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1. Introduction. In estimating the variance of a normal population one uses
the statistic s = (n — 1)™ (s — £)” because of its optimum properties.
In certain cases where there is an indeterminable trend in the data, it has been
thought useful to estimate the variance by another statistic, namely the mean
square successive difference, the mean of the squared first differences, studied by
J. von Neumann et al. [5], which eliminates a good deal of the trend and under
some conditions is less biased than s’. An explicit form of the exact distribution
of this statistic seems, at least for the present, too difficult to obtain. However,
by applying a device analogous to one used by Durbin and Watson [1], that is,
by dropping from the mean square successive difference the middle term for an
even number of observations and the two middle terms for the odd case, we find
that the quadratic form has double roots, thus enabling us to obtain exact dis-
tributions in terms of elementary functions. In addition we define analogues of
the Student ¢ and the Fisher F using similarly modified statistics and derive
their exact distributions when the observations are independent.

The results of this paper are mainly the exact distributions of these statistics
and were given at the April 1955 meetings of the Institute of Mathematical
Statistics. A short while after, these same results, independently derived, were
published by A. R. Kamat [3]. Since Kamat has already published the exact dis-
tributions of these statistics and the motivation for them, it would be inappro-
priate to rederive them here; hence we shall only state the results and give that
material that Kamat had not considered in his paper.

2. The modified mean square successive difference. Let x; be N(0, %) and

let 2y, - -+, 25, be independent. We define the modified mean square successive
difference to be

2m—1
(2]) 5% = 4’1(m - 1)—1 21 (iIJH.l — x@-)z.

) :m

The exact density of & is

m—2 m—1
(Pm(ag) = 4 (m — 1) Z (~1)k+l Sin2 %ﬂ-

ma? =1
(22) - 2 k1r
- b N (m — 1) sec 5
om &P 20t
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and the cumulative distribution function is

m—1
P.G) =1 —2""m™ X (=" sinzg

k=1

@3) b (m — 1) sec’ e
ccos™* “Zexp| — —_ 2m
2m 20?

We shall also show that this statistic is asymptotically normal by showing
that the mean square successive difference 6° is asymptotically normal using the
central limit theorem for dependent random variables of Hoeffding and Rob-

bins [2].
Let
n—1
2(n — 1)52 = Z (@ig1 — )’
Te=1
and let

w; = (1121;+1 - xi)z -_ 20’2.

Now &w; = 0 and

0 ifj>1,
(2.4) Swawiy; = $2¢° ifj =1,
8* - ifj=0.

The set wi, we, - -+, Ws—1 is a l-dependent sequence; i.e., the set
(wy, wy, + -+, wy) is independent of the set (Wrys, <+, Woy) forr = 1,2, .-+,
n — 2. Let
(2.5) P; = &wi + 26wipaw; fors = 1, 2.

Therefore P; = 12¢* for all 7. Since all the other conditions of the Hoeftding-
Robbins theorem are satisfied, we have for every real ¢ and b,

lim Pr [¢* + 3%%ad’(n — 1) < & < ¢ + 3%%e’(n — 1)7'] = F(b) — F(a),

n-»>0

where F(z) is the cumulative normal density function,
@n [

Since 87 is in reality the sum of two 8, it is also asymptotically normal.

" 8. Moments. We shall now evaluate the moments of 5; by integrating (2.2).
Hence

86 = o2 (m — 1)77S,
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where
m—1
= e o 2mre) b . o km
,é (—=1)" cos 5, S0
= k=1 g2t k1r = b,
=42 (-1) -4 (1)
ksl k=1
(3.1) = 4(8; — 8u);
81 = mil (—1)¥ cog™ ™D L
T E 2m’
— mil (___1)70—1 cOSZ(m+r) _kl"
= 2m’

Now according to Schwatt ([4], p. 222),

821

2(m+r) lcll'
2m

o @2m — ar
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2m
2m+2r——2>.
)

m—1y ol—2m—2r
T -l G

similarly, S; is the same as S; with m -+ r in place of m + r — 1.

Now for m even,

S]_ = 41-m-~r Z

a=l

— 41—m—-r

a=1

411-""—"0?1!. + S]2)7

mErCl o - or — 2
m-+r—1—a

m 4 r —
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where Sy, is equal to the first sum above and S is equal to the second sum above.

Now
m+r—1 9, - _ R
=S ( 2m + 2r — 2 ) _ 1[22m+2,~2 _ (2m + 2r 2>]

act \Mm+1r—1—a, 2 m-—+r—1
Further
cos 2m — 1) g—:r—n
= (-D°
cos ox
2m
for all integral values of a except @ = (2y — 1)m,y = 1, 2, --- . However

xr
cos 2m — 1) o
. m
lim =1 — 2m.
z>(2y—1)m xrm
coS =—

2m

We shall evaluate S forr < 3m — 1

M om 4 2r — 2 « 2m + 2r — 2
S = c;,(m—}—r—l—a)(_l) —-2m< r+1 )

_1{2m+2r -2 _ 2m + 2r — 2
_§<m+r—1> 2m< r—1 >

Sl — 4l-m—r{ 22m+‘2r-—3 - 9m <2m + 2r — 2)1
r—1 |

_ % — omal-mr <2m + 2r — 2>

r—1

Therefore

and similarly

Se =

L) =

r

- 2m4~(m+1‘) (2m + 27') i

Therefore

T e s S @m + 2r — 2)!
S = m4 @m* —m —r) Tom )]
Substituting in (3.1) we get
2r o _ —rol—r 2 _ .(2m+27'—2)'
(3.3) 8¢ = o (m — 1)7277(2m m—r) TR

forr £ 3m — 1.
Similarly for m odd the same type derivation is carried out with the same
result (3.3).
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4, Variance Ratio Analogue. Let us now consider two independent random
sample of sizes 2m; and 2m, whose values are z;(¢ = 1, 2, ---, 2my) and
yi(j = 1,2, -+, 2my). These provide estimates 8 and &, of the variances of
the population. We wish to consider whether the samples may be regarded as
drawn from the same normal population of variance ¢°. If we consider the ratio
Y = 831/0% , we have an analogue of Fisher’s F.

Since 85 is independent of 8, the probability is given by

(41) W) = [ 8D U (55) AR,
Using this quotient convolution formula we get the density of ¢ to be
mi—1 ma—1
B(p) = 4"y — 1) (my — Dmitmz® Y > (— 1) cogtm T
k=1 t=1 2m,
(4.2) - cog™™™® . sin’ fem sin’ tw [u/z(mg — 1) sec® fr
2my my My 2my

—2
+ (my — 1) sec® —Iﬁr«] .
2m2

5. An analogue of the Student {. We will now give the distribution of
(5.1) £ =2mE — ) /&,

where &z; = wand (2m)™* D iM x; = 4.

Since & is invariant under a translation, it is independent of the numerator
and we may again apply the quotient convolution formula. Hence the density
of ¢£1is

2 o4& M am—s km . o kmw
@) =4""(m — Dm Z (—=1)*" cos — sin” —
k=1 2m

. . kﬂ' —3/2
N E 4+ (m— 1) sec’® —
2m ’

where —0 < & < o,

It can be shown that £ — N(0, 1) by considering £ = 2m(% — w)’/ 6. If we
divide the numerator and the denominator of £ by o°, the resultant denomina-
tor converges in probability to 1 as m increases and the numerator is a chi-square
variable with 1 degree of freedom for all m. Hence £ converges to a x; variable,
and since § is symmetric, it tends to a N (0, 1) variable.

6. Tables. The application of these statistics to control charts has been dis-
cussed by Kamat [3]. We shall give a table of the upper and lower .025 points °
of 8 and the two tailed .05 points of £ which is symmetric. In the table, n = 2m
is the number of observations. The values for n = 20 have been computed di-
rectly from the cumulative distribution functions. For n > 20 we find the values
by an approximate procedure. We let

(6.1) Po=P,+am" +am™>+ -,
(6.2) Pn~P,+ am™ + am™ + agm™.
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Since we have exact values for P, for n =< 20, we choose three of these values
and get three simultaneous equations in a; , as , and a; . We then use the values
for a;, ay, and a; in (6.2) to extend Table I.

TABLE I
c‘i’n/v2 53/02 3

n upper .025 lower .025 .05 level
4 3.689 .026 4.30
6 3.071 .106 2.82
8 2.694 172 2.55
10 2.458 .225 2.39
12 ‘ 2.294 .269 2.34
14 2.172 .306 2.31
16 2.078 .338 2.29
18 2.001 .366 2.27
20 1.938 .301 2.25
22% 1.866 .405 2.22
24* 1.810 .423 2.20
26* 1.761 .442 2.18
28* 1.718 .463 2.16
30* 1.677 .483 2.14
32* 1.645 .502 2.13
34* 1.612 .520 2.12
36* 1.583 .538 2.11
38* 1.558 .554 2.10
40* 1.534 .570 2.09
42* 1.511 .585 2.09
44* 1.491 .599 2.08
46* 1.472 .612 2.08
48* 1.454 .624 2.07
50* 1.437 .637 2.06

* For these n’s the value calculated in the table is approximate.
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