ESTIMATES FOR GLOBAL CENTRAL LIMIT THEOREMS!

By Rarpa PALMER AGNEW

Cornell University

1. Introduction. Let £, £, - - - be independent random variables having the
same d.f. (distribution function) F(z). Thus, foreach k = 1,2, 3, ---
(1.1) Prit < 2} = F(x), —n < xr < o,

where F(x) is a real monotone increasing function for which F(— o) = 0 and
F(w) = 1. Let ¢(t), defined by

(12) o) = /_w e dF (z), —w <t < o,

0

denote the c.f. (characteristic function) of F(z). We suppose that
(1.3) f x dF(z) = 0, f 2 dF(z) = 1,

so that F(x) has mean 0 and standard deviation 1.
The d.f. F,(z) and the c.f. §.(z) of the sum & + & -+ -+ + &, are such that
é.(x) = [¢p(x)]" and hence

(19) WOr = [ o iFu(@).

The d.f. of the combination
bt+&+ -+ &

nl/Z

(15)

is then F,(n'2%) and we denote this by F.(z). It’s c.f. is [¢(n""’1)]", that is,
(1.51) [p(n )] = f ¢"* dF ().

The hypotheses (1.3) imply that the formulas (1.3) hold when F(x) is replaced
by F.(x). A special case of the central limit theorem asserts that, for each indi-
vidual z in the interval — o <z < «,

(16) lim F,(z) = &(z)

where ®(x) is the Gaussian d.f. defined by
_ 1 i —u2/2
(1.61) ®(z) = B [w e du.

For an exposition of the above facts, see Cramér [2].
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GLOBAL CENTRAL LIMIT THEOREMS 27
It was recently shown by the author [1] that if p > %, then

17) lim [ | Fu@) — 8() [ dz = o.
For each p > 3, (1.7) is a global version of the central limit theorem which com-
plements the local version (1.6) in which values of z are considered one at a time.
In fact, it was shown in [1] that it is possible to pass from one to the other of
(1.6) and (1.7) by applications of theorems on convergence of sequences of d.f.’s.
However, [1] did not provide a means of calculating the numbers C$?’ defined by

(18) ¢ = [(1F@ - 8@ P d

and of determining the rapidity of the convergence to 0 of C¥ as n — .

Section 2 gives optimal inequalities satisfied by d.f.’s having mean 0 and
standard deviation 1. Section 3 gives a formula for the constants C?’ for the
interesting case in which p = 2. Section 4 shows that if F(z) is the symmetric
binomial d.f., then

(19) cr=-11 40 (_15>
n

n 6xl/2

Section 5 shows that if F(z) is the d.f. of a random variable uniformly distributed
over the interval —3!2 < x < 32, then C’ converges to 0 much more rapidly
because in this case

(1.91) c»-1_3 +0(1>.

n? 1280712 n?

Finally, inequalities are given for appraisal of the constants in (1.91) when n
is fixed and not necessarily large.

2. Some optimal inequalities. In order to obtain the formula for C{¥ given in
Section 3 we need estimates of differences of d.f.’s satisfying (1.3). While esti-
mates given in [1] would serve our purpose, it is of intérest to know the best esti-
mates and we proceed to derive them. We start with the following known

‘theorem.
TaeEOREM 2.1. If F(x) is a d.f. for which

(2.11) f x dF(z) = 0; [ z* dF(z) = 1,
then
1
< —_
(2.12) 0= F) < 700 z <0,
and
(2.13) 1 I < p@) <1, z 2 0.

”-1+:1:2



28 RALPH PALMER AGNEW

Moreover the function (1 + z°)™" ¢s the least function such that (2.12) and (2.13)
hold whenever F(x) is a d.f. satisfying (2.11).

This theorem gives a special case of a Tchebycheff inequality for bounds of
d.f.’s having prescribed moments; for a recent treatment of the subject and for
references to literature, see Royden [3]. An unmotivated proof of the theorem
can be given in a few lines as follows: Let xo be a positive value of = for which
F(z) is continuous and let yo = F(xo). For each constant ¢ for which ¢ = 0 we
obtain, with the aid of (2.11),

os [ * (o — o) dF (z)

A

2.14) 1= [T e [Cware) + ¢ [ ape

[] 0
<1 — 231 — yo) + 2ca0(l — yo) — Yo

Clearly 3, > 0, because if 3 = 0, then F(z) = 0 when = £ 0, and (2.11) is
violated. Hence we can put

(2.15) ¢ = —ao(l — yo)/yo
in (2.14), and find that y = 1 — 1/(1 + 2,)°. Thus (2.13) holds wherever

F(z) is positive and continuo;s and hence wherever x = 0. To prove (2.12),
we apply (2.13) to the d.f. [l — F(—z)]. The last part of the theorem follows
from the fact that if F(z) = 0 when 2 < —a7",
(216) F(.)__l _1_ ._1< . .
. r) = _1+T§7 —xo=3«<.’bo,
and F(z) = 1 when x = x0, then F(z) is a d.f. satisfying (2.11).
TueoreM 2.2. If F(x) and G(x) are two d.f.’s for which (2.11) and

(2.21) [ z dG(z) = 0, f 22 dG(z) = 1
hold, then
(2.22) |F(z) — G(3) | éﬂl—— Cw <z <.

Moreover the function (1 + 2°)™" is the least function such that (2.22) holds when-
ever F(z) and G(x) are d.f.’s satisfying (2.11) and (2.21).

The conclusion (2.22) follows from (2.12), (2.13), and the analogous inequal-
ities obtained by replacing F(z) by G(x). To prove the last part of the theorem,
let 2o > 0. Let € > 0. It follows from Theorem 2.1 that there is a d.f. F(z) satis-
fying (2.11) for which

1
(2.23) F(z) <1 — I+

+

N

o

X
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If > 0 and G(x) = 0 when = < —(28) ™, G(x) = hwhen —(2h)™* 2 2 <0,
G(x) =1—h when 0 =z < (2)™”, and G(z) = 1 when z = (2k)"?, then
G(z) is a d.f. satisfying (2.21). By making 0 < h < ¢/2, we obtain

(2.24) G(mo) > 1 — ¢/2.
Hence
(2.25) | F(zo) — G(zo) | > 77 1 + e

It follows that (2.22) cannot be improved when x > 0, and a slight modification
of the argument shows that it cannot be improved when x = 0. That (2.22)
cannot be improved when z < 0 follows from the fact that the inequality

(2.26) [l = F(=2)] = [l = G(=2)]| = A + ")

cannot be improved when z > 0. Thus Theorem 2.2 is proved.

In case G(x) is the Gaussian d.f. ®(z), it is possible to replace the right member
of (2.22) by a smaller function of z. Theorem 2.1 and the rather crude fact that
if z < 0, then

(2.3) [+ 2% — &@)] 2 @) — 0,
that is,

1
(2.31) ®(z) < D)
imply that if F(x) satisfies (2.11) then
(2.32) [F(z) — ®(z)| = i + — &(x), z < 0.
For z > 0, the corresponding inequality is

(2.33) |F@) — #(2)| < 77— + , — [1 — &(2)], z > 0.

The right members of (2.32) and (2.33) cannot be replaced by smaller functions
of z. If F(x) satisfies (2.11), then (2.32) and (2.33) can be used to show that

f_:lF(x) — () | do §2[:[1—_:—ﬁ—d>(x):|dx

=a — (2/7)'® = 23437 - ..

(2.34)

It should be expected that the estimate in (2.34) is rather crude, but the last
member cannot be reduced below (2/x)Y2 = 79788 - - - because if Fo(z) is, for
each a > 1, the d.f. satisfying (2.11) for which F,(x) = 0 when 2 < —a, F.(z)
= 1/2a’ when —a £ z <0, F,(zx) = 1 — 1/2a® when0 < z < a, and F,(z) = 1
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when = = a, then
235) tim [ |Fue) - #@) | dr = 2 [ 8() de = <§>’ ’
a»w0 Y—o0 —c0 ™

While discussing Theorem 2.1 with the author, Aryeh Dvoretzky remarked
that similar but simpler considerations should produce inequalities better than
(2.12) and (2.13) when F(zx) is a symmetric d.f. satisfying (2.11). A d.f. F(z) is
called symmetric if F(z) — + = 3 — F(—x), or F(x) + F(—z) = 1, for each
z for which F(z) is continuous. A symmetric d.f. F(x) satisfies (2.11) if and only
if
24) [ #ar@ = 4.

0
We prove the following theorem.
THEOREM 2.5. If F(z) is a symmetric d.f. for which

(2.51) f_ ::v dF(z) = 0, f_ : 2 dF(z) = 1,

then

(2.52) 0 < F(zx) £ 1/22°, —o <z = —1,
(2.53) 0 < F(z) <%, —-1=2z<0,
(2.54) 1<F@ =1, 0<zr=<1,
(2.55) 1 —1/22" < Fx) £ 1, w = 1.

Moreover the functions 32* and % are optimal functions for which (2.52), (2.53),
(2.54), and (2.55) hold wherever F(z) is a symmetric d.f. satisfying (2.51).

Let 29 be a positive value of z for which F(z) is continuous. Then F(z,) =
F(—x) = 1 — F(zo) and hence F(xo) = 3. Thus (2.54) holds, and the lower
bound cannot be increased because if F(z) = 0 when x < —1, F(z) = } when
—1 =<z < 1,and F(z) = 1 when z = 1, then F(z) is a symmetric d.f. satisfy-
ing (2.51). We find also that

0

(2.56) vz [ Zar@ 2 [ o dr@) = 40~ Fa),

and hence F(zo) = 1 — ix5. This implies (2.55). The left member of (2.55)
cannot be increased because if 20 = 1.and F(z) = 0 when z < —z, F(z) =
1/2z; when —20 < 2 < 0, F(z) = 1 —1/22 when 0 < z < 0, and F(z) = 1
when z = zo, then F(x) is a symmetric d.f. satisfying (2.51). The facts involv-
ing (2.52) and (2.53) follow from applying the facts involving (2.54) and (2.55)
to the d.f. [l — F(—z)]. Thus Theorem 2.5 is proved.

The next theorem can be obtained with the aid of Theorem 2.5 just as Theorem
2.2 was obtained with the aid of Theorem 2.1.

TuEOREM 2.6. If F(x) and G(x) are symmetric d.f.’s for which (2.11) and (2.21)
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hold, then

(2.61) |[F(z) — G@=) | = 3, lz] =1,
and

(2.62) | Fz) — G2) | = 1/24%, lz| = L.

Moreover & and 1/2x" are the least functions of x such that (2.61) and (2.62) hold
whenever F(z) and G(x) are symmetric d.f.’s satisfying (2.11) and (2.21).

3. Formulas involving d.f’s and c.f.’s. We now obtain some formulas in
which we can replace F(z) by F.(x) and ¢(t) by [¢(n~"*t)]". Use of (1.2) and the
formula

(3.1) et = f &' do(z)
gives

o0 — = [ air@) — o)

—0

(3.2) - .
- - f_ F) — ®(@)] dee’™™ = —it ]_ [Fz) — ®(z)]e"™ dx,

the calculations being valid because the integrals exist, [F(z) — ®(x)] — 0 as
2] — o, and €' is absolutely continuous. Hence

(3.21) U O - f_: (F(z) — ®(2)]e"™ da.

(2m)7t @
Since (1.3) holds and (2.21) holds when G(z) = ®(x), it follows from Theorem
2.2 that, for each p > 0,
1
— P < - —

(33) |F(z) — &) |° < TF D o <z < o,
The function in the right member of (3.3) being integrable over — o < & < «
when p > %, it follows that [F(x) — ®(x)] belongs to class L, for each p > 3.
Since [F(z) — ®(x)] belongs to class L, we can use (3.21) and the inversion for-
mulas for Fourier transforms to obtain

(34) Fla) — #(@) = [6(t) — & e de.

1 f ° 4
@2m)12 L, (2m)V2t
Use of either (3.21) or (3.4) and the Parseval formula for Fourier transforms
gives
—$2/2

$) — ¢ © "t ¢ dt.

35) [ : |F@) — 8 [ dz = & [ :
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Because [F(z) — ®(z)] belongs to class L, , it follows (3.21) that the left mem-
ber of (3.21) is, when properly defined at ¢ = 0, continuous over —® < ¢ < o,
Using (3.21) and (3.3) with p = 1 gives

0
t ¢ =_“1+x2dx""ﬂ'.

Since (1.2) implies that | ¢(¢) | < 1, we have also

(3.51)

—12/2
(3.52) }"S(t)—“tﬁ—— < % t % 0.
Therefore
-tz
(3.53) ["’(t)—te— < K,

where h(t) = «° when |¢| < x/2 and h() = 4/|t|* when [¢| = =/2. This
shows that the integrand in the right member of (3.5) is dominated by an in-
tegrable function independent of the particular d.f.’s and c.f.’s in (3.5). This
fact and (3.5) show, without use of other facts relating d.f.’s F,(z) and their
c.f.’s ¢a(z), that if ¢,(f) — ¢ for each t, then

(3.6) lim [° |Fo(z) — 0() [P dz = 0;

only the Lebesgue criterion of dominated convergence for taking limits under
integral signs is needed to draw the conclusion (3.6). When the conclusion (3.6)
has been attained, Theorems 3.2 and 3.1 of [1] become applicable to establish
(1.6) and then (1.7) for each p > 1.

In terms of notation of the introduction, use of (3.4) and (3.5) gives

, © —4\1n —12/2
3.7) Fu(z) — &(z) = 5’; [ [p(n t)lt — M g,

and

G7) [ P ~ 9@ [de = o [
o0 21r 0

It is frequently convenient to make a change of the variable of integration in-

the right member of (3.71) by replacing ¢ by n'’t so that (3.71) becomes

" ® no__ [t
619 [ 1R - e - 1L [ |BOr =T

[¢(n—l/2t)]n _ 6—12/2 2

14

dt.

2 .
dt.

Since (1.2) implies that ¢(—¢) and ¢(¢) are conjugate complex numbers, the in-
tegrand in the right member of (3.72) is an even function of ¢ and therefore

i 1r° l¢(t)]" _ [6—12/274. 2

n\2 7 Jo t

dt.

ON | " Fa@) — 8@) [ dz =

Similar modifications of (3.5) and (3.71) can be made.
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There are numerous formulas for inverting the Fourier-Stieltjes transforma-
tion

(38) o) = [ ¢ aF (),

that is, formulas giving F(z) in terms of ¢(f). Some of these formulas are given
in the book [2] of Cramér. In cases where it is known that F(z) is a d.f. satisfying
(1.3), the formula obtained from (3.4), that is

1 © _ ot
(3.81) Fg) =& (2) + %r f o0 — te ¢ dt,

may be most convenient when one wishes to study the difference between F(x)
and ®(z). In particular, it may be true that (3.71) or (3.73) is the most fruitful
source of information about the left member,

4. The symmetric binomial d.f. It can be expected that, at least for the
case p = 2, considerable information can be obtained about the constants C‘2’
in (1.8) for special d.f. F(z) and for classes of d.f. F(x) having 3 or more moments
satisfying specified conditions. Before more extensive investigations are under-
taken, it seems desirable to have rather precise information about the behavior
of the constants C') for the case in which F(z) is the symmetric binomial d.f.
usually associated with games of heads and tails. Thus we let F(z) = 0 when
< —1, Fz) = 3 when —1 =2 <1, and F(z) = 1 when z = 1 and seek
information about the constants B, defined by

@4.1) B, = [ |Fuz) — 2@ [ d.
Since ¢(t) = cos ¢, it follows from (3.73) that
_ 11 h —t2/2n n Zdt
(4.11) B,. = ’I'—l,l—/é 1—r A I [e 2] [COS t] t? .
Therefore
(4.12) B, = B + B + B + BYY,
where
a _ 11 [ e—nﬂ
(4'13) Bn - ;va‘ ; .2 —‘t?— dt,
2) _ 1 1 © —2(008 t)ne—nt2/2
® _ 11 x/2 (e—lzl2)n _ (COS t)n 2
(4.15) B, = vl ; dt,
) 2n
(4.16) B = L1 [" (eostiT g,

N2 Jes2 2
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As we shall show by giving more precise estimates, BS” and B approach zero
with exponential rapidity, BY is of order at most 1/n% and B%” is of order 1/n
so that B, is of order 1/n.

We find that
—nt2
h) _ _1- i /»w e nt
o 0 < B, T B 2nt dt
. 1 4 -—nt2 1 4 —nr?/d
<7?/—27?4 x/2 tht n/27r4 b
and similarly
az)  BY s G R [ et - e
w /2 T
To estimate B’ we use the inequality
(4.23) o< —eost 1 0<t<Z.
t4 127 2

One way to prove (4.23) is to use the elementary power series expansions of e”
and cos z to find that the function in (4.23) has a power series expansion D, axt™
which is, when 0 < ¢ < /2, an alternating series converging to a positive
number less than @y which is ¥%. Using (4.23) and setting momentarily b =

¢'"? a = cos t, we find that @ < b and hence
(4.24) 0<b — b —a E " < (b — a) E b,
k=0
so that
(4.25) 0<bd"—a" <nbd—a)d",
and hence
b — a" nt ._(,,_1“2/2
(4.26) 0< - < ~1—2
This and (4.15) imply that
3 32 1 fm 6 —(n—1)t?
(4.27) B, <n Eveg) te dt,
and hence
(4.28) BY® < »n*? L el f " £ dt
) " 144+ o ’
Making a change of the variable of integration in (4.28) gives

(4 29) B(3) < 1 1 w24 (r/2)nll2 tﬁe_tz i
) n? 144r ¢ o ’
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Using the standard formula

g _ @k
with £ = 3, gives
5 7,2/4 1

(3) -
(4.292) B,. < W € ’IZ,2 .

To estimate BYY, we start with (4.16) to obtain

11 f"””z (cos )™ 11 f"’z (cos )™ di
k I

z dt = — = leost)
1?1 i 21 Jkn—ny2 ? n'2 = a2 (b + t)?

(43) BY =

and hence

/2
(4.31) BY = 1 [ 86 cos o
n2 g Jp
where
S 1
432 > 1
(4.32) 8O = X o
But
0 w2
(4.33) f S(t)(cos t)™ dt = f S(—1)(cos &)™ dt.
—x/2 0
Therefore,
- (9 11 2
(4.4) BY = 1 [ sieos 0™ ab
nl2 g Jy

where S;(1) = S(1) + S(—t) and hence

> 1 1
. t) = .
(141 50 = 2| G+ e )
The function .S( t). is an even function which is analytic except for poles at the
the points =, +£2x, --- . Its derivatives are easily calculated from (4.41);

the first one is

, 1 3k + &

42 t) = -
(142 50 = 2?::[ (kr +t)3+ (o — t)s] 4t2(k21r2 — )
This shows that S;(0) = 0 and that Si(f) > 0 when 0 < ¢t < =, so that S(t)
is increasing over the interval G = ¢ < #/2 in which we are 1nterested Use of
(4.41) and the formulas

2

1 at = 1 s
(4.43) 27_6" ;;(%—-1)2—8—
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shows that

(4.44) Si(0) = 4, S(@:l—%

™

While we shall not use the fact, we nevertheless pause to remark that S,(¢) is an
elementary function. Use of (4.41) gives

(4.45) &®=§£[—1+k1] mZ

kr 4t k=1 I"21r —
But, as is shown in textbooks on series,
<N | _l—tcott _sint—tcost
(4.46) kz-; ey 22 2£ sin ¢
when ¢ # 0, 7, &2x, - - - . Therefore, for these values of ¢,
d(1 1 1 _ & —sint
(447) S0 =5 ({ — cot ‘) “w TR Fewl
Using (4.4) and the fact that S;(0) = 3, we obtain
(4.5) B\ = BY + BY,
where
(5) — _}_ _1_ ? 2n
(4.51) B, a7 3 ), (cos £)*" dt
and
® } 1 1 /2 .
(4.52) By = - [Si(®) — S1(0)](cos &) dt.
n?a by

Since S;(¢) is increasing over 0 < ¢ < /2, we see that BY > 0 and hence that
B > B®. The integral in (4.51) is elementary and well known. In fact
/2 @n)! =
2n — -t
) (cos " dt = 2 in! 2
(4.53)

This and (4.51) give

-t o(d)
(4.54) B —ﬁm[l =+0(=)|

To estimate BYY, we put the integral in (4.52) in the form u(t) dv(t) where u(t) =
[Si(t) — Si(0)]/sin ¢t and v(t) = —(cos "t /(2n + 1). Since S1(0) = 0, it
follows that u(f) — 0 as ¢t — 0. Hence integration by parts gives

1 m, n
(4.55) B = n}” 11r 1 ' (t) (cos )" dt.
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Properties of Si(f) imply that «’(¢) is bounded, say [w'(f)] < M, over 0 < t <
7/2. Since |cos ¢ =< 1, it follows that
1

1/2

(4.56) 0<B® <« L 11 u f " (cos O™ dL.

Use of (4.53) gives
o<l 1UT Ly o(1)]
(4.57) 0<B <—s—m5|l-g T0(5)|

Hence B'® = 0(n™%. Since also BY = 0(n™®), B = 0(n?), and B® =
0(n™?), it follows from (4.54) that
0 (3):

This is the result in (1.9) of the introduction.

We conclude this section with two remarks. It is well known that the d.f.
F.(z) has jumps in the neighborhood of z = 0 asymptotically equal to (2/x)"*n "'
and that the least upper bound M, of |F.(x) — ®(x)| is asymptotically half of
these jumps, that is, (37)"*n"""*. The resultin (4.58) shows that the set of values
of z for which |F.(x) — ®(z)| is near its least upper bound cannot have large
measure even when 7 is large. If we let 0 < 8 < 1 and let E(6) denote the set of
values of x for which |F.(z) — ®(z)| > 03 )*n"? then we have

1_L+OGQ=[JE@—¢um

n 6wl

S IP*

(4.6) 7 . 7
> £ 21 N =%IE(0)I’

where |E(8)| is the measure of E(8), and hence
(4.61) |E@®6)] < ='"*/36° + 0(n™").

The average root-mean-square deviation of F,(z) from $(x) over the interval
—n'* £ 2 < n'?, where 0 < F.(z) < 1is

nll2

[
%l_ﬂ —nll2

47 =ﬁ%{[|F@—¢w|m+o(>
1 1 1\
= gt [6'771'??; +0 <1?>:| (121r1/2)1/2 n3/4[ +0 ( )]
0216831 1
o)

12
[ Fo(z) — o) | dx]
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6. The uniform distribution. Let U,, Us, U;, - -+ be defined by

5.1) U, = f | Fo(z) — () [ da,
where F(z) is the d.f. of a random variable uniformly distributed over —a <
z = a. Thus F(z) = Owhenz < —a, F(x) = (x + @)/2a when —a £ ¢ < a

o

and F(z) = 1 when ¢ = 2a. This d.f. has mean 0, and we assume that a = 3"

so that the standard deviation is 1. The c.f. is
5.2) ¢ (t) = (sin at)/at,
and it follows from (3.73) that

_ 11 © sin at " 22 i2 dt
(53) U=z || (52) - e s
To estimate U, , we let
(5.31) 6, =n"logn
and set
(5.32) Us=UP + UP,
where
11 ®|/sin at\" ez 2t
(1) - - = _ nt2/2 a
(5.33) Un ni2 g Js < at > ¢ { 2’
11 ] /sin at\" g I dE
2) __ it nt2)2 ¢ G
(534) U = n2 g Jo ( at > I

For each sufficiently large n we have

sin at sin ad —nt2/2 s
| § n’ € nt2/ < e 'no,,/2’
at ad,

(54)

i
when ¢ = 6, . Hence, for these values of =,

<sin a6n>” 4 it !2 dl

ad, | e

11¢°

n2 g Js,

1 2 sin oy, 2 ..ms,?:l .
i () )
in the last step we used the inequality (z + y)* < 2(2* + ). This and (5.31)

imply that UY’ = 0(n™) for each k and in particular that U = 0@n™?).
To estimate Uy, we begin by estimating the quantity

<Sin at)” _ e._nt'l/z |
at ]

yw

A

(5.41)

lIA

(5.5) Q=
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in the integrand in (5.34). Since @ = 3'%, we have

sin af £ 38t o
(5.51) . — 1l gt gt 0@,
sin at & ¢
(5.52) log = "3 5t 0(&),
and hence
(sin;zt)” _ e—nt2/2e—nt4/zo+0(nt6)
a
(5.53) .
= g™ I_l — 12% + o(né®) + O(nzts)].
Therefore
(5.54) Q =™ [20 0(nt) + o(n t”)]
and
2 —nt? 8 10
(5.55) Q/t)° = e [400 + 0% + 0(n’t )]
Hence
(56) U(3) + U(4)
where
n’tt
(3) __ —nt2
(5.61) U’ = n"“’ f 100 dt,
(5.62) U = 5}72 1 fo "0 + 0 e .
Using (5.31) and making a change of the variable of integration in (5.61) gives
o _ L1l o
(5.63) e ~7724—007rf0 W™ du,
and hence
1 _ -3 6 u?
(564) UP =007 + o, o [ du.

Using (4.291) with £ = 3 gives
3

@) _ -3
(5.65) UP = o™ + L e
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The method used to estimate U shows that U’ = 0(n™°). This and the fact
that U = 0(n™®) imply that U, = O(n_a) + U'Y and hence that

3
n? 12807172 °

This is the result given in (1.91) in the introduction. The dominant term in (5.66)
has the decimal approximations

1 3 0001322319 _ 1
n? 12807772 n? 756.2470n

(o 03634> 1
n (27.50007)%

To complement (5.66), it is of interest to have an inequality which gives in-
formation about U, when n has a fixed value, say 10 or 25 or 100. We obtain
such an inequality by use of more precise relations between ¢(f) and e
Where 6 is a positive number to be determined later, we start with (5.3) and put
U.. in the form

(6.7 Un =V + V2,

(5.66) = 0™ + 1

(5.67)

where
m _ 1 1 sin at\" =ty }Z(E
(6:71) Ve’ = n2 g Jo at S t
@ _ 11 “| (sin at\" _t2\n tdt
(5.72) 1 78% —W; ) o — (e /) ! 7

In estimating V.’ we simplify formulas by setting

_t2/2

(6.73) B =" A = (sin at) / at.

Use of the elementary power series expansions of ¢” and sin x and the fact that
a = 3" gives

3 2%
(5.74) B—A= ,;( b’ I:Zklc' (2—1’-}-—17':|t ’
and hence
B i 43k‘r2 } 2k
(5.75) ;; (=1) [2k+2(k + 2)r (2k + 5)! g

Rewriting (5.75) to display the numerical values of the coefﬁmentb of the first
terms, we have

B — A 1 13
(5:76) % m T 200~

‘We now let
(5.77) 5 = (24/13)"
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When 0 < ¢ < 8, the series in (5.75) and (5.76) is a convergent alternating series
of the form ug — % + uy — --- in which u > 0 and uwp > u; > uy > -
Hence, when 0 < ¢ < §,

(5.78) 0<s5—si0! <5 <35
Thus 0 < 4 < B and use of
n—1
(5.79) B"— A" = (B —A) ) A'B""™* < n(B — A)B™*
k=0

gives

Bn - An t _(,,_1”2/2
(5.8) 0< — < 55 ¢ .
Use of (5.71), (5.73), and (5.79) gives

s
(0 sz 1 f 6 —(n—1)t2
(5.81) Ve <n 007 le dt.
Making a change of the variable of integration in (5.81) gives, when n > 1,
712 Vn-13
(1 _m y'1 1 f we ™’ du.
(5.82) Va' < (n — 1) n? 4007 Jo
and use of (4.291) gives
7/2
) n 1 3
(5.83) Ve’ < <n = 1) 7 1980x17
Starting with (5.72) we find that
@ 12 sin at\*" —mt? | dt

(5.84) Va _nm A [( p > + e |z

1/2

Since |sin af| < 1, a = 3", and § > 1 we obtain

@» 1 2 [—2"“1 -ﬂ"] _Lif 1 L ]
(585 V< s L k=1 el e &

But 38° = 72/13 = 554 > 5.5 and ¢ = ¢/*® = ¢"*** = 6.35 > 5.5. Since
= 4.25 > 4, it follows that
@ 1 1
(5.86) Ve < G5

From (5.7), (5.83), and (5.86) we obtain

1 1 7/2 3 1 1
(6.9 Un < (n = 1) 128077 7 3B E)
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Even for values of n as small as 5, the second term in the right member of (5.9)
is substantially less than the first term. When n = 10, the dominant term in
(5.66) has the value 0.00001322. The last term in (5.9) is less than 10~ and
(5.9) shows that Ui < 0.0000192, the factor [n/(n — 1)]"* having the value
1.4519 when n = 10. When n = 100, the dominant term in (5.66) has the value
0.0000001322 and (5.9) shows that Uy < 0.0000001369.
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