariance and monotone strategies. Suppose a statistical procedure
satisfying the monotonicity requirements is also invariant under a group of
transformations, i.e., there is a group G such that each element g in G generates
three mappings gx, go, and g4 of X, @, and A, respectively, into themselves
satisfying the following properties:

(a) The mapping of ¢ in G into (¢9x, ga, g4) is & homomorphism.

(b) P(gx(8) | ga(w)) = P(S | w) for any measureable set S in X and w in Q.
Of course, gx transforms measureable sets of X into measureable sets, and
conversely.

(c¢) L(ge(w), ga(a)) = L(w, a) for every w in @ and a in 4.

A decision procedure v(a | z) is called invariant if for a T-set in A and z in X
and any g in G

(94(T) | gx(=)) = (T | 2).

To relate the monotonicity hypothesis in this paper to the invariance, we also
require that all three functions gx(x), go(w), and g4(a) be monotone in the same
direction. )

The proof of the next theorem and other results connecting monotonicity
and invariance will be deferred to a future paper where extensive details will
be given. This last theorem is stated only for the purpose of providing here a
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complete discussion of the theory of statistical decision problems with monotone
likelihood ratio.

TuroreM. If a statistical decision problem with monotone likelihood ratio is
invariant under a group and the loss function L(w, a) satisfies the monotonicily
requirements of section 7 with galq(w)] = qlge(w)] for each g in G and w in Q, then
the class of monotone invariant procedures is essentially complete in the class of all
invartant procedures.
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