SOME REMARKS ON SYSTEMATIC SAMPLING'

By WERNER GAUTSCHT
University of California, Berkeley

1, Introduction and summary. Consider a finite population consisting of N
elements 1, ¥2, +*+ , y» . Throughout the paper we will assume that N = nk.
A systematic sample of n elements is drawn by choosing one element at random
from the first & elements y1, -+, yx, and then selecting every kth element
thereafter. Let ¥:; = Yiri—e(z = 1, -+, k;j = 1, .-+, n); obviously sys-
tematic sampling is equivalent to selecting one of the k ‘“‘clusters”

. C; = {?/u';j= 17“')”}
at random. From this it follows that the sample mean 7; = 1/n D 1w y:; is an
unbiased estimate for the population mean § = 1/N D i1 O 11 ¥:; and that
Var§; = 1/kY i1 (f: — §)°. We will denote this variance by V¢ indicating
by the superseript that only one cluster is selected at random. V) can be
written as

1 k 1 k n ~
Vs,l,)=Sz—E;S?, where 82=N§;(y.-,-—y)z,

W .
8i== E (yis — 7"
N j=1

It is natural to compare systematic sampling with stratified random sampling,
where one element is chosen independently in each of the n strata {y1, - -+, ¥},

{Yr41, ***, Yo}, - - - , and with simple random sampling using sample size n.
The corresponding variances of the sample mean will be denoted by V& Ve
respectively.

We consider now the following generalization of systematic sampling which
appears to have been suggested by J. Tukey (see [3], p. 96, [4], [5]). Instead of
choosing at first only one element at random we select a simple random sample
of size s (without replacement) from the first ¥ elements and then every kth
element following those selected. In this way we obtain a sample of ns ele-
ments and, if 41, %2, - - -, %, are the serial numbers of the elements first chosen,
the sample mean 1/s(7;, + --- + #:,) can be used as an estimate for the pop-
ulation mean. This sampling procedure is clearly equivalent to drawing a simple
random sample of size s from the % clusters C;(z = 1, - -+, k).-It therefore fol-
lows (see, for example, [2], Chapter 2.3 to 2.4) that the sample mean is an un-
biased estimate for the population mean and that its variance, which we denote
by V<, is given by’
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(,)_k—s 1 3 - _2__1]0—8 (1)
2 Vsy——%s_m;(yi_y) TsE—1'w
Again, it is natural to compare this sampling procedure with stratified random
sampling, where a simple random sample of size s is drawn independently in
each of the n strata {y:, ---, yx}, {¥s+1, -, Y2}, - - - or with simple random
sampling employing sample size ns. We denote the corresponding variances
of the sample mean (which in both cases is an unbiased estimate for the popu-
lation mean) by V2, V& respectively. From well-known variance formulae

(see, for example, [2], Chapters 2.4 and 5.3) it follows that
1k —s

(8) I (1

3) Ve —sk—IV"’
(,.,)_N—ns (,.)__l_k—s (n)
Vi'a" - S(N — n) Vfa” - s k — 1 Vﬂl"‘

Thus the relative magnitudes of the three variances V3, V., V&) are the same

as for V), VP, V{2, of which comparisons were made for several types of
populations by W. G. Madow and L. H. Madow [6] and W. G. Cochran [1].
Some of the results will be reviewed in Section 3.

The object of this note is to compare systematic sampling with s random
starts, as described above, with systematic sampling employing only one ran-
dom start but using a sample of the same size ns. To make this comparison we
obviously have to assume that k is an integral multiple of s, say k¥ = Is. The
latter procedure then consists in choosing one element at random from the first
l elements {y1, ---, ¥:} and selecting every lth consecutive element. We de-
note the variances of the sample mean of the two procedures by Vi, Vi re-
spectively, indicating by the subscript the size of the initial “counting interval.”
(In our notation V{ = Vi”.) We shall show in Section 4 that Vi’ = Vi in
the case of a population “in random order,” but V{® < Vi for a population
with a linear trend or with a positive correlation between the elements which
is a decreasing convex function of their distance apart. Some numerical results
on the relative precision of the two procedures will be given in Section 5 for the
case of a large population with an exponential correlogram.

2. Acknowledgment. I wish to express my debt to Professor W. Kruskal for
having brought the question treated in this note to my attention.

3. Cochran’s approach. Extension of Cochran’s results to systematic sampling
with multiple random starts. Instead of considering a particular single popula-
tion {y1, ¥, -+, Y~} We assume, following Cochran [1], [2], Chapter 8, that
the y,’s are drawn from an infinite population having some specified properties.
We are then interested in comparing the expected yariance E(V |41, - -+, Yn)
rather than (V |y, - -+, yw~) for the sampling procedures under consideration.
More specifically, we consider the following three types of populations.

(i) Population in random order. The variates y; are assumed to be uncor-
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related and to have the same expectations. The variances may change with ¢

Ey; = p, E(yi—ﬂ)2=03 (i=1,---,N);
E(y; —w)y;—w) =0 (@ # J).

It is not difficult to show ([2], Chapter 8.5) that in this case

N—-—nd k-1

T
N =n k n’

(4)

(5) EVY = EVY = EVG) =

where o* = Z’}’_l ai/N.
(ii) Population with a linear trend. We assume that the y.’s are uncorrelated
variates whose expectations change linearly in 7, more precisely

(6) Eyi=a+p, Vary;=d¢ (i=12---,N),
Cov (yi,¥:) =0 (@ # 9.

Applying standard linear regression tl‘leory (see, for instance; T7], Chapter
14.2) to the sum of squares in (1), it is easily found that

N — 2k—1 k=1, B -1
e &+ 6

In a similar way we obtain

EV(l)_k 12+sz—1’

®) EV,) =

©) nk 12n
m _k— 2 (K — 1)(nk + 1)
EVran - _'n.’;:_ + B 12
Thus
(10) EVY 2 EVY) < EVS),

with equality only if n = 1.

(iii) Population with serial correlation. It is assumed that two elements y;,
y; are positively correlated with a correlation which depends only on the “dis-
tance” z = |j — | and which decreases as z increases. The mean and variance

of all the y; are supposed to be constant

By;=u, Eyi—n'=d (G=1,2--,N),
E(i — u)(Yise — 0) = szrz:

-where p,, = p;, = 0 for z; < 2. For this type of population Cochran [1] ob-

(11)

tained the following results relevant to our purpose:
N—-1
gy® =k 1ed 2 (N = 2)p,

N {1 N(k— Nk — 1) =
2% = \
+ m ; (n — Z)szj,

(12)
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(13) EVS® < EVE,
(14) EVY < EV?,

(14) applying if, in addition, p, is convex downwards.

In virtue of (2) and (3) all the results (5), (10), (13) and (14) carry over im-
mediately to the more general sampling procedure discussed in Section 1 and,
moreover, the relative sizes of the variances V2, V), V%2 remain the same
as those of V), VP, V{2) . Numerical results of the relative precision

EV/EV)
were given by Cochran [1] for populations with a linear and exponential cor-
relogram.

4. Comparison of systematic sampling and systematic sampling with multiple

random starts.
(i) Population in random order. From (5), replacing k by I and n by ns, we
obtain
-1 L -1 S
Ins N T
On the other hand, by (2) and (5), remembering that k = s,

(s)__1k~sk—1¢12_l—lz
EVi “sk—=1 %k n_ N T

BV =

Thus
(15) EV{ = EV{®.
(ii) Population with linear trend. By (2) and (8)

@ _1—1, 20— 1+ 1)
EV; ——N 0’+B""“"“——‘—12_ )
(,)_lk—s[k—-lz oK — 1] 1—1, - 1)(Is+1)
BV = ip=i| ot =5 +F 2 :
Hence
(16) EV{® <= EV{®

with equality only if s = 1.

Both these results are, of course, to be expected intuitively. The comparison
of V{¥ and V{? i, perhaps, mostly relevant for a population with a convex
decreasing correlogram, since in this case EV{” turns out to be the smallest
among all the variances EV{°, EV{®, EVY, EVZD.

(iii) Population with serial correlation. From (12) and (2),

gy = Loaly [—_2_ S = 20
! N NI —=1) ,-J :
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(17) 'fmszm}

ns(l——l) =1
=l_‘10'2{1—L1},
8 _l’_‘l 2
EV = ¥ 0{1 I:N(k—-l)?_:i(N 2)p.
18) s e |
-1,
= N U{I—Lz}.

It is easy to check that both L; and L, are linear forms in the p,’s in each of
which the sum of coefficients is equal to 1. Hence, in order to show that E Ve <
EV{?, it is enough to prove that

(19) L=IL —L,=0,

L being a linear form of the p,’s whose sum of coefficients is zero. If in addition
to the monotonicity the p, are assumed to be convex, the following lemma,
which is analogous to the lemma proved in [1], is applicable to forms of this

type.
LemMma. Let S be the set of p = {p1, p2, -+, pm} for which
(20) P, Zpn=0
and
(21) Azpp—l = Pu+1 — 2p,. + Pu—1 g 0 (“ = 2’ 3’ e ,m o — 1)_
Let oy, -+ , am be constants such that D s o, = 0 and put A; = Z,f,l ay . Then
L= aupp =0 for all peS
p=1
if and only if
i
(22) Bi=> 4,20 forj =1,2,---,m — 1.
Tenl
Moreover, if in addition to (20) and (21) strict inequality holds in (22), then L > 0
unless py = -+ = pp .
Proor. Writing o, = A, — Aui(u = 1, --- , m; Ay = 0) and using the fact

that A,, = 0, we find
m m m—1
L= Z Aupu — Z Apipy = — Z Aulpy.
u=1 p=1 p=1
Similarly,

m—1 m—2
Z Aubpy = — Z Bqupu + Buis(pm — pm-1)-
Jm] pe=1
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Thus

(23) L =5 B+ Bas(pus = o).

Since, by hypothesis, the coefficients of all the B, are nonnegative, the suffi-
ciency of (22) is clear.-On the other hand, if B,; < 0, we could choose the

pu linearly decreasing and obtain L < 0. If B; < 0,1 < j < m — 2, L could
be made negative by taking, for example,

J+2—u, l=sp<ji+1],
Pu =
1, j +1= 13 = m.
Thus (22) is also a necessary condition. If all the B; are positive, then L = 0
implies A%, = O(u = 1,+++, m — 2), pm—1 = pm. This in turn implies that
Pm—2 = Pm—1,y Pm—3 = Pm—2, **° , P1 = P2.
TeEOREM. For any population in which

M= p = = pyva 20,
Azpz—l=Pz+l_2P:+Pz—,lgO (Z=2,°",N—2)

we have
(24) EV{® < EV{®
with equality only if s = lorpy = --+ = py_;.

Proor. There is nothing to prove if s = 1. If s > 1 we apply the above
lemma (with m = N — 1 and L given by (17), (18) and (19)) and show that

(25) B,>0 ji=12---,N—2.
We notice that

N 1 N—1 ns—1
= | DG D SR
- 2=l 2=l

N 1 N—1 n—1

S = [ S = 9n = 0 & 0 = o]
2 ls - 1 Zem] Zual

To prove (25) it is enough to show that the sums B; are positive for the form

NL/2 = NL,/2 — NL,/2. We compute these sums separately for NL;/2, NL;/2

and then take their differences. Put’
(.26) j=vk+ ol +XN=(vs+ o)l + A, where v = 0,1, --- ,n — 1;
e=0,1,-,8—1; A=01,---,1—1.

™ We use the Greek letters », o, A to indicate their range n — 1, s — 1, I — 1, respec-
tively; o, A should not be confused with the variance symbol and the parameter to be in-
troduced in Section 5.
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By elementary computations the sums B{® fér NL,/2 are found to be
w_ 1 g
B’ = — (I - 11},

where

(vata) 14N .
12N — 7 —-1)
y

#s + )l + Alvs + )l + N + 11BN — (vs + o)l — X — 2]

_ e[, i(2ns — i — 1) (vs + o)(2ns — vs — o — 1)]
11_1[1;——2——+(>\+1) 5

I=

= f&vs_(;%—a) llvs+ 0 —1)Bns —vs — o — 1)

+ 300+ 1)(2ns — vs — 0 — 1)]s

Similarly the sums B{® for NL,/2 are obtained as

BY — _1_1. (I — I},

Is —
where
v—1 . .
I = (is)" [zs sln =iz @prd oD I)J

= V(lss)z st — 1)Bn — » — 1) + 3L + A + D — » — 1)].

We have to show that

l

_pgw_pgw_1_ 1
B; = B;" — B 60— D(s — 1

fe-ver- - 0%+ a-0E]>o.
After some elementary algebra the expression in brackets is found to be a poly-
nomial f(¢) in ¢ of third degree with the following coefficients
Pl —1)
o =3l — D[(n — »)ls — A + 1)]
@7) o U@ — 1Bstn — »)(sl — 20\ + 1)) — sl + 38\ + 25 + 1]
— 3+ 1)(s — 1)}
o’ (s — 1){ris@ — 1)(s — 1) + A + DBls(r — ») — (A + 2)]}.
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We notice that the second derivative /(o) vanishes at
A+1

=(n—1/)3'—-——l—

which is = s — 1 whatever be the values of », \ specified by (26). For any of
those values f(o) is therefore concave between ¢ = 0 and ¢ = s — 1 so that
it is enough to show f(0) > 0, f(s — 1) > 0. Now, if ¢ = 0 then not both », A
can vanish. Hence, f(0) > 0 follows immediately from (27). On the other hand,

f(s — 1)/(s — 1), after some slight rearranging, can be written as

o*

fls = 1) _ 3(n — sl — DI — 200 + 1)) + A\ + 1)]

s —1
(28) A+ - D((s—1)" =8 +3(s— DA+ 1T —1-2n)
MBIl — 1) = N+ DA+ 2)} + 10 — 1){2s + vs(ls — 1) + 1}.

The expression in brackets is a polynomial of second degree in A with a positive
leading coefficient and with roots A = I — 2, A = [ — 1. It is therefore non-
negative for A = 0, 1, --- , I — 1. It is easily verified that the quantities in the
three braces are nonnegative for I > 1, s > 2 and A, » satisfying (26). Further-
more, the last term is positive. It remains to consider (28) for the particular
case s = 2. We have

fA) z 6l — DA — 20 + 1)) + MA + 1)]
+IUBA+ 1D -1 -7 - -1}
+ A6I0 — 1) — A+ DA + 2)} + 510 — 1).
The right-hand side is a polynomial ¢(A\) of third degree,
o) = =N+ 331 — DN — BF — 6l 4 2\ + (I — 1)(5] — 4),

whose second derivative ¢ (\) vanishes at A = I — 1. It is easy to verify that
#()\) has its relative minimum at A = I — 1 — +/3/3. Hence o(A) > 0 for A\ =
0,1, ---,1 — 1follows from

ol —2) =l — 1) = 212 — 1)(l — 1) > 0.

This completes the proof of our theorem.

For populations with serial correlation the result (24) is to be expected also
on intuitive grounds; in fact, the systematic sample is spread more evenly
through the population than the sample with multiple random starts which
may contain elements very close together, giving about the same information.
Our proof, however, does not make clear why (24) only holds for populations
with a convex correlogram. That (24) does not generally hold for any monotone
decreasing correlogram can readily be seen by trying to apply Cochran’s lemma
[1] to the linear form (19). It turns out that, for example, the sum of the first
[ coefficients of NL/2 is equal to




SYSTEMATIC SAMPLING 393

P
2(ls — 1)
One might suspect that EV{® = EV;® for all populations with a concave
decreasing correlogram. However, according to our theorem EV;® < EV,” for
the example of a linear correlogram, so that the conjecture is not generally

true.

[(2n — 1)s — 1] <0

5. Asymptotic results in the case of an exponential correlogram. We assume
that p, = €™ = 1,---, N — 1) and that both [ and n are large. For n, k
large Cochran [1] showed that the expression in braces of (12) is approximately
equal to 1 — 2/Me + 2/(€* — 1). Since the corresponding expression 1 — Ly
in (17) is obtained by replacing k¥ by [ and n by ns, we find
2 2
N + N — 17
On the other hand, replacing [ by & = Is, s by 1 in the brace of (17), we obtain
1 — L of (18). Thus

(29) 1—Li~1-—

2 2

1"Lg~1"m+gxg—_‘—l.

Introducing p = ¢, we see that the relative precision of systematic sampling
over systematic sampling with multiple random starts

2 20’

NP IRES ey
EV; 1+ 2 + 2p
logp  1—0p

depends, apart from s, only on the correlation p of elements of a distance I
apart. Clearly lim,, RP = 1; also, expanding numerator and denominator in
power series, it is readily seen .that lim,y BRP = s. The numerical values in
Table 1 show that the limit as p | 0 is approached rather slowly.

6. Concluding remark. When the statistician has a choice between systematic
sampling and systematic sampling with multiple random starts, he is more

TABLE 1
Relative precision RP of systematic sampling over systematic sampling with
multiple random starts for an exponential correlogram

.01 .05 0.1 0.2 0.3 0.4 ‘ 0.5 0.6 0.7 | 0.8 | 0.9
l I
2 1.34 1.53 1.66 1.80 1.87 1.92 1.95 1.97 1.99 2.00 2.00
5 1.56 1.98 2.34 2.92 3.43 3.88 4.25 4.55 4.76 4.92 4.99
10 1.63 2.13 2.58 3.40 | 4.26 | 5.19 I 6.23 7.32 8.39 l 9.31 | 9.85
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likely to use the latter procedure because its variance can be estimated from
the sample and the estimate is unbiased whatever be the form of the popula-
tion. On the other hand, as we have seen in Section 5, systematic sampling is
considerably more precise in the case of a population with an exponential cor-
relogram. Thus, it may be worth while to try to find an estimate for the vari-
ance of systematic sampling which is at least consistent in some sense if the
underlying assumption of an exponential correlogram is realized. In view of
(17) or (29) this would involve estimating the correlation between the elements
as well as o2.
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