A NOTE ON TRUNCATION AND SUFFICIENT STATISTICS'

By Wavrter L. SMite

Unaversity of North Carolina

1. Introduction and summary. Generalizing earlier observations by Fisher
and Hotelling, Tukey [1] showed that if a family of distributions admits a set
of sufficient statistics, then the family obtained by truncation to a fixed set,
or by a fixed selection, also admits the same set of sufficient statistics (this word-
ing is Tukey’s; we give a precise mathematical statement later). Tukey’s proof
assumed the relevant family of probability measures to be dominated by a fixed
measure function and made use of the factorization theorem concerning sufficient
statistics in this case. In the present short note we shall first re-prove Tukey’s
result without assuming domination (and, hence, without appealing to the
factorization theorem). Then we shall show that, under general conditions, if a
sufficient statistic has one or more of the properties of completeness, bounded
completeness, or minimality, before truncation, then it preserves such after
truncation.

The treatment is on the lines of the abstract discussion of sufficient statistics
given by Halmos and Savage [2]. We shall assume familiarity with the results
given in this latter paper. For definitions of completeness, bounded complete-
ness, and minimality, and for a discussion of the significance of these concepts
we refer to Lehmann and Scheffé [3].

2. On ¢-truncation. Let X be an abstract space of elements z, and let &, be
a (Borel) field of subsets of X. We write {us ; 6 £ 2} for a family of probability
measures on (X, §,), where @ is an abstract parameter space. The statistic ¢ is a
mapping of X onto another abstract space T, that is to say, we suppose for sim-
plicity, with no loss of generality, that T is precisely the range {{(z):x ¢ X} of
the mapping ¢. If B C T, we write t "B = {z:t(z) & B} for the origin of B. The
class of all B C T such that 'B ¢ &, is written & ; it is easy to show that &, is
a (Borel) field.

We shall write & for expectation based on uy . If f(x) is any (F.)-measurable
function such that &|f(x)| < «, for all § in some set A € Q, we shall say f(x) is
A-integrable. If f(x) is @-integrable, the conditional expectation &(f(x) | £) is given
by the Radon-Nikodym derivative

0 &(f@ |0 = 28
dugt™1’

where the measure vy is defined by

(2) dl’o = f(x) d[.lo .
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For a proof of this assertion, see [2]. Note that the derivative in (1) is arbitrary
on a set of (ust ')-measure zero. If it transpires that for each Q-integrable f(z)
the conditional expectation &(f(z) | t) may be taken as independent of 6 ¢,
then ¢ is sufficient for {us ; 6 € Q}.

Suppose that ¢(z) is a non-negative Q-integrable function; define Q, =
{0:8(x) > 0}; and define a new family {u§ ; 6 £ Q,} of probability measures
on (X, F,) by the equation

¢(x)

¢ __
3 dus = E (@) dus .

We call {uf ; 0 £ Q4} the ¢-truncation of {us ; 8 £ 2}. When ¢(z) is the charac-
teristic function of some set A £ ¥, then ¢-truncation corresponds to trunca-
tion to a fixed set, in the usual sense. When ¢(z) is bounded above it is easy to
see that it may be assumed to be bounded above by unity, and then ¢-truncation
corresponds to what Tukey [1] has called fixed selection. However, ¢(x) may
not be bounded above.

We sometimes write, for brevity, {us} for {us; 6 € Q}; {uf} for {us ; 6 £ Qy};
and {ue}s for {ue ; 0 € Qq}.

We shall also write & for expectations based on 4§ ; and if f(z) is any (F.)-
measurable function such that &|f(x)] < oo, for all 6 in some set A C @, we
shall say f(z) is A*-integrable. If a statement is followed by an expression like
[on], where 91U represents a family of probability measures, this will mean that
the statement is false, at most, on a set of probability zero for each measure of 91.
In this connection let us notice that, since {us}, dominates {uf}, we can always
replace [{uo} o] by [{81], [{uet "} 4] by [{wf}].

LemMa. If f(x) e QF -integrable, then ¢(x)f(x) is Qg-integrable.

Proor. If 6 £ @4, and we define X, = {z:¢(x) > 0},

81 6@ | = [ 8) 15@)] du

(806@)} [ 1@ du

= {ewp(x)} {87 |f@)]}
< .

Tueorem. (i) If t is sufficient for {us ; 0 € Q}, then t is sufficient for {uf ; 0 € Qu};
(ii) if, in addition, t is complete, minimal, for {us ; 0 € Qy}, then t is complete,
manimal, for {uf ; 0 £ Q4}; and a similar remark applies if t is boundedly com-
plete—provided, in this case, that ¢(x) is bounded above.

(Notice that we require ¢ to be complete, etc., for the subfamily {us ; 6 £ Q4}.
It is possible that ¢ be complete, etc., for {us ; 0 £ @} and not so for {us ; 8 £ Q4}.)

Proor. We observe first that by (1), (2), and (3), for 8 £ Q,,

@ dust” _ 8(g(x) | 1)
dupg t! gx) '’
where we may omit the suffix 8 in 8y(¢(z) | ) because ¢ is sufficient for {us ; 6 £ Q}.
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Let f(z) be any Q%-integrable function. Then by the lemma, ¢(z)f(x) is Q4-
integrable, and by the sufficiency of ¢ for {us; 0e9Q}, and hence for
{uo ; 0 Q4 C 2}, we may write &{f(x)¢(x) | t} independent of 8 £ Q4. Thus for
any A ¢ §, we have for all 6 £ Q,,

[ £0@o@ 19 dunt™ = [ | 1@o(a) du
= (8@} [ | 1@ dud, by 23),
- (8o@) [ 80@) | auit”,

- f 88(f@) | D8(d() | 1) dust™,

by (4). Since the last equation holds for every A ¢J,, we deduce from the
Radon-Nikodym theorem that

(3) 83 (f(z) | )8(@(2) | ) = 8(f(@)b(@) | 1), [{uat '} ol.

The function ¢(x) is non-negative on X, from which it follows that
&(p(x) | ) = O, [{ust ™} o). Write Ty = {t:8(p(x) |t) > O};thenforte T — T,,
we have &(¢(x) | ) = 0, [{ust'}4). Thus, if 6 £ Q,,

_ dudt™ .
it = [ W
-/;'—1'¢ Mo -7, dﬂo — Mol

- 8@ | 1) ; -
-/ ey el by @),

= 0.

We have therefore shown that &(@(z) | t) > 0, [{xét'}], and may deduce from
(5) that

&(f(@)e(x) | t) o1
ECCIDEE (i3],

Hence for any Q¢-integrable function f(x) there exists a version of &f f(x) | 0
which is independent of 6 ¢ @, . This is enough to prove that ¢ is sufficient for
{ud 5 0 Q). ‘

Next suppose that ¢ is a complete sufficient statistic for {us ; 0 € 24}. To prove
that ¢ is complete for {uf ; 0 £ @4}, we must show that if (¢) is an arbitrary
F,-measurable function such that &fy(t(x)) = O for all 8 ¢ Q,, then ¥(f) = 0,
[{udt}). However, if

& (f@) | O =

f Y(t) dudt = 0, all 0 £ Q,,
T
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it follows from (4) that
f Y(0)&(d(x) | ) dust ™ = 0, alleQ,.
T

But ¢ is complete for {us ; 6 £ 4}, and ¥(£)&(p(x) | £) is an (F;)-measurable func-
tion of ¢. Hence

(8@ 1) =0,  [{mt}4l.
Since we have already seen that &(¢(z) | t) > 0, [{us "} 4], the proof that ¢ is
complete for {uf ; 6 ¢ Q,} is thus evident.

When ¢ is boundedly complete we can employ precisely the same argument, as-
suming both ¢(#) and ¢(x) to be bounded so as to ensure, as is easily checked,
that ¢(£)&(¢(x) | t) is bounded [{ugt™} 4].

Lastly we deal with the minimality question. Suppose that s(z) is any statistic
defined .on X which is sufficient for {uf ; 0 ¢ Q). Write S = {s(z):z ¢ X} for
the abstract space on which s maps X. Then to prove that ¢ is minimal we must
demonstrate the existence of a mapping i of S on 7 such that t(z) = h(s(z)),
Hudt ).

Recall Xy = {z:¢(x) > 0}, and notice that since 0 ¢ Q4 implies &p(z) > 0,
it also implies that ue(X4) > 0. Plainly, uf(X — X,) = 0 for all 09, ; thus
it will be enough to prove the relation t(z) = h(s(z)), [{ft'}], merely on X, .
To this end, let us define a new statistic

si(x) = s(x) if zeXy,
=z if zeX-X,.
Since s(z) is obviously a one-valued function of s;(x), it follows that s,(z) is also
a sufficient statistic for {uf ; 6 ¢ @4} (by Theorem 6.4 of Bahadur [4]). We
write S; = {&(z); r € X} and &,, for the (Borel) field of all subsets B C S; such

that s7'B ¢ 5, .
If we set

ze Xy,

-1
¥(2) @)’
=0, zeX — X,.

then ¢(x) is a non-negative (.)-measurable function on X; and for 8 £, ,

Ehy(z) = []r (}Tlxjdu?,

- 1 ¢()
(6) = x, @ m dps by (3),

_ e (Xo)
& ¢(2)
It follows from (6) that y(x) is Q3-integrable, and so we may consider the y-trun-

cation of {uf ; 6 £ 2,}. We shall employ obvious extensions of our notation, and
observe that by (6), @3, = {6; 0 £ Q,, &f¢(z) > 0} = Q, . Hence, forall 6 ¢ Qs ,

< o
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o i’ =0, ifzeX — X,,
= o
B ¢(igffz3)(¢) gﬁz) dua » by (3) and (6),
® - ,;?L);;) ’ ifreX,.

Because s, is sufficient for {uf ; 0 £ Q,}, and because Q% = Q,, it follows
from the first part of our theorem that s; is also sufficient for the y-truncation
{ud¥ ; 0 £Q,). Let f(x) be any Qg-integrable function. Then we notice that for

0 £Qy, by (7) and (8),

1
& @] = — L 17@)] dus < o,

i.e., f(x) is 98%-integrable; and by the sufficiency of.s; there must exist a function
g(s1) = 8""'(]’(1:) | 1) which is independent of 6 £ 24, is such that g(s:(z)) is

(F.)-measurable, and is such that for any B ¢ &, and all 8 £ Q,,
[ 5@ aus* = [ | g dud.
‘l_lB 81'13

This implies, by (7), that

-/; ns-le(x) dp:‘b = f —1p g(sl(x)) d”'g-ﬁ,

Xynsi

and so, by (8), that

©) L@ o= [ o0 dur.

Finally, define an (F.)-measurable function

g*(s1(z)) = g(s:1(x)) ifse8,1e.,ifxeX,

Thus
j;l_le(x) dps = j;wrlsf(x) du + f( f(x) due

X—X4)nsy 1B

= [ o) du+ [ 0*(5:@)) du
Xynsy1lB (X—Xy)ns7 1B

= [, 0@ du,

1

g9(si(z)) (= f(x)) ifseX — X4,ie,ifceX — X,.
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the last equality following from (9). Since f(z) is an arbitrary Q4-integrable func-
tion, this last equation, being true for all B ¢ &, , shows that s, is a sufficient sta-
tistic for {us ; 9 £ 2,}. But we are given that ¢ is minimal sufficient for {u ;0 Q).
Hence there is a mapping h of S; onto T such that ¢(z) = h(su(z)), [{uet '} sl.
If we now restrict z to X, it is evident that #(z) = h(s(z)), [{ ust™}], as was tc
be proved.
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A CENTRAL LIMIT THEOREM FOR MULTILINEAR STOCHASTIC
PROCESSES

By EMANUEL Parzen
Stanford University

1. Introduction. Let the random sequence X(¢) be observed fort = 1,2, - -- ,
and let S(n) = X(1) 4+ --- + X(n) be its consecutive sums. The random se-
quence may be said to obey the classical.central limit theorem if, for any real
number a,

(L.1) 31_1.15‘10 Prob {%@ < a} = -\-/-1—5; ‘[: eV gy,

Because of the importance of the central limit theorem in establishing the
properties of statistical tests and estimates, it would appear that in order to
develop a satisfactory theory of statistical inference for stochastic processes
which are random sequences of dependent random variables, it is necessary to
establish a central limit theorem for such processes. Diananda [2] has proved
a central limit theorem for discrete parameter stochastic processes which are
linear processes. We here introduce a class of stochastic processes which we call
multilinear processes, for which we prove a central limit theorem. The results
are capable of extension to the continuous parameter case, but we do not do so
here.
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