NOTES

ON THE TUKEY TEST FOR THE EQUALITY OF MEANS AND THE
HARTLEY TEST FOR THE EQUALITY OF VARIANCES! 2

By K. V. RAMACHANDRAN?®

University of North Carolina

1. Summary. The unbiasedness of the Tukey Studentized range test for the
equality of means of % univariate normal populations with a common variance
and of the Hartley Fmax ratio test for the equality of variances of k univariate
normal populations is proved. ’

2. Introduction. The purpose of this paper is to establish the unbiasedness of
two tests which are derived by the union-intersection principle [2], the tests
being within the Neyman-Pearson set-up of two-decision problems.

3. The Tukey g-test. Let ;;(z = 1,2, --- , k;j = 1,2, .-+, n) be the ele-
ments of % independent samples of size n from normal populations with means
us and variance o* (1 = 1,2, - -+ , k). Also let s’ be an independent and unbiased
estimate of o° based on m d.f. (say, the error mean square in anova). It is well
known that Z; = Z,’Ll x4j/n is normal with mean y; and variance o*/n.

To test the hypothesis Hg : yg = uz = -+ = u; we proceed as follows: First
we notice that H, is equivalent to the totality of all Hj;: us = i
(t#4,1,7=12,---,k). Also for any two u’s, the hypothesis u; = u; can be
tested using Student’s “¢” with m d.f. The hypothesis u; = u; is accepted if
|Z: — Z;| £ t,8(2/n)""* where t, is the upper v/2 point of Student’s “¢”” with
m df. Now since H, is equivalent to the totality of the hypothesis
HG # 7, 4,7 = 1,2, .-+, k), we get a test of H, as follows: Take the inter-

section of all the 12‘: two-by-two Student’s “#;;’ acceptance regions, and

accept Hy if

largest | £ | =  sup {Ix — & /81/?} <t,.
154 7,4,i=1,2,c++,k n

It is easy to check that this is the same as accepting Hy if

Lmax — fmin
=—7 =350

e
SA/ =
n
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826 K. V. RAMACHANDRAN

where Q is the upper a point of the Studentized range ¢ with m d.f. (Notice that
t, = @.) This is the Tukey g-test [3].

Starting with the definition of the g-test, we have, for the probability of the
second kind of error,

ZTmax — Lmin

B = Pr /‘/Q
3.1) N a

— Pr{ymax _, Ymin é Q\/E}’

8

IIA

Q

where ys = \/n&ifo (@ =1,2,---, k) and & = s/o. Now y; is normal with
mean y; and variance unity, where u; = (/e G = 1,2, -+, k). Also, s’
has the distribution of (x&/m’)"* independent of y’s.

Now since the test is invariant under location transformations, we have

Lo © z—n;+Q's k=1 z—ni+nj+Q’s
5=5 00 (o0 [ o0 O [ p@ddds
T Jo = =i i=1 Ja—qitn;
3.2) ixi

© 0 k=1 pz4n;+Q's
[ me s [ s atdzas

i=1 Jo4n;
where

_1 — 2
pi(s) = const s™ e/

771'—1:/‘,1—#;' (1'=213:)]{’)
From (3.2) it is evident that 8 involves as parameters only the ¥ — 1 5’s. Hence
the power (=1 — B) of the g-test involves as parameters only the k — 1 #’s.
It is worth noting at this point that the right side of (3.2) is symmetric in the
»'s. Hence the power of the g-test is also symmetric in the 7’s.

b

4. Unbiased nature of the g-test. To prove the unbiased nature of the g-test
we need to use certain lemmas, which we shall now prove.

LemuMa 1.} Suppose that

(1) in the domain D: (x:a; < 2 S by, 2 =1,2, -+, k), f(@1, 22, + -+, T)
exists, all partial derivatives of order one and two exist, all partial derivatives
of order one vanish simultaneously at one and only one inner point

P = (xm,xgo, ,Z‘ko) OfD;
(2) the matrix of second partials evaluated at P is negative definite (n.d.);

and
(3) at every point (21, %z, - - - , 2x) on the boundary of D, f(z1,%2, -+, ) <

A, where A = f(Tw, T2, - , Tro)-

s The author wishes to thank the referee for suggesting the present proof of Lemma 1.
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Then
(4.1) f(aa y Lay * 00y, :ck) <4

forallz e D, x = P. _
Proor. Because the domain is closed and the function is continuous, max
f(@y, 22, - -+, 2x) = B, say, exists. Suppose B = A4 and that for

(x?sx;'7"' :xlt)# (xlo,xzo, e ’xko)s f(xr,x;7 7x;:) = B.

By Condition 3, (zf , z3 , - -+, #¢) is not on the boundary. By Condition 1, at
least one partial derivative is not zero at (¥, 28, -+, ), say the derivative
with respect to x; . Suppose it is positive; i.e., that

3f(951,932,"',-”0k):| >0
a9y == ’

Then for sufficiently small 6, f(zf + 8, 23 , -, ar) > fl¥ , aF , -+, 28) = B,
which is contrary to the assumption. Hence the lemma.

LemMma 2. If the conditions of Lemma 1 are satisfied as a; — — « or b; — o,
forany ¢ and for fixed valuesof a; , b;(j # 7,7 = 1,2, - - - , k), then f(x,, - - - , 7)<
AforallzeD': {x: —»o <z; < ©0,9=1,---,k }H,x # P.

Proor. The proof follows obviously from Lemma 1.

TreOREM 1. The Studentized range test of Tukey is unbiased.

Proor. Differentiating 8 with respect to m we get, after some simplification,

©

z - [ 26 [ p@e+m+ @9

, k=1 nz4ni+Q's
—pC+ wpl + Q's)} H2 f+ p(?) dt dz ds
T2 Y2tn;

(4.2) et o .
+ ; jo‘ p1(s) [_w {p(z + m)p(z + n -+ Q's)
S petnitare 24+Q/s
— plz+ i+ m + Q') ,I;[, j ' 40, dtf p(t) dt dz ds.
Gy Vet z

It is easy to check that the right side of (4.2) will be negative if 51 > 0 and
m > 9t = 2,3, .-,k — 1) and positive if 5, < 0 and
m<n(t=223,---,k—1).
By the symmetry in the variables the same is true of 98/dn:(¢ = 2,3, - -+ , k — 1);
le.,
9B
an;

9B
617 i

<0 ifm>Oandm=71max,

(4.3)
>0 if 9 < 0and 4 = %min.



828 K. V. RAMACHANDRAN

Also it is evident that
(the notation n = 0 will mean 9, = 9, = -++ = m = 0, ete.)
(44) % ] = 0.
(9771 =0
Similarly, l
Q‘i] =0 =23, k=1
0 _lr=0
Now suppose 5’ # 0. Then either fmax > 0 OF nmin < 0. Hence the first partlals
can vanish simultaneously only at (0,0, -- -, 0).
Again it is easily verified that
62
(45) %], - -e- e,
In; dn=0
where

© © 2 24Q’s k—2"
c@) = fo spa(s) f_ exp — [;— + 3 + Q's)z][f ¢t dt] dsdz > 0.

Hence

213] <0 (=12,---,k—1).
an;
Also
(46) 28] =@ >0 ki = L2k D,

;0 a=0
Hence the matrix of second partials, when o = 0, is

a8 ]

On: In;_|n=o
wn ~G-DI@) Q) @)
' | @ —k—1fQ) - FQ)
@) @) cee =k — Df@)

where f(Q') = Q'c(Q’) is negative definite.

To complete the theorem it will now suffice if we show that 8 — 0 on each
point of the boundary of the domain D: {n: e, = n: = N\;;¢=1,2,--- ,k — 1}
as, say, ¢ — — o or \; — o for fixed values of &, \i(f = 2,3, -+, k — 1).
Now it is easy to verify that as ¢ — — =, the value of 8 at each point on the
boundary — 0. Similarly, it is easy to verify that as Ay — o, the value of 8 at
each point on the boundary — 0. Also the value of B at the point where 7’s =
0is 1 — a > 0. Hence all the conditions given in Lemma 2 are satisfied by

the function 8(n).
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Hence
(4.8) B(n) < B(0) for every 7 # 0.
Hence the Tukey g-test is unbiased.

5. The Hartley Fp,.x ratio test. Let z;;(: = 1,2, --- ,k;7=1,2, --- ,n 4+ 1)
be the elements of k& independent samples of size (n 4 1) from normal popula-
tions with means p; and variances o2(¢ = 1, 2, -+ -, k). It is well known that
si = 21 (wi; — &:)*/n, where & = ;i i/ (n + 1) is an unbiased estimate
of o%(¢ = 1,2, - -+, k). It is also well known that ns:/o} is a chi-square variable
with » d.f.

The hypothesis Hy: o; = o3 = --- = o} is equivalent to the totality of hy-
potheses H}; : oF = o2(i # j;4,7 = 1,2, - -+ , k). Now for any two o’s, the hy-
pothesis ¢} = o can be tested using the variance ratio ¥ of Fisher with d.f.
(n, n). The hypothesis ¢} = o¢ is accepted if 1/F, < (si/s}) < F , where F,
is the upper v/2 point of Fisher’s F with d.f. (n, n). Now since H, is equivalent
to the totality of the hypotheses Hy;(z = j; 4,7 = 1,2, --- , k), we get a test of

H, as follows: Take the intersection of all the <]26> Fisher’s F;; = (si/s}) ac-
ceptance regions and accept Hy if

largest Fi; = sup (si/sh = Fy.
P5£7,4,0=1,2,2+ ¢,k
It is easy to check that this is the same as accepting Ho if Frnex = (Smax/Siatn) < F,
where F is the upper a point of the Fun. distribution with d.f. (n, n).
(Notice that F, = F.) This is the Hartley Fumax ratio test [1].
Starting with the definition of the Fon.x test, we have, since scale transforma-
tions leave the test invariant, the probability of the second kind of error

S Fulng k—1 Funj/ng
s=> [ »pw f p(v) do I1 f p(w) dw du
i=1 Y0 /g i=1 Jun;/n;
(5.1) 754 ‘
@ k—1 Fuyj
+/ p(w) Hf p(v) dv du,
0 i=1 Juy;
where
2
p(u) = const u™P e and i1 = % (t=2,8,---,k).

From (5.1) it is evident that 8 involves as parameters only the & — 1 #’s. Hence
the power (=1 — B) of the test involves as parameters only the k — 1 »’s. It
is worth noting at this point that the right side of (5.1) is symmetric in the 7’s.
Hence the power of the test is also symmetric in the #’s.

6. Unbiased nature of the Fn,, test. To prove the unbiased nature of the
Fo.x test we need to use a lemma which is
Lemma 3. If the conditions of Lemma 1 are satisfied as a; — 0 or b; — « for
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any ¢ and for fixed values of a;,b;(j # ¢;5 = 1,2, -+ , k), flxs, -~ , o) < A
forallz e D: {x:0 < a; < ©0,¢=1,---,k},x = P.

Proor. The proof follows obviously from Lemma 1.

THEOREM 2. The Fumax test of Hartley is unbiased.

Proor. Differentiating 8 with respect to 7, we get, after some simplification.

® k—1 Funj
2 (ﬁ)iﬁ_ — f (Ul H I (P Hf p() dv du
0 unj

2 (9?]1 7=2
k=1 o

(6.1) + z;l {un~1e—u(ni+Fm) _ un—le—u(rlﬁi‘w)}

k—1 Fun; Fu .
11 f p(v) dv p(w) dw du,

i#i Jun; u
j=2

where

p() = const v™P ",

It is easy to check that the right side of (6.1) will be negative if m > 1
and 9 > (¢ = 2, 8,---, k — 1) and positive if ;mm < 1 and n <
7:(6 = 2,8, --- , k — 1). By the symmetry in the variables, the same is true of
aB/dni(e = 2,8, --- , k — 1);ie,

-(;9—17@_<0 if 2.>1 and 7 = %max,
(6.2) '
-éﬁ->0 if <1 and % = Mmin-
an;
Also it is evident that
(6.3) f’ﬁ] = 0.
oM _lr=1
Similarly,
-6-‘?] =0 G=23 - ,k—1)
i _Jn=1
Now suppose 7° 5 1. Then either ghex > 1 or nmin < 1. Hence the first par-
tials can vanish simultaneously only at (1, 1, ---, 1). Again it is easily veri-
fied that
%8
(6.4) o2 | = (k=D = Fe),
Ni_Jr=1
where

i—2

1 © Fu k—:
c(F) = —5— f u'e * [ f B2 dv] du > 0.
0 u

()
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Hence
8287
(65) <o = 1,2, b= 1.
ani =1
Also
a8 e
(6.6) =F — 1e(F) > 0 (@ #3445 =1,2,++,k— 1).
dn; 0n; =1
Hence the matrix of second partials, when n = 1, is
. ~(k — 1)g(F) g(F) --- g(F)
67 M= l) B ] g(F) —(k = 1)g(F) - -+ g(F) ’
O Ot |l |
g(F) g(F) -+ — (k — Dg(F)

" where g(FF) = (F — 1)c(F) is negative definite.

To complete the theorem it will now suffice if we show that 8 — 0 on each
point of the boundary of the domain D:{n:e; < 9: S \j;2 =1, .-+, k — 1}
as, say, e — 0 or \; — o for fixed values of e;, \i(Z = 2,3, --- , k — 1). It is
easy to verify that as ¢ —0 the value of 8 at each point on the boundary —0.
Similarly, it is easy to verify that as \; — oo, the value of 8 at each point on
the boundary — 0. Also the value of 8 at the point where 9’s = 1is1 — a > 0.
Hence all the conditions given in Lemma 3 are satisfied by the function B(»).

Hence

(6.8) B(») < B(0) for every 7 # 1.
Hence the Hartley Frax test is unbiased.

7. Conclusion. So far we considered the Fu,x test when all the s’s are based
on the same number of d.f. n. Investigation is proceeding on the behaviour of
the Fr.x test when the d.f. are unequal. Power properties of similar generaliza-
tions of the ¢-test are also being investigated.

By inverting the test procedures considered in Sections 3 and 5 useful simul-
taneous confidence bounds on all two by two differences of the means and all
two by two ratios of the variances can be obtained.
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