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0. Summary. Orthogonal matrices having elements depending on certain
random vectors provide a useful tool in various distribution problems in multi-
variate analysis. The method is applied to the derivation of the distributions of
Hotelling’s T and Wilks’ generalized variance, the Bartlett decomposition, and
the Wishart distribution.

1. Introduction. The purpose of this paper is to demonstrate a method for
treating some distribution problems in multivariate normal analysis, and to
apply this method to the derivation of the Wishart distribution, the Bartlett
decomposition, and the distributions of Hotelling’s T2 and Wilks’ generalized
variance. A large number of different derivations of these statistics exist in the
literature (1], [2], [4], [6] to [23]), and which one is preferable is a matter of taste.
The motivation for presenting yet another derivation of well-known results is
that it is believed that the method. presented here leads to the results faster
than existing derivations, without the necessity of extensive preparation, and
almost without computations. A further advantage of the method is that it
leads immediately to a representation of the statistics mentioned in terms of
combinations of independent normal variables. More specifically, apart from
constant factors, Hotelling’s T? is obtained as an F variable, Wilks’ generalized
variance as a product of independent x? variables, while the Wishart distribu-
tion is simply related to the joint distribution of independent normal and x*
variables (Bartlett decomposition [3]). These are known facts, stated explicitly
by some authors ([2], [6], [16] [18]), but clearly demonstrated by only few deriva-
tions in the literature: Elfving [6] and Ogawa [16] obtain the Bartlett decomposi-
tion; Anderson [2] and Elfving [6] obtain the generalized variance essentially
as a product of x? variables; while Anderson [2] obtains T? essentially as an F
variable in a rather indirect way, by relating it to a multiple correlation coeffi-
cient. The method presented in this paper will lead to the results in a simple
direct, and unified way.

It can be expected that orthogonal transformations provide at least as power-
ful a tool in the multivariate case as in the univariate case. Indeed, an example
¢an be found in the work of James [12]. The method followed in the present
paper will also lean very heavily on orthogonal transformations of random vari-
ables. In order to utilize this tool te the utmost, most of the useful transforma-
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tions will be performed with orthogonal matrices, the elements of which depend
on a random vector. This idea is not new, but is often couched in geometrical
language.? In this respect the treatment in this paper will have something in
common with that of Elfving [6] and Ogawa [16]. However, the method followed
here does not seem to have appeared in the literature in the same form.

2. Methods and main results. Notation: Boldface symbols denote matrices
and column vectors, prime denotes transposition, 0 is a zero vector, I,ann X n
identity matrix, € an orthogonal matrix. If A is a square matrix, then | A |
denotes the absolute value of its determinant, and tr A its trace. 9(y, X) denotes
the distribution of a normal random vector with mean w and covariance matrix
X, 91(0, 1) the distribution of a normal variable with zero mean and unit vari-
ance. A x° variable with n degrees of freedom is denoted by x5, an F variable
with n, and n. degrees of freedom by F,, ., . Of a k X n matrix of variables u;, ,
the 7-th row is denoted by U?, the r-th column by Ug, .

The dominant method used throughout this paper is transformation by an
orthogonal matrix, the elements of which depend on a random vector. The
usefulness of this method depends on the following lemma.

LemMa 1. Let X be a random vector with components x, - - - z. , and let Q(Z)
be a random n X n orthogonal matrixz whose elements depend in a measurable way
on a random vector Z which s independent of X. Let Y = QX; then if X is 91(0, I,,),
Y s also (0, I,.) and independent of Z.

The proof of Lemma 1 follows immediately from the fact that the conditional
distribution of Y, given Z, is 91(0, I,) and is therefore independent of Z.

The lemma will usually be applied in cases where X and Z have the same
number of components, and Q(Z) is defined in such a way that QZ has all but
its last component equal to zero. In Appendix 1 it will be shown that Q can be
uniquely defined in a measurable way.

Throughout this paper we have to consider random matrices, the elements
of which are independent 91(0, 1) variables. A k£ X 7 matrix of independent
9(0, 1) variables z;, (¢ = 1 -+ k, r-= 1 --- n), will be denoted by Mk, . We
shall assume % < n. The i-th row of.M%, will be denoted by X; (: = 1 --- k).
With Mz, we form the symmetric matrix A,

(1) A:n = Mzn (Mzn)/y

whose §-th element is XiX; (7,7 = 1 --- k).
Consider the transformation

X = Z; G=1-k)
in which the orthogonal matrix £ depends on X, in such a way as to reduce the
first n — 1 components of Z; to 0. The last component of any Z—that is, zin—

2 In a course at Stanford University, Dr. Charles M. Stein uses this idea in the deriva-
tion of Hotelling’s T distribution (private communication).
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will, in the following, be denoted for short by z; ( = 1 --- k). For 2 we have
(2) 7 = XiXi,

and 2} is clearly a x} variable. Inserting the identity matrix I, = QQ’ between
the two factors on the right-hand side of (1) we obtain

Zi 2122 L 212k
w2 Z3Zy - Z,Z

3) AL = Mieo'(Mp) =[O L

212 Zl’cZ2 cee leozk

Let Y;(? = 1-.- k — 1) be the (n — 1)-component vector obtained from Z,,,

by deleting its last component z;4;:

Yir = Ziglr G=1--+k—-1r=1:---n-—1),
so that we have
(4) XinXin = ZinZi = Yi¥+ 2uazin (G,j=1---k—1).

It is now possible to write (3) in the following way:

21 21 2 %
2 1 1 0 0 1
. , . 0 Yi¥i -+ Yi¥i, .
(5) n = . . . . ’

0 Yi,Yy -+ YiaYi
2k 1 1

in which 2, iSxa, 2, -+ 2zxrand they, ¢ = 1-- -k — 1,r=1.--n — 1) are
9%(0, 1), and all variables are independent. Equation (5) can be written more
concisely if we denote by Z the vector with components 23 - -+ 2 :

1 o’ o Z
0 Al 1,n.a]]l0 L

Almost everything will follow from (5) or (6), which is essentially the first step
in the Bartlett decomposition. Taking determinants in (6) we get

@ | AL | =21 | Alaaa |,

in which the two factors on the right-hand side are independent, and 2i has a

x5 distribution. Upon repeated application of (7) we get the following result:
LemMA 2. The distribution of | At | is the distribution of the product of k inde-

pendent x* variables withn,n — 1, -+, n — k + 1 degrees of freedom, respectively.

21 0,

Z Lia

.
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Equation (7) holds for any k. Writing (7) with k replaced by k¥ — h (h = k — 1)
and forming ratios, we have

I Az" l — l Az—l,n—l l
I A:—h,n I I A%—h—l,n—l l’

in which we set by convention A;, = 1. Upon iteration of (8) and use of Lemma, 2
we get the following result.

LeMMmA 3. The ratio | A%, | | Ai—s..| 7", for h < k — 1, is distributed like the
product of h independent x* variables withn — k + h,n — k 4+ h — 1,---,
n — k + 1 degrees of freedom, respectwely

COROLLARY. The ratio | Ain | | Ai_1,» | ™" 48 @ Xa—s+1 variable.

The results so far obtained are sufficient to derive the distributions of 7* and
the generalized variance. For the Wishart distribution, however, it is necessary
to cons1der the ]omt distribution of the 3k(k + 1) distinct elements a;; = X:X;
@ = -k, j = - k) of A,,,. . The decomposition (5) expresses the a;; as
functions of the x3 varrable 21, the k& — 1 91(0, 1) variables z; - - - 2;, and the
1k(k — 1) variablesb;; = YiY;(i=1---k—1,j=1--- k — 1). If the decom-
position (5) is continued, then the a;; are expressed as functions of 1k(k — 1)
91(0, 1) variables and k x* variables with n, n — 1, , n — k 4+ 1 degrees of
freedom, respectively, all variables being mdependent The joint distribution
of these variables, together with the Jacobian of the transformation, will pro-
duce the joint distribution of the a;; .

According to (3), the a;; are ﬁrst expressed as functions of new variables
2 ,2,and ZiZ; (s =2 - k,j = 1--- k). Subsequently a new set of variables
bij = Yi¥; (i =1- Ic - 1,7 = - k — 1) is introduced, connected with
the Z:Z; through (4). The first transformatlon yields a Jacobian 2, the second
yields unity. Hence, the Jacobian of the transformation from the 1Ic(lc + 1)

®)

variablesa;; (6 =1 --- k,j =1 - k) to the 3k(k + 1) variables 27, 2 - - - 2,
and b;; (=1 - lc - l,j =4.--k — 1) is 2i"". Let the density of the
ai; 1 =1--- Ic, j=1---k)be denoted by p(Ak,.), and the density of the b;;

(¢(=1---k—1,j=1¢--- k— 1) by p(Af_1,,1). The joint density of the 91(0, 1)
variables z; - - - 2, the xﬁ variable 2} , and the variables b;; is given by

k
(2 ﬂ_)—(llz)(k—l) exp [_% 22 zf] 2—(1/2)—1»/21‘—! <g) z?-z exp [__ % 2?] p( Az_ l.n—l)-
Taking the Jacobian 2 into account, we have:
: k
(9) p(AL) = cinzi ™" exp [—%(ﬁ + Zz z}'):l P(Ab1,n1),

3 If the decomposition (5) is continued, the right hand side can be written as the product
of a triangular matrix and its transposed, the elements in the triangular matrix being inde-
pendent normal and x? variables. The decomposition in that form was also obtained by
Mauldon [15].



RANDOM ORTHOGONAL TRANSFORMATIONS 419
with
(10) cia = (2r)®Vigriip (g)

In order to write (9) so that it can be iterated immediately, we observe first
that 21 = | Afs|| Ala,a-1| ™ by (7). Furthermore,

k k k=1
2 2 ’ ’
2+ Zzz.' = Z; XiX; — D YiYi = trAf, — w Al i,
o - =1

using (2) and (4). Thus we can write (9) in the following way:
p(A%) | A% 77" exp [} tr AZl]
= Cpn P(A¥—1,n1) | Abo1nm1 r"bk_lm exp [3 tr A} ;1 .,

from which follows immediately by iteration
k-1
P(A%n) | Afn 7" exp (4 tr ARl = H0 Chini = Chn,

with Cy, given by

(1) Cgl = QUmm) WOkG—D ﬁ r (n - 7,)
n 1] 2 .

We have then, finally,

(12) P(A%) = Cin | Afn | "™ ""exp[ — }trAZl],

with Cia given by (11).

3. Applications. Let Uy - - - U,y be n independent observations on a k-com-
ponent random vector U, which is 9(u, =), with & < » — 1. The components
of U,y will be denoted by us (2 = 1:.-+k, r = 1 ... n). The sample mean is
U = (1/n) X iUy, having components @, - - - % . The sample covariance
matrix S has components s;; (3, 7 = 1 --- k) given by

1

(13) 8 = —7 r_il (uir — @) (e — %),

(a) Hotelling’s T". Hotelling’s T* is defined as
(14) T* = n( T~ wo)'S™(0 — wo),

in which w, is some specified vector. T is not defined on the null set in the
sample space on which S is singular.

First consider the case 4 = uo. By making the proper transformations it
can be shown® that [1/(n — 1)]7° has the same distribution as T} defined by

4 See, for example [8]. In order to make this paper self-contained, a proof is given in
Appendix 2.
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(15) T} = X (A na1) "Xwy »

in which Xq) - -+ X(») are independent, 91(0, 1), and A% . is defined by (1).
In (15) all the variables are independent, and 91(0, 1). By subjecting the X,
to an orthogonal transformation with matrix Q:Y¢y = QX (r = 1 -+ n), we
can write (15) also as

(16) T = Yo (AL n1) " Yo

with AY , y = MY,y M{,.1) and M{,., = QM% .. The columns of M} 1
are Xy - - - X(u_1) . Hence, if @ depends only on X/, , then, by Lemma 1, the
elements of My .., are still independent, 97(0, 1), and independent of Y, .
We now choose @ such that the first ¥ — 1 components of Y. are 0. The k-th
component of Y, will be denoted by y. From (16) it follows that T} equals
the product of 5° and the kk-th element of (A% ._;)~", where it has to be remem-
bered that these factors are independent. Now 3° = X{(n,X(m is a xi variable,
and the l:k-th element of (AY.—.)~" equals | A¥_; .|| A¥ .|, the reciprocal
of which is a x%_x variable by the corollary to Lemma 3. Hence T} is the ratio
of two independent x* variables, with k and (n — k) degrees of freedom, respec-
tively. It follows that (n — 1) % ™(n — k)T is an Fy ._ variable.

If w # wo, then, in (15), X, no longer has zero mean, with the consequence
that 3 is a noncentral x; variable. On the other hand, the distribution of A%,
is unchanged. It follows then that (n — 1)™'% " (n — k)T" is a noncentral Fy .
variable. Its distribution was first derived by Hsu [9].

(b) Wilks’ generalized variance. Wilks’ generalized variance is defined as
| S|, the determinant of the sample covariance matrix given by (13). By making
the same transformation which led to (15) (see also Appendix 2), we find that

an (n — 1) CSC’ = A} n,
in which C is a nonsingular matrix transforming = to the identity matrix
(18) CxC' =1,.

Taking determinants in (17) and (18) and using Lemma 2, we have then imme-
diately the result that (n — 1) | =| ' |S|is distributed like the product of k&
independent x” variables withn — 1, - - - , n — k degrees of freedom, respectively.
The density of this distribution can be obtained easily only for k¥ = 1 and k = 2.
For k = 3, expressions in terms of infinite series have been given by Kullback [13].

(¢) The Wishart distribution and Bartlett decomposition. The Wishart distribu-
tion is the joint distribution of the % k(k + 1) distinct elements of the sample
covariance matrix S, given by (13). It is more convenient to study S; = (n — 1)S.
By (17) we have

(19) CSiC’ = Ai .

The linear transformation (19) relates the sample covariance matrix to Aj .,
defined by (1). The decomposition (5) or (6) of A% ._1 is essentially the first step
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in the Bartlett decomposition, giving rise toa x%.., variable 2} and k& — 1 91(0, 1)
variables z; - - - 2; . If the decomposition is continued, then A% .—, and there-
fore by (19) also S, , is related in a simple way to k x* variables and % k(k — 1)
91(0, 1) variables, all independent, which provides the complete Bartlett decom-
position.

The density of the % k(k 4 1) distinct elements of Aj ., is given by (12),
after replacing n by n — 1. The Jacobian of the transformation (19) is’®

a(Az.n—l) — ‘ C l k+1

0 KON !
which we find equals | X | 44D sing (18). Furthermore, by (18) and (19) we
have | Af.1| = | X |7 |S:|and tr Af.; = tr 7' S,. Substitution of these

expressions into (12) gives the Wishart distribution
PS1) = Crna | E| 7028, | "D exp [—3 tr 2784,
in which it has to be remembered that S; = (n — 1)S, and Cy,.— is given by (11).
4. Acknowledgments. The writer wishes to thank Dr. Henry Scheffé for

bringing the problem to his attention and for helpful suggestions, and Dr.
Charles M. Stein for providing some valuable references.

APPENDICES

Appendiz 1. Let @™ = Q' (Z) be an n X n orthogonal matrix
(1 £ m £ n — 1) depending on an n-component column vector Z. If Z has
components z; - - - 2, , then the elements w{;” of Q'™ will be defined as follows:

(m) (m)

o = bii for t,j)= 1- m = Lm+ 2 T G = Onbimi =
m
tmir(@h + ) 0m = — @i = 2m(zn + 2n41)”; and all other off-

diagonal elements vanish. If both 2, and 2,4, are equal to 0, then we define
Q™ to be I, . The effect of Q"™ (Z) applied to Z is that all components of Z
remain unchanged, except for the m-th and (m + 1)-st components, of which
orthogonal linear combinations are taken such as to make the m-th component
equal to 0 and the (m + 1)-st equal to (2 + z,,,+1) If weput @ = "7 .
Q" where Q¥ = @V(2), @® = @®@"Z), - -+, then the first n — 1 com-
ponents of QZ are zero and the n-th is (11 21)". Qis clearly measurable.

Appendiz 2. Put Vo9 = C(Uy — wo), 7 = 1 -+ n, where C is any non-
singular k¥ X k matrix. Substitution in (13) and (14) yields the result that T°
retains the expression given by (14), with (4, — we;) everywhere replaced by
vi» (T? is invariant under nonsingular linear transformations of U). If C is chosen
such as to transform X to I (see (18)), then the v, are independent and 9t(0, 1).
"It is possible now to write Tt = [1/(n — 1)]T" as follows:

(1) T = oV (M} (I, — A.) (ML)},

in which A, is an n X n matrix of which every element equals 1/n. Let Q be
an n X n orthogonal matrix whose last column has all elements equal to 1/ (n)*.

§ See [1], [5]. For completeness, a proof is also indicated in Appendix 3.
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We find that Q'(I, — A,)Q = J., where J',; is obtained from I, by replacing
the nn-th element by 0. If the variables z;, are related to the v;. by Mi» = Mi.Q,
then X,y = (n)'?V, and the matrix in braces in (21) is

M;nQQ,(In - An)nﬂ,(MI:n), = Mszn(M£n), = M:,n—l(Mz,n—l)’ = A:.u—l,

which proves (15).

Appendiz 3. Since any nonsingular matrix C can be written as the product of
elementary matrices, equation (20) need only be verified for the latter ones.
Multiplication of a square matrix A by an elementary matrix results in either
of the following elementary operations on A:

(i) interchange of two rows (columns),
(ii) multiplication of a row (column) by a constant ¢ 5 0,

(iii) subtraction of a row (column) from another row (column). The absolute
values of the determinants of the corresponding elementary matrices are 1,
| ¢ |, 1, respectively. The corresponding Jacobians can easily be checked to be 1,
| ¢ [**, 1, respectively. This completes the proof.
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