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1. Introduction. The problems concerned with the characterizations of the
distribution laws of random variables when they are connected by a linear
structural relation seem to originate from the stimulating problem first pro-
posed by Ragnar Frisch before the Oxford Conference of the Econometric
Society in 1936. His problem may be stated as follows. Let z, and x; be two
observable random variables connected by a linear structural set up,

$o=ao$+ﬂo,
2 = mf+ m,

where £, 7o and 7 are mutually independent random variables, and ay and a
are some unknown constants. What are the conditions on the distribution laws
of the random variables £, 7o and 7, under which the regression of z, on z; and
also that of z; on 2o is linear, irrespective of the values of the constants ao and a;?

A partial solution to the problem of Ragnar Frisch was given by Allen [1]
by proving that if the first two moments of 7o and all the moments of £ and m
exist, then a necessary and sufficient condition for the regression of z, on z
to be linear irrespective of the values of the constants a, and a, is that both £ and
71 are normally distributed. A more general theorem was proved later independ-
ently by Rao [10], [11] and Fix [4] as a complete solution to the problem of Ragnar
Frisch. Rao-Fix’s theorem may be stated as follows: Let £ 7o and = be three
mutually independent proper random variables each having a finite expectation.
Then a necessary and sufficient condition for the regression of 20 = @t + no
on z; = mE + m to be linear for some ao # 0 and for all a; contained in a
closed interval is that both £ and 7 should belong to a class of stable laws with
finite expectation.

Recently the author [6] has obtained a generalization of Rao-Fix’s theorem
in a new direction, replacing the condition of stochastic independence of #o
and n; by the weaker assumption that the regression of 7o on 7, is linear. The
author [5] has also obtained a characterization of the normal law from the con-
sequence of the linearity of multiple regression of one random variable on several
others, when the variables are connected by a linear structural relation as in
the case of the bifactor theory of Spearman. Several analogous characterization
problems connected with linear structural relations have also been solved re-
cently by Ferguson [3]. In the present paper we shall consider some generaliza-
tions of these problems in various directions. In Section 4, some theorems on
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the dependent error variables (Theorems 4.1 and 4.2) are deduced and a general
theorem on a higher dimensional linear structure is proved in the subsequent
section (Theorem 5.1).

2. Definitions and assumptions. Throughout the present investigation we
shall confine our attention to a set of observable random variables zo, 21, - -,
z, having the following linear structural set up:

o = anés + ank + -+ + ak, + M,
1 = aufr + Gk + - 4+ a1y + m,

@1

ZTn = Qubr + Qb2 + -0+ Gnpfp + Mn,
where & , &, - - - , £ are usually called the latent or hypothetical variables and
M, m, - -, n. the error variables of the linear structural relation, and a:j’s

are a certain fixed set of constants.
Now using the notations of vectors and matrices, the equation (2.1) may be
rewritten as
(2.2) (z0:7) = £(a0:A") .+ (moin)
where
x‘:(xlrx?,"')xﬂ)) E,=($1,E‘z,"°;§p),
ao=(am,a02,---,ao,,), ’7=(771’772:"°7’7")7

and A = (@:)ic1,2,.+-mj1.2,---p a0d oo and A’ denote respectively the transposes
of apand A.

We shall now make the following assumptions on the distributions of the ran-
dom variables concerned.

AssumerioN 1. The conditional distribution of z, for fixed #;, 22y -+, Z»
is assumed to exist, wherever needed.
AssumprioN 2. The set of random variables & , &, - - - , &p is distributed in-

dependently of the set of error variables o, 1, -+, #n .

AssumptioN 3. The latent variables & , &, - - , £, are mutually independent
proper random variables each having a finite expectation (which is assumed to
be Zero Without any loss of generality in the proof) as well as a finite variance
05,7 =1,2, -+-, p. Similarly the error variables 7, 71, -+, 7, are mutually
1ndependent (not necessarily proper) random variables each having a finite
expectatlon (thch is also assumed to be zero) as well as a finite variance &,
k=01, , n. Let the dispersion matrices of the random vectors £ and 7
-be denoted by 2 and A respectively such that

2 A 2
(51 ral

(2.3) z = ) and A =
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Now it should be noted that some or all of the elements of the matrix A may
be zero.

But in Section 4, where some results concerned with dependent error variables
are obtained for the special case of the above structure with p = 1 and n = 2,
it is assumed that all the random variables are proper and have only finite expec-
tations and further the multiple regression of no on 71, m2, : -+, 1, is linear.

The role of these assumptions is to ensure the existence of the expectation-and
the variance of the conditional distribution of x, for fixed z,, x,, - -, z, which
we denote by E(xo | 21, %2, - -+, 2s) and V(2o | z1, 22, - -+ , Z.) respectively.

3. Some lemmas. We give below some lemmas which are useful in proving
the theorems in the subsequent sections.

Lemma 3.1. Let 2o, %1, -+ - , . be a set of n + 1 proper random variables each
having a finite expectation (which is assumed to be zero without any loss of general-
ity) as well as a finite variance. Then the necessary and sufficient conditions for
3.1) {E(xolxl,xz, s, &) = Bumr + Bare + <o+ + Bata,

Vizo| 21, %2, -+, 2a) = 05 ace.,
are that the equations

a‘p(t07t1,°",tn)] . - ‘afo(o;tl)"',tn)
o = 2B ‘

dty = at;
(32) - ’ ; ‘
a¢(0)tl7 c '7tﬂ)

Folto, ty, =+, tn n
-—“399—1’———)] = —o10(0, i, ta) + 2 Bibs
tg=0 Jk=1 at; iy,

E

are tobe satisfied for allreal ty , by, - - - , t, where (to, t1, -+, tx) and (0,8, -+ - , t,)
represent respectively the characteristic functions of the distributions of (xo,
Ty, o, o) and (21, T2, -, ) and further By, Bz, -+ - , Bn and o > 0 are
arbitrary constants.

When the random variables x4, 21 ,~- - , . satisfy the relations in (3.1), we
say that the multiple regression of zo on x;, 2z, - - - , %, is linear and that the
conditional distribution of z, for fixed z;, x., ---, z, is homoscedastic.

Proor: To prove that the conditions are necessary, we can easily verify that

M] =E iE(x()'xl’xz, ...’xn) exp (izt]:c’)}
i1} to=0 j=1

= il BjE{ix,- exp <z i tjx,->}

=1

—_ S . a¢(0, th Y tn)
:Z; bi ot; '
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Similarly
N, ty, + -+, tn R
elh, & 5 )] = —E’{E(xﬁ[:cl,xg, <+, Tn) €XP (zZt,-x;)}
ato ¢ g=0 =1

—E {(63 + 2 ﬂ:‘ﬁkxm> exp (7' 2 t:‘x:')}
fik=1 =1
0259(07 by -, tn)
9t 0t

To prove the sufficiency of the conditiens, we note simply that (3.2) may be
rewritten as

= _Vgﬂo(oy tl: Tty tﬁ) + Z Bjﬂk
7kl

E [{E(xo | &1, @2y o0, 20) — Zl ,B,-a:,-} exp <i Z:l t,-:v;)] =0
g =
and
E [{E(xﬁlxl, By, vy Ea) — 00 — _;1 Bilgkxjxk} exp (121 ti%')] = 0.
I =

Then from the uniqueness theorem of Fourier transforms of functions of
bounded variation, (3.1) follows immediately.

For the special case of n = 1, this reduces to the lemma proved independently
by Rao [9] and Rothschild and Mourier [12].

Lemma 3.2. Let 2o, 1, -+ , %, be a sel of n + 1 proper random variables each
having a finite expectation (which is assumed to be zero). Then the necessary and
sufficient condition for

E'(xolxl,xz, o ’xﬂ) = Bty +B2x2+ ce +ﬁn$n a.e.
18 that the equation
a(o(tﬁytl,o.-,t")] _ 7 .ago(O,tl)'..’tﬂ)
lg=0 7

o ; B at;
is to be satisfied forall real values of t,, ty, -+ , t,.

This lemma has been already proved independently by the author [5] and
Fergison (3.

Lemma 3.3. Let z,, 23, -+ - , Tn be n independent proper random variables and
let further ¢;(t) denote the characteristic function of the distribution of z,j=1,2,
©o+, n. If now the functions ¢;(t) satisfy the equation

IT5- {es} = &2,

'for all real ¢ in a certain neighbourhood of the origin | t| < (5 > 0), where a;’s
are some positive numbers and Q(t) a quadratic polynomial in t, then each z; follows
normal distribution.!

1 The proof of this lemma, is given in A. A. Zinger and Yu. V. Linnik [13].
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This lemma may be regarded as an analytical extension of Cramér’s theorem
on the normal law and has been proved by Linnik [8]. The proof of this lemma
has been given by the author in [7].

4. Some results for the case of dependent error variables. We shall now ob-
tain some results connected with dependent error variables for the special case
of the above linear structure when p = 1 and n = 2.

TuEOREM 4.1. Let the observable random variables ;(j = 0, 1, -+ - , n) have the
Linear - structural set-up x; = a;t + n; where the a;’s are fived nonzero constants
and further £ and no, m, * -+ , M are proper random variables each having a finite
expectation (which is assumed to be zero without any loss of generality) such that

() ¢ is distributed independently of (o, m, -+, M)

(i) E(nol| muy, 2, -+ 5 M) = 2im1Bim;, the B}’s being a set of constants,
then the multiple regression of Zo on 1, T2, * -+ , Tn s always linear, whenever the
relation @y = 11 ;8 s satisfied.

Proor. Let o(to, t1, -, tn); polto, t, - -+ , tn) and P(¢) represent the charac-
teristic functions of the distributions of (zo, 21, *--, Zn); (M0, Mm, -+, 7x) and
£ respectively.

Then we can write

oto, b1y -+ tn) = Elexp (82 jmo t,75)]

=0 jmoait)elto, i, -, ta).

Again since it is given that E(no | m, n2, =+, 1) = Z}'.l ﬁﬁn,‘ , by applying
Lemma 3.2, we get easily

6¢o(to,tl,-..,t,.)] _ n {am(o’tl’...’t”)
dto tg=0 ,'..21‘3’ at; :

Now differentiating both sides of the equation (4.1) with respect to ¢ and then
putting t = 0 and finally using the equation (4.2), we have

M] = qd’ <Z ajlj> e0(0, t1y +++ , tn)
dto to=0 =1

2 2 ceeta
+ Z IS:‘D (Z a; t;) a¢0(01 t, ) ) .
7=1 =1 at;

(4.1)

(4.2)

(4.3)

Again putting &, = 0 on both sides of the equation (4.1) and then differentiat-
ing both sides with respect to ¢;,5 = 1,2, --- n we get

W0ty oy t) _ g (Zl a,-t,-) 000, b1, -+ 1)
i

at;
+ @ Zajtj>a¢0(0;t17”°;tn) j=1,2’...n.
=1 at;

Now it is given that ao = > a;B;; hence substituting this value of ao in

(44)
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(4.3) and finally comparing with (4.4), it is easy to obtain

do(to, t1, ---,tn)] 2 1 00(0, by, ey te)
4. hAALCE Rt MR R = Ay TPy
@5) oty tom0 7-21’37 ot;

Then the proof follows at once using Lemma 3.2 to the equation (4.5).

THEOREM 4.2. With the same notations and assumptions as used in Theorem 4.1
together with the additional assumptions

(iii) the variables mi, n2, -+, 1. are mutually independent.

(iv) the constants a; satisfy the relation aq = E}'..; a,ﬁ;,
the mecessary and sufficient condition for the multiple regression of %o on z;, s,
<+, Tu to be linear (n = 2) s that & and each of m, n2, -+, 1a 9 normally
distributed.

Proor.

Necessity. Let us suppose that E(zo |21, 22, -+, Za) = D p18;¢;. Then
using Lemma 3.2, we have

de(to, t1, - - - t,.)] 2 00(0, by e t)
6 F\, i, "y = ) ) U, ) tn)
(“6 ot to=0 IZ; B at;
Next using the equations (4.3), (4.4) and (4.6) together and noting that 7, ,
M2, -+, 7. are mutually independent random variables, we get after a little

algebraic simplification,

(@0 — 27-1a8)% (2 im1 aity) [T =1 05(t;)
= 2271 (85 — B1) B i1 ast)ei(ts) - TLnes onlta),

where ¢;(¢;) represents the characteristic function of the distribution of n; ;
i=12 - n

It can be easily shown that under the conditions of the theorem, neither
@ — D j~1a;8;norany of B; — 8;j = 1,2, --- nin the equation (4.7) can be
equal to zero. Putting &, = 0 for all £ > j in (4.7) and noting that ¢;’(tj)]t,-=o =0
forj=1,2, ---,n weget

(4.8) (a0 — 2 fm1a8)® (ast)es(ts) = (B — BNB(ast)ei(t), j=1,2, -+, n.

Let us now suppose that 8; — 8; = 0 for some J, but @ — Dy a;8; # 0.
In this case the equation (4.8) gives

(4.9) ®'(ait;)e;(t;) = 0.

But since the characteristic function ¢(t) is continuous for all real ¢ and equal
to unity at the origin, in a suitably chosen neighbourhood of the origin, we have
always ¢;(t;) # 0. Thus it follows that for all ¢; in that neighbourhood of the
origin ®’(a;t;) = 0, leading to the conclusion that the distribution of £ is im-
proper.

Proceeding in the same way it can be shown that if 8; — 8; = 0 for any j,
whereas ao — D=1 a;8; = 0, the distribution of the corresponding %; is im-

4.7)
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proper. Thus both these cases contradict the conditions of the theorem. Now
the only alternative left is when @y — Y a;8; and each of 8; — 87 = 1, 2,
-+-, n vanish simultaneously. But in this case we have ap = D i a;8; , which
is also contrary to the conditions of the theorem.

Now restricting the values of ¢, &, -- -, ¢, to a suitably chosen neighbour-
hood of the origin such that each of the factors occurring in the product

S i1 ait) i1 ei(ts)

is different from zero, we divide both sides of the equation (4.7) by this ex-
pression and thus obtain,

(4.10) (@0 — 20710380 (imr asts) = 25m1 (85 — B3)63(ts)
where
0(t) = Ind(¢) and ;) =Ineg;®), j=1,2--,n

Next putting &z = & = -+ - = t, = 0 in (4.10), we get

411) (a0 — 225-10,85) 8 (@t + azty)
= (B — BDOI(t) + (B2 — B2)0(te).
Then putting successively & = 0 and ¢, = 0 in (4.11) and noting that
a0 — 2 j-1a;8; # 0,

we get easily
(4.12) 0’ (aits + ast2) = 0'(artr) + 6" (aala).

But 6'(f) being continuous in ¢, it at once follows from the equation (4.12)
that 6'(t) is a linear function of ¢ and hence 6(t) is a quadratic polynomial in ¢,
thus establishing the normality of the variable ¢£. Then the normality of the re-
maining variables 7; ;7 = 1, 2, -+, n follows simply from the equation (4.8).

Sufficiency. Let o denote the variance of the random variable £ and &7 that
for7;7=10,1,2,---,n.

Under the conditions of the theorem, we get on using the equation (4.3)

a¢(t0’ li, **°, tﬁ)]
6to to=0

(4.13) ) " n
= ——[Zl (aoa;o® + B;'a?)tj] P <1§:i ajtj) ;[I oi(t;)
l- - L]

where
@) = M and oyt = ¢4

1,2,---,m.

<.
I

Similarly we get, on using the equation (4.4)
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ary O L T (500) 6 i) 2 (3 o) e

at; k=1 je=1
Jj=12--mn.
Thus using (4.13) and (4.14) together, we may write

do(te, b, ---,t,.)] _ iﬂ‘ago(o, t, oy ta)
dly =0 im0 at; ’

where the constants 8; are to be determined from the system of equations
Bi(@maje®) + -+ + Biaje’ + &) + -+ + Bu(ana;0”)
= aje’ + B8, j=1,2,---m.

(4.15)

The proof follows at once using Lemma 3.2 to the equation (4.15).

The following corollary can be easily deduced.

CoOROLLARY 4.1. Let the observable random variables z;(7 = 0, 1, --- , n) have
the linear structural set up x; = a;¢ + n;, where the a;’s are a set of non-zero con-
stants and the £ and n;’s are mutually independent proper random variables each
having a finite expectation. Then the mecessary and sufficient condition for the
multiple regression of xo on X1, Tz, -+, Tn to be linear (when n = 2) is that &
and 1, m2, * -+, 1. are normally distributed.

This corollary has been proved earlier independently by the author [5] and
Ferguson [3].

5. A theorem in general linear structure. We shall now consider a theorem
on characterisation connected with the general linear structural set up already
defined by the equation (2.1) in Section 2. In this direction, Ferguson [3] has
obtained some necessary and sufficient conditions for the multiple regression
of oon 2y, xz, - -+, T, to be linear irrespective of the values of the constants
a;; . In the case of the higher dimensional structure, no result has yet been ob-
tained, assuming the regression to be linear for just one set of values of the
constants a;; . We shall now show that it is possible to obtain some result for
the case of the general linear structural relation for only one set of the values
of the constants a;; (with some restrictions upon their values) under the addi-
tional assumption that the conditional distribution of zo given z;, s, ---,
z, is homoscedastic and all the random variables concerned have finite vari-
ances.

We are now in a position to prove the following theorem:

. TureoreM 5.1. In the general linear structural set iup (2.1) and under the As-
sumptions 1, 2 and 3, if the constants a;;’s are subject to the following restrictions
(i) the vector aj = (arj, G2j, * - , Gnj) has at least one non-zero element for
ea'ChJ = 172’ R
(ii) the matriz (AZA’' + A) is non-singular, that is the determinant

|AZA’ + A] = 0,
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(iii) each of the elements of the vectors apZA'(AZA’ + A)™ and
aoll — ZA'(AZA’ + A) 4]

18 different from zero,
then the necessary and suffictent condition for

{E(xOle,:cz,---,x,,) =l311?1+32-’vz+ te +Bn$n,
V(xolxlyxih "‘,&7”) = ‘737

18 that each of &, &, -+, &, and each of the proper random variables amongst
M, N2, *°° , 1n are normally distributed.

Proor.
Necessity. Let (to, t1, - - - , t) denote the characteristic function of the distri-

bution of (o, &1, « -+, z.); P;(¢) that for the distribution of £;,(j = 1,2, -- -, p)
and ¢x(¢) that for the distribution of m(k = 0, 1,2, ---, n).

Then it is easy to obtain
(5.1) oo, ti, + ,ta) = E[exp (1m0 trz)]

= J121®,(3 000 anit) [ Timo or(ti).

Now under the assumptions of the theorem and applying the equation (3.2)
in Lemma 3.1 to (5.1) above, we get after some laborious algebraic computa-
tions, proceeding in the same way as in Section 4,

(5.2) 27 (B0 — 2k Brons) 07 (2oics arsti) = Diea Bubi(th),
63) 2 {as; — (Zl?—l ﬂkakj)z}eg"(zzul arity) = — (o5 — 85) + Dot B0k (),

holding for all real 4, &, ---, t. in a suitably chosen neighbourhood of the
origin, where

el(t) = lnq’j(t)f .7 =1 )2, 00 D
0k(t) = In gi(t), k=12 ---n

Under the assumption that each of the random variables concerned has a
finite second moment, we may again differentiate both sides of the equation
(5.2) with respect to (I = 1, 2, ---, n) and thus obtain the set of equations

(5.4) Z?—l ali(aﬂi - Zl:;l 6kak,~)9§"(22.1 a;,jtk) = ﬂlﬂf(tl)’ 1=12--,n.

" Next multiplying both sides of the equation (5.4) by 8; and adding for all
1=1,2,---,n, we get

(6.5) i1 2 TaBuar(an; — Dia Brari)OF (it arit) = Die1 B167 ().

Now using the equation (5.3), we get a simplification of the following ex-
pression
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(5.6) D Fut (Go; — 2okt Bri)’07 (ks aast) + D BiOE (1)
= Z:“;l {ag, - 2“0:'(21:-1 ﬁkak:‘) + (Zl?—l ﬁkakj)z}G?(Zi‘.l akjtk)
+ D i Bk (%)
— (o0 — &)
— 22 2 { (ko Brars) (@oj — D e Brais) 107 (D e G ste)
+ 230 GO (t).
Finally using the equation (5.5) to the right-hand side of (5.6), we obtain
(5.7) 2k (a0 — 2ok Buans)’0F (Xoimn anite) + 2ok BibK (4) = — (o0 — 80).
Since it is given that the matrix (AZA’ + A) is non-singular, it can be easily
shown under the condition E(zo|21, 22, -+« , Za) = Bit1 + Bexz + +++ + BuZa,

Bk is given by the kth element of the vector aZA/(AZA’ + A)™ for k = 1,
2, - -+, n. Similarly ao; — E;’,‘,l Brax; is given by the jth element of the vector

all — ZA/(AZA’ + AY'A]  for j=1,2,---, p.

Thus under the given restrictions on a.;’s, it follows that ao; — Yt Brax; #= 0
forallj = 1,2, ---, p and similarly 8; % Oforall £ = 1, 2, - - - , n. Then the
proof of the necessity part follows at once, using Linnik’s result (Lemma 3.3)
to the equation (5.7).

The proof that the condition is sufficient follows easily from Cramér ([2],
pp. 314-315).

Il
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