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1. Introduction and summary. Let S be the number of successes in n inde-
pendent trials, and let p; denote the probability of success in the jth trial, 7 = 1,
2, +++ , n (Poisson trials). We consider the problem of finding the maximum and
the minimum of Eg(S), the expected value of a given real-valued function of S,
when ES = np is fixed. It is well known that the maximum of the variance of S
is attained when p; = p; = -+ = p, = p. This can be interpreted as showing
that the variability in the number of successes is highest when the successes are
equally probable (Bernoulli trials). This interpretation is further supported by
the following two theorems, proved in this paper. If b and ¢ are two integers,
0 = b = np £ ¢ £ n, the probability P(b = S = ¢) attains its minimum if and
onlyif p, = p2= .+ = p, = p,unlessb = 0 and ¢ = n (Theorem 5, a corollary
of Theorem 4, which gives the maximum and the minimum of P(S = ¢)). If
g is a strictly convex function, Eg¢(S) attains its maximum if and only if
P1 = P2 = -+ = p, = p (Theorem 3). These results are obtained with the help
of two theorems concerning the extrema of the expected value of an arbitrary
function g(S) under the condition ES = np. Theorem 1 gives necessary conditions
for the maximum and the minimum of Eg(S). Theorem 2 gives a partial char-
acterization of the set of points at which an extremum is attained. Corollary 2.1
states that the maximum and the minimum are attained when p;, p2, « -+, P
take on, at most, three different values, only one of which is distinet from 0 and 1.
Applications of Theorems 3 and 5 to problems of estimation and testing are
pointed out in Section 5.

2. The extrema of the expected value of an arbitrary function of S. The ex-
pected value of a function g(S) is

(1) f(p) = Eg(S) = I;)g(lc)A,,k(p),
where p = (p1, P2, * -+ , Pa) and A (p), the probability of S = %, is given by
A"k(p) = '-—01-'2:1... I]; p;1(1 - pf)l_iiy k= 0,1,---,n
Z]':_l'f:"']‘:'";n=lén =

The function f(p) is symmetric in the components of p and linear in each
component. We observe in passing that, conversely, any function of p with
these two properties can be represented in the form (1). The problem to be con-
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sidered is to find the maxunum and the minimum of f(p) in the sectlon D of the
hyperplane : ~ v

it e+ pa = p 0O<p<,
which is contained in the closed hypercube
0sSp S, i=1,2"-,n

We shall denote by pi‘k'ig""‘i”‘ the point in the (n — m)-dimensional space,
which is obtained from p by omitting the coordinates p;, , pi,, - - , P, . Since
f(p) is symmetric, and linear in each component, we can write ‘

(2) f(p) = fn—l.ﬁ(pj) + pifn—-l.l(l)j); j = 1) 2) (2

where the functions fu—1 0 and fu 1,1 are independent of the index j and symmetric
and linear in the components of p’. In general, we define the functions f,_;,; by

fao(®) = f(p), and ‘ ,
3) fn—k,i(Pl'Q'm'k) = fai,i(@"" RN L DSk, ara(ph Y,
S i=0,1,-,kk=0,1--,n—1
Applying (3) repeatedly, we obtain

(4) flp) = Z% Cmi(pl yP2y pm)fn—fn.i(pl'g'“"m), m=12 .- ,n,

where Cpo, Cmi, *++, Cm,m are the symmetric sums
(5) Coo(Pr, P2y o+ 5 Pm) = 1
Coi(prs P2y Pm)
= (pp2 -+ Ps) + (1 PiaPiy) + o+ + Pm—is1Pm—iz2 =+ * Pm), © > 0.

If we write (0“1°) for the point whose first u coordinates are 0 and the remain-
ing v coordinates are 1, and let (1, P2, *++ , Pm) = 0" 1", A =0,1, --- , m,
we obtain from (4) a system of linear equations for f,_n. :(p"*"""'™) whose solu-
tion is

(6) fﬂ—"‘vi(pl'z'nnm) = Z (_l)i—h ’ f(Om_hlh, Pmt1, o0, pn))
h=0 h
i=0,1,---,m.

THEOREM 1. Leta = (a1, Gz, - -+ , Qn) be a point in D at which f(p) attains its
maximum. Then for every two distinct indices i, 7, we have

@ fa2a(@?) £ 0 if a; # a;,
(8) fo2e(@™) =0 ifai#a;,0<a;:<1,0<a; <1,
9) fr2s(@”) = 0 if0 < a;=a; <1.
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The inequalities (7) and (9) are strict if the maximum is not attained at the points
in D which differ from a only in that a; and a; are replaced by a; + = and a; — x
with | x| positive and arbitrarily small.

Proor. Let a’ denote the point which is obtained from a if a; and a; are re-
placed by a; + z and a; — z. The point a’ is in D for all z in the interval I defined
by0=a;+2=1,0=a; —z = 1. By (4) we have

@) = faas@”) + @i + a)faza@”) + (@i + 2)(a; = D)fas@”).
Hence,
(10) f@) = f@) = z(a; — a; — Dfpsal@™.

Since f(a) is a maximum, the right side of (10) must be negative or zero for
all z in 7. We may assume that a; < a;. If a; < a;,and z is positive and suffi-
ciently small, then z is in I. Hence, (7) must hold. If 0 < a¢; < 1and 0 < a; < 1,
then the point z = 0 is in the interior of I. Hence, (8) and (9) must hold.

If the maximum is not attained at a’ when z is in I and is different from and
sufficiently close to zero, the inequalities (7) and (9) must be strict. The proof
is complete. X

The following explicit expressions for f,_s »(a*) will be useful in the applications
of Theorem 1. It is easily seen (for instance, from probability considerations)

that
Ank(oz—hlhy D, oy pn) = A”—2.k-h(p3 » Tt pn)7 h = O; 1, 2.

Hence, from (6) and (1),
(11)  faso(@™) = g g(k) {Ansis(@?) — 240 311"} + Ansn(@)}.

Alternatively, this can be written in the forms

n—1

(12)  foaa@® = 5 g0k + 1) = g0)} {4nrpa(a”) — Aucas(a™)
and

n—2

(13) fr22@”) = 2 {9l + 2) = 290k + 1) 4 g(1)} Ans(@”).

In general, the maximum or the minimum of f(p) can be attained at more
than one point in D. Thus, if np <.n — 1, the function pip. - - - p. attains its
minimum 0 at every point in D with at least one zero coordinate, and there are
infinitely many points with this property. The following theorem gives some in-
formation about the set of points at which an extremum is attained.

TaEOREM 2. Let a be a point in D at which f(p) attains its mazimum or its mini-
mum. Suppose that a has at least two unequal coordinates which are distinct from

0 and 1. Then,
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@) f(p) attains its mazimum (or minimum) at any point in D which has the same
number of zero coordinates and the same number of unit coordinates as a has;
(ii) 4 a has exactly r zero coordinates and s unit coordinates, the mazimum (or

minimum) of f(p)is equal to

(14) f@) = (1 — np + s)g(s) + (np — s)g(s + 1),
and we have
(15) g(s + k) = kg(s + 1) — (b — 1)g(s), k=2 ,n—r—s

Proor. Letm = n — r — s be the number of coordinatesofa = (a1, az, * - , an)
which are distinct from 0 and 1. We may take a;, az, ++ - , a» to be these co-
ordinates, and we may assume that a; % a, . We first show that

(16) St i(@pgr, oo, Q) = 0, i=2 -,k

fork =2,---, m.
Equations (16) will be proved by induction on k. That (16) is true for &k = 2
follows from Theorem 1, (8). Assume that (16) is true for a fixed k, 2 < k < m.

Let

(17) bk:(b17b27"';bk’ak+17"'7a'n))
where
(18) b+ th=a+t -+ a, 0=b;=1,i=1---,k.

The point by is in D. By (4) and the induction hypothesis,
(19)  f(br) = faio(@ht1, =+ + , ) + (@14 - + G)faci1(@ri1, -+, a0) = fla).

Thus, the maximum is attained at every point b, which satisfies (17) and (18).
In particular, (18) can be satisfied withb; # by, by # aQrq1, b2 # 01,0 < b; < 1,
t=1,2,---,k (since 0 < ax41 < 1). Under these assumptions, we can apply
the induction hypothesis (16) with a replaced by the point b;, whose first
k 4 1 coordinates can be suitably rearranged. Hence,

fn~k,i(b1,ak+2,...,an)=0, fn—k.i(b21ak+2,"-,an)=0, i=2’...’k.
Applying (3) to the left sides of these equations, we obtain
fn.k‘_1,i(ak+2 y Tty an) + bhfn—-k—l,i+1(ak+2 y "ty a,) = 0,

i=2 -,k h=12

Since b; 5% by, we find that (16) is satisfied with & replaced by ¥ + 1. Thus,
(16) holds for k = 2, - -+ , m.

By (16), with £ = m, equations (19) hold with & = m for every b,, which
satisfies (17) and (18). Since f is symmetric, this implies part (i) of the theorem.

To prove part (ii), we observe that

ot ot 4 an=mnp—s,
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and we can put (@ms1, - , @) = (0'1°). Hence, by (19) and (16), with & = m,

(20) f(@) = fa-mo(0'1") + (p — 8)fa—ma(0'1")
and ,
(21) Sa—m,s(0'1") = 0, i=2,--+,m.

Applying (6) and then (1), we obtain
fn—-m,i(o"]_“) — Z (_l)i—h <’I,> f(0m+r——}.13+h)

""};)( 1)1—h<>g(s+h): t=0,1,--,m
Hence, (14) follows from (20). Equations (21) state that the second differences
of g are zero in the indicated range. Therefore, the first differences, g(s + k) —
g(s + k — 1), are constant for k = 1, 2, --- , m, which is equivalent to (15).
The proof is complete.

The following immediate corollary of Theorem 2(i) is often convenient for
finding an extremum.

CoROLLARY 2.1. The maximum and the minimum of f(p) in D are attained at
pm‘nts whose coordinates take on, at most, three different values, only one of which
s distinct from 0 and 1.

Thus, to find an extremum, it is sufficient to detemune the numbers 7 and s of
the zero and unit coordinates of an extremal point whose remaining coordinates
are all equal. We shall see that » and s can sometimes be determined with the
help of Theorem 1. If an extremum is attained at only one point (except perhaps
for permutations of the coordinates), part (n) of Theorem 2 will prove useful to

establish the uniqueness.

3. The maximum of the expected value of a convex function of S.
TaeoreM 3. If ES = np and

(22) g(k+2)"2g(k+l)+g(k)>07 k=0,1,---,n—2,

then
@) ms) = Zow ()t~ o,

where the sign of equality holds if and only if p1 = P2 = +++ = pa = p.

Thus, in particular, every absolute moment of S, E(|S — b|°), about an arbi-
trary point b, which is of order ¢ > 1, attains its maximum if and only if all
of the p; are equal.

Proor or THEOREM 3. Let a = (a1, @2, +++ , as) be a point in D at which
f(p) = Eg(8S) attains its maximum. Suppose that a; # a; for some ¢, 7. By
Theorem 1, f,_22(a’) < 0. By (13) and (22), this implies 4.2 :(a”) = 0,k = 0,
1, ---, n — 2. But this is impossible, since the sum of the probabilities A»—s,,
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Ans1, -+, An2a2 is 1. Hence, the maximum is attained if and only if all
the a; are equal, i.e.,if a1 = a; = - -+ = a, = p. This implies (23) and completes
the proof.

Observe that in the proof of Theorem 3, no use was made of Theorem 2.
Only inequality (7) of Theorem 1 was needed.

4. The extrema of certain probabilities. In this section we consider the determi-
nation of the maxima and the minima of the probabilities P(S =< ¢) and
P = 8 = ¢) when ES = np.

Turorem 4. If ES = np, and c is an inieger,

[

(24) 0=PS=o= I;) <Z> Pl — p)* " f0<c=np—1,

(25) 0<1—-Qn—c—1,1-p =P8 =c)=0Qkp <1
ifnp —1 < c¢ < np,

(26) ;;> <Z> Pl —p" =P =<1 fnp < c <,
where
27) Q(c, p) = max > " 8) &1 - a)" ",
R 0<sge k=0 k
_n"p —s
#8) R

The mazimizing value of s satisfies the inequality
(29) (c+1—np)n —s) <n—mnp

unless ¢ = n — 1, in which case s = n — 1.

All bounds are attained. The upper bound for 0 = ¢ £ np — 1 and the lower
bound for np = ¢ < n are attained only if pr = P2 = -+ = Po = P.

TavoreM 5. If ES = np, and.b and ¢ are two integers such that

0=b=np=c=n,

then
(30) Z (Z) A —p)" = PbL=<S

k=b

IIA

c) = 1.

I\

Both bounds are attained. The lower bound is attained only if pr = py = -+ - =
P, = punlessb = 0 and ¢ = n.

Proor or THEOREM 4. We first consider the maximum of f(p) = P(S = ¢|p)
in D. By Corollary 2.1, the maximum is attained at a point a = (07" 'L’
(using a notation similar to that employed in Section 2), where r 2 0, s = 0,
n—r—sz0, and

(n—1r—8a=mnp —s.
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If ¢ = np, let s be the greatest integer contained in np, and r = n — s — 1.
Then a = np — s and P(S = c|a) = 1. Hence, the (obvious) upper bound in
(26) is attained.

Nowlet0 < ¢ < np.If s > ¢, P(S = ¢c|a) = 0. But

P(S§0lp,p,°'~,p)>0

for all ¢ = 0. Hence, we must have s =< ¢. Since & = 1, we have n — r = np.
Ifn —r = np,thena = (01" ") and n — r > ¢, hence P(S = c¢|a) = 0. Thus,
we must have n — r > np. Consequently, we have the inequalities

0sZc<mp<n—r=n,

and this implies 0 < a < 1.
We have P(S < ¢) = Eg(S), where g(k) = 1 or 0, according as k = ¢ or
k > c. Hence, by (12),

fr2a@) = Anao@") ~ Ausoa(@”).
Ifa = (0a"" 1%, a' is of the form
2l = (0" an—u—v—211}).
Then,

An—2,k(aij) = (n - Z : :)) - 2) a’“"”(l . a)n—k—u—z

and

(n - U —0v — 2)! c—v—1 n—c—u—2
c——v)!(n—c—u-—l)!a 1-a

fn—2,2(aij) = (
f{n —u—v—1a—c+ v}

Since 0 < a < 1,weseethatif v = c=n—u —1, fn_2.2(a%) has the same
sign as

m—u—v—1)a—c+v.

Suppose that r > 0. By Theorem 1, with a; = 0, a; = a, we must have
fo22(0"a"""7'1°) < 0. Hence, (n — 7 — 8)a — ¢+ s = np — ¢ < 0. But
this contradicts the assumption. Thus, r = 0,a = (" '1°), (n — s)a = np — s,
0ss=ec

Suppose that s > 0. By Theorem 1, with a; = a, a; = 1, we must have
fo22(@ 1% £ 0, i,

31) m—sa—c+s—1=mp—c—1=Z0.
Hence, if ¢ < np — 1, we must have r = s = 0, ¢ = p. Thus, the second in-

equality (24) holds for 0 < ¢ < np — 1, and the bound is attained. (We postpone

the proof for ¢ = np — 1.)
Now suppose that n — s > 1. By Theorem 1, with a; = a; = a, we must
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have f, 2 28(@”*1°) = 0, ie, (m — s — 1)a — ¢ + s = 0. This is equivalent
to

(32) c+1—mnp)n—8) =n— np.

If ¢ = n — 1, this contradicts the assumption n — s > 1, and we must have
s=n—1.Ifc#n— 1 wehavec < n — 1 and n — s > 1, so that (32)
must be satisfied. Hence, if ¢ < np, the maximum of P(S = ¢) is Q(c, p), as
defined in (27) and (28), and the maximizing value of s satisfies (32) and is
equal ton — 1if ¢ = n — 1. (We postpone the proof of strict inequality in
(82) forc % n — 1.) Since a > 0and ¢ — s < n — s, we have Q(c, p) < 1.

We next show that if 0 < ¢ < np, the maximum can be attained only at a
point whose coordinates which are distinet from 0 and 1, are all equal. Suppose
the maximum is attained at a point a which has at least two unequal coordinates
which are distinet from 0 and 1. Let s be the number of unit coordinates in a.
By Theorem 2, equation (14), we must have f(a) = lifs < ¢,f(a) =1 — np + s
if s = ¢, and f(a) = 0if s > ¢. Since for 0 < ¢ < mp the maximum is positive
and less than 1, we must have s = ¢. By (15), with s = ¢, k¥ = 2, we must then
have g(c + 2) = —1, which is not true. Hence, the coordinates of a which are
not 0 or 1 must be all equal.

By Theorem 1, this implies that the inequalities in (31) and (32) are strict.
All statements of Theorem 4 concerning the upper bounds are now easily seen
to be true.

The statements concerning the lower bounds follow from the equation

PS=c¢|lpp=1—-—PS8=n—c—1|q),
whereq = (1 — p1, 1 — p2, -+, 1 — p,). The proof is complete.

Proor or TuroroM 5. Since Pb £ S<c¢) =P8 =c¢)— PS=b-1),
the Jower bound in (30) and the condition for its attainment follow from
Theorem 4. The upper bound 1 is attained at (0" °a’ °1%), where (c-b)a = np — b.

b. Statistical applications. The lower bound for P(b = S = c¢), which is given
in Theorem 5, shows that the usual (one-sided and two-sided) tests for the con-
stant probability of “success” in n independent (Bernoulli) trials can be used as
tests for the average probability p of success when the probability of success
varies from trial to trial. That is to say, the significance level of these tests
(which is understood as the upper bound for the probability of an error of the
first kind) remains unchanged. Moreover, we can obtain lower bounds for the
power of these tests when the alternative is not too close to the hypothesis which
is being tested. (Very roughly, the significance level has to be less than £ and the
power greater than 1.) We can also obtain a confidence interval for p with a
prescribed (sufficiently high) confidence coefficient and an upper bound for the
probability that the confidence interval covers a wrong value of p when the
latter is not too close to the true value. Details are left to the reader.

Theorem 3 can be applied in certain point-estimation problems. Suppose we
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want to estimate a function 6(p), and the loss due to saying 8(p) = tis W(p, t).
If the estimator ¢(S) is a function of S only and if W(p, {(S)) is a strictly convex
function of S for every p, then Theorem 3 implies that the risk, EW (p, {(8)), is
maximized when all the p; are equal. It follows, in particular, that if £(S) is a
minimax estimator under the assumption that the p; are all equal, it retains
this property when the assumption is not satisfied (with no restriction on the
class of estimators).

One may doubt whether these problems are statistically meaningful, since the
average probability of success depends on the sample size. The main interest of
these results to the practicing statistician seems to be in cases where he assumes
that the probability of success is constant, but there is the possibility that this
assumption is violated.



