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can be evaluated by interpolation using equation (20) and Table I of [9]. How-
ever, the number of decimals in Table I of [9] is not sufficiently large to yield
accurate enough calculated values of ®,(u).
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A CERTAIN CLASS OF SOLUTIONS TO A MOMENT PROBLEM

By LioneL Wgeiss
Unaversity of Oregon
1. Summary. A uniqueness and a characterization theorem are given for the

density function over the interval [—1, 1] with a given finite sequence of mo-
ments whose square has the smallest possible integral. Extensions are indicated.

2. Existence and characterization theorems. Let uo = 1, p2, -+, u, be a
given set of real numbers (0 £ n < ). Necessary and sufficient conditions on
(uo, +++ , un) that there be at least one density function f(x) over [—1, 1] with

1
f xzf(x)dx":ﬂi, 7:=0’...’n’
—1

(1.1) 1
[ F@ s < w

have been given [1]. Throughout this paper, we shall assume that the sequence
(mo, - -+, pa) satisfies these conditions. Then we have:

TurorEM 1. Let {f} denote the class of density functions over [—1, 1] satisfying
(1.1), and let M denote

1
glb. () d.
£ in (£} -1
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There is a function g(x) in {f} with [1, ¢*(x) de = M. Any function in {f} with
this property equals g(x) almost everywhere.

Proor. We can find a sequence fy(z), fa(z), - - - of functions in {f} with [ f}
approaching M as 7 increases. Let ¢; denote [fi — M. Then [ [f; — f]} =
2M + e+ ¢ — 2[ fi-fi Z 0,50 [ fi-fi £ M + 3(ei + €;). Also, 3(f; + f;) is
in {f}, so that [ [3(fi + f)I = 3(M + &) + 3 + &) + 3/ /s =2 M, or
[fiifi 2 M — %(e; + ¢;). Thus, [ fif; approaches M as 1/: + 1/5 approaches
zero, and therefore [[f; — f,]° approaches zero with 1/7 + 1/4. But then it is
known ([2], p. 243) that there is a measurable function g(x) such that [[f; — ¢]*
approaches zero as ¢ increases. But g(z) is in {f}, for it must be non-negative
almost everywhere on (—1, 1), and

[1 2g(x) de — pi| = 1[1 Hlow) — £:()] do

s([aw) ([lo-sra)

the term on the right approaching zero as ¢ increases. Also, [2; ¢*(z) dz = M.
for [¢* = [fi + [ (g — £)* + 2f fig — f:), and as © increases the expression on
the right of this last equality approaches M. If a function f(z) in {f} has
JLif(x) dx = M, then f(x) = g(x) almost everywhere. For 3(f + g¢) is in {f};
therefore [ [3(f + @) = M + %[ fg = M, or [ fg = M. But if f fails to equal ¢
on a set of positive measure, [ fg < ([ /)2 ([ ¢*)""* = M, a contradiction. There-
fore g(z) is essentially unique.

TuroreM 2. The function g(x) described in Theorem 1 is, almost everywhere on
(—1, 1), equal to a certain polynomial P(x) of degree at most n wherever P(z) s
non-negative, and 1s equal to zero elsewhere.

Proor. Denote the polynomial of degree 7 in the sequence of polynomials
orthonormal on a given bounded set S of positive measure by Q(z, 7, S), so
s Q(z, 1, S)Q(x, 7, S)dxr = &; (the Kronecker delta). Since the sequence
{Q(z, 7, S)} is complete in the class of functions whose squares are Lebesgue
integrable over S, a necessary and sufficient condition that a function r(z) in
this class is, almost everywhere on S, equal to a polynomial of degree at most =,
is that [s7(2)Q(x, 7, S) de = 0 for all ¢ > n. Also, of all functions s(z) whose
squares are Lebesgue integrable and which have [ s@aide =ci,i=0, , 1,
by Parseval’s Theorem ([2], p. 251) one with the smallest [ s*(z) dz i is the poly—
nomial v(z) of degree at most n uniquely determined by [sv(x)z’dx = ¢;,
¢ =0, .-, n For any positive ¢, let G. denote the subset of (—1, 1) where
g(z) = e Assume e is small enough so that the measure of G, (written m(G.))
is positive. Then, almost everywhere on G, g(xr) must be equal to a certain
polynomial of degree at most n, say P(z) (P(z) will not depend on ¢). For if
not, there is an ¢ > n so that [4, ¢(x)Q(z, %, G.) dx ¥ 0. Then we can find a
positive & so that g(z) + vQ(z, 7, G.) is positive on G, for all v with |y| < .
But a o with 0 < |yo| < 6 can be found so that

[ ) + 0005, 6 e = Gt [ @ tai< [ o
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But then if we define h(z) as equal to g(x) + vo-Q(z, 7, Ge) on G, and equal to
g(z) elsewhere, h(z) is in {f}, and [2; h* < [ ¢°, a contradiction. Therefore,
almost everywhere on G. , g(x) = P(z). Now we take a sequence of decreasing
positive numbers converging to zero, say e, €, -+ . Let R, be the subset of
G., where g(x) fails to equal P(x). Then R., , R.,, - -+ is a nondecreasing se-
quence of sets, and m(R.;) = 0 for all 7. Now R, + R., + - - - is the set where
g(x) ¥ 0 and g(z) # P(x), and m(R., + Re, + -+ ) = limi,e m(Re;) = 0.
Therefore, almost everywhere where g(z) does not equal zero, g(z) equals P(z).
Now let P, be the subset of (—1, 1) where P(x) = e. Almost all points of G.
are in P.. Suppose 0 < m(G) < m(Pe). Then, denoting the complement of G,
by G. , we can adjoin to G a subset of G.- P, of positive measure, to get a set G
The polynomial g(x) of degree at most n defined by fo: q@)a’ dz = [¢: g(x)a’ da,
1 = O, .-+, m, must be negative somewhere on G, , for if not we could decrease
fLig* by replacmg it by g(z) on G. (g(z) cannot equal ¢(z) almost everywhere
on @, , for g(x) = P(x) on Ge , zero on G. — G.). But the polynomial defined
on G, as ¢(z) is defined on G is at least e everywhere on G., and by making
m(G?) close enough to m(G.), we can make certain that ¢(z) is non-negative on
@. , for the coefficients of ¢(z) vary continuously as m(G.) grows. This contra-
diction proves that m(G.) = m(P.). Taking a sequence ¢, €, --- as above,
the set G where g(x) is positive is G, + G, + - -, the set P where P(z) is
positive is Pe, + Pe, 4 « -+ . Then m(G@) = lim m(G,,) = lim m(P.;) = m(P),
so m(@) = m(P). Since almost every point of G is in P, we have that almost
everywhere where P(z) is positive g(z) = P(z).

3. Extensions. The results above can be generalized as follows.

TaEOREM 3. Given a bounded set S of positive measure, and measurable functions
ho(x), ha(x), -« - , ha(x) such that [ hi(x) du s fingte for i = 0, - - - , n, and num-
bers mo, My, -+ , M, SUPpose that there is at least one measurable function f(x)
with the following properties:

(a) f(x) = 0 almost everywhere on S,

(b) fsf(.’l?)h,(x) de =mi,t=0,--+,m,

(¢) [sf(x) dxis finite.

Then there ts a measurable function g(x) with these properties, uniquely defined
almost everywhere on S, such that [s g°(x) dx achieves the g. 1. b. of [sf*(x) dx taken
over the class of functions with properties (a), (b), and (c). Further, g(z) is equal
to a certain linear combination L(zx) of ho(z), -+ , hn(x) wherever L(x) 7s non-
negative, and g(x) is equal to zero wherever L(x) s negative.

Proor. Exactly the same as in Section 2, except that the orthonormal sequence

of functions starts with linear combinations of ho(x), - - - , hs(x) instead of linear
combinations of 2°, -+ - , 2"
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