NOTES
WAITING TIMES WHEN QUEUES ARE IN TANDEM

By Epcar REeicun

Unaversity of Minnesota

1. We study the distribution of waiting times when customers proceed to a
second (multiple-counter) queue after having been processed at a first (multiple-
counter) queue!. For reasons of expediency we restrict ourselves to the case of
unsaturated queues in “equilibrium,” that is, to stationary statistics. The main
results are for the case of exponential service time, where it turns out that,
contrary to a-priori intuition, the situation is surprisingly simple. As shown by
Theorem 6, no such simple behavior can be expected when the service time
distributions are even only slightly more general. Theorem 4 was first found
essentially by P. J. Burke [1], by a different method.?

The concept of reversibility of a Markov chain, certain aspects of which are
discussed in Sec. 2, has turned out to be fruitful in connection with the analysis,
and is of some independent interest.

2. A stationary stochastic process N(¢) is said to be reversible if N (¢) and
N(—t) have the same multivariate distributions. If N (¢) is a discrete or continuous
parameter Markov chain with a denumerable state space, say, 0, 1, 2, -- -,
then N(—t) is a process of the same type. The necessary and sufficient condition
for reversibility becomes

1) 0:5(t) = piPyi(t) = piPi(t) = 0;(2), ,j=012---,

where p, and P,;(t) are respectively, the stationary, and transition probabilities
of N(t).

Kolmogorov’s criterion for reversibility of Markov chains with a finite state
space ([8]; [5], p. 66) may, in a special case, be immediately generalized to the
denumerable state-space case, as follows.

Tueorem 1. Let N(k), k = 0, &1, &2, - - - , be an irreducible stationary discrete-
parameter Markov chain with the state space0, 1, 2, - - - | the stationary probabilities
ug , and the singlestep transition probabitilies w,; . A necessary and sufficient con-
dition for the reversibility of N (k) is that

(2) TiyigTigiy **° Tin_yinTiniy = TirinTininoy *° " TigigTiga

for every sequence of non-negative integers (i1, 42, * - , in , 11) beginning and ending
with the same integer.

Received July 15, 1956; revised November 27, 1956.

1 A part of this paper represents work done at The RAND Corporation.

2 A special case of a part of this theorem was also treated (unpublished) by H. H. Goode
and R. E. Machol. Their work is to appear in a text.
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Proof. According to (1), fort = 1,

(3) Oinibigis *** Oin_yinbiniy = Ouyinbuniney =+ * Ouginlugy
is necessary. Since u; > 0, we may cancel the u;, obtaining (2). Summing both
sides of (2) over 43, %4, - , 4., we find

TiipTagi(n — 1) = Tain(n — 1)7"1'21'1 .

If 7 is the period of the chain, then the lim sup,., of the left and right sides
are Tu;mi i, and Tu;, ., , respectively ([4], p. 331). Hence wimy s = Unpymiy, .
Eq. (1) follows by induction.

Let us call a finite sequence of non-negative integers, beginning and ending
in the same integer a cycle if no proper portion begins and ends in the same
integer. Evidently (2) need hold only for cycles.

Consider a continuous-parameter, time-homogeneous Markov chain N(z),
with P.;(h) = 8:;; + hL:;; + o(h), ’

0

2 Liy=0,Liy<01,2 .

J=0

A process of this type will be said to be of type 4 if, in addition,
(i) N(t) has stationary probabilities p;, D i p: = 1, 2., p;L:; = 0;
(ii) N(¢) has at most a finite number of discontinuities in every finite interval;
— 2o piliis < .
(iii) the associated discrete-parameter chain N* defined by
Wiiz(aif_l)Lﬁ/Lii7 i;j=07 1y27“',

is irreducible. (Note: This is a chain, of period = 2, resulting from a shift
of the instants at which N(f) changes state tc the instants t =
cee—=1,0,1,--4)
THEOREM 2. A necessary and sufficient condition for a continuous-parameter
Markov process of type A to be reversible is that

“4) Ly iyLigiy + -+ Liy_ysLinsy = LiyiLiiguy_y *++ LigiyLigsy

Sor every cycle.
Proof. Since the matrix P;;(t) of a process of type A is uniquely determined
by its values for infinitesimal ¢, condition (1) is equivalent to

) piLlij = piL;; .
Note that

) -1
r = (—Z me) >0,
i=0

in view of the second part of assumption (ii), above.

U; = —TpiL,;i, l=0, 1,
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can be assigned as stationary probabilities to N*. Then a necessary and sufficient
condition for N* to be reversible is

Uimi; = —1py(8i; — 1)Li; = —rp;(8;; — 1)Lyjs,

which is equivalent to (5). The theorem follows from the fact that (4) is equiva-
lent to (2).

Let B(t) denote a stationary birth-death process with state space 0, 1,2, - - -,
the stationary probabilities p;, and

P;ia(h) = Nho 4 o(h), A >0, i=01,---,
Piia(h) = ph + o(h), wi>0, 1=1,2 .- u=0,
Puh) =1 — Nh — wih + o(h), i=0,1,---.

B(t) is permitted to have at most a finite number of increases (births), and de-
creases (deaths) in any finite time interval, D p.(\; + ui) < .

THEOREM 3. B(t) is reversible.

Proof. If (4) is to be other than of the form 0 = 0, the cycle must be of length
3, in which case (4) still holds trivially®.

CoROLLARY. If Ay = N\, (n = 0, 1, --- ) then the death times of B(t) form a
Poisson process of density .

Outline of proof. Since N, is constant the birth times are Poisson with density
. The stochastic process Bi(t) = B(—t) is statistically identical with the process
B(t). But if B(t) is a fixed realization, and B;(f) = B(—t) then the births of B(t)
become the deaths of Bi(%).

3. Consider an unsaturated queue of type M /M /s (Poisson input, s counters,
exponential service time, first come, first served), in equilibrium. If n(f) is the
sum of the number of customers on queue, plus those being served, then n(f)
is a process of type B(t), in which customers’ arrivals correspond to births, and
departures to deaths. By considering the reversibility of n(¢), guaranteed by the
corollary to Theorem 3, the following is now clear:

TuEOREM 4. (a) The sequence of departure times form a Poisson process. (b)
The value of n(t) is independent of all past departure times. (c) If ty is a departure
time, then n(ty + 0) 7s independent of all past departure times.

Note. The above results are, of course, true for more general queue disciplines.
The number of servers, instead of being fixed, may be permitted to vary as a
specified function of the number of customers present. Also, instead of “first
come, first served,” e.g., random service, or “last come, first served,” will do
without effect on the results.

Suppose the customers, after departing from a first queue of type M/M/s,

3 Heuristic forms of the necessary argument date to P. and T. Ehrenfest [3]. The above
proof is in the spirit of the Ehrenfests’ reasoning. Simple algebraic verifications are also
possible, but they leave the situation less lucid. The condition Zp;(\i + ;) < » is actually
superfluous.
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enter a second multiple-counter queue, where they are served first come, first
served, with exponential service time. Such a combination of two tandem queues
will be referred to as a o-system. It follows, from Theorem 4b, that if ni(¢), na(z)
refer, respectively, to the first and second queues of a o-system, then n;(f) and
ng(7) are independent, + < ¢. This was first proved in the special case s = 1
t = 7, by Jackson [6].

In what follows, the term wasiting time will be used to refer to the time elapsed
between a customer’s arrival and departure, the service time included. Let T,
and T, denote a customer’s waiting time at the first and second queues of a
o-system, respectively.

TureoreM 5. If s = 1, then T and T, are independent.

Proof. Let ny be the number of customers at the first queue the instant after a
customer C departs, and let n, be the number of customers C finds at the second
queue (customers being served included). As a corollary of Theorem 4¢, n; and
ny are independent. Let ’ :

A(t; k) = Pr{Ty, < t|n, = k}.

b

If X\ is the number of customers arriving per unit time, then n; is the number of
Poisson events of density A that oceurred during the waiting period T; . We have

Prin, = 7| Ty = t, na = k} = ¢ M(\)/5.

Therefore
E{z"|n. = k} = f e dA(t; k).
0

Now the left side is independent of k. Therefore 4 (¢; k) does not depend on k.
Hence 7, , and consequently also T’ , are independent of 7', .

4. We will now consider the queues of type E; / Ex / s (interarrival and serv-
ice periods normalized chi-square with 2j and 2k degrees of freedom, respec-
tively [7]), and show that Theorem 4a cannot be generalized further, in a certain
direction. Note that both whenj = k = 1,and j = k = «, the departure epochs
of an E; / Ei, / s queue are again E; . (The case j = k = « corresponds to a peri-
odic input with constant service time.) One may therefore ask* whether this state
of affairs holds whenever j = k. However, Theorem 6, below, shows this to be
false.

TuroREM 6. The departure epochs of an E; / Ez2 / 1 process are not an E, process.

Proof. For the case under consideration we have x = interarrival period =
; + x2, where 2;, 7 = 1, 2, are independent, with

— A .
E{eaz}=m, A>O, 'L=1,2.
4 This question is related to the asymptotic behavior of a large number of queues in
tandem, each with Eji-type service time, k fixed.
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Similarly, the service periods, y, are of the form y = y; + y., where y; , 7 = 1, 2,
are independent, and
- I .
Efe™"} =TT D<p=Au<l1l =12

At a given instant the entrance will be said to be in state 1 (2) if the system is
in the portion z;(x;) of an interarrival period. Consider instants just following
a departure. Let A, = Pr{extrance is in state 7, and there are 0 customers left
behind}, 7 = 1, 2. Let 7 be the length of an interdeparture period. If the de-
parture épochs formed an E, process it would follow that = had the same marginal
distribution as z, that is,

et - ) () 4 (2 ()
1°>\+s u+ s 2 AN+s/ \u—+s

) PR\ x\
+(1"A10'*A20)<”+s> =<)\+S>-

Multiplying both sides by (A + §)*(u + s)°, and equating coefficients of §*, we have

Py, = Pr{0 customers are left behind by a departing customer}
= A+ An=1— ¢

However this is incorrect, as it differs from Volberg’s [9] formula for P, . Thus
we have a contradiction.

A related question is that of the possibility of ¢mbedding n(t) in a reversible
Markov process, e.g., for s = 1. To this end we define the “pseudostate” 7i(¢) of
an E; / E, / 1 queue. We shall say that a(t) = r,7» = 0,1, 2, ---, 5 — 1, if the
(r 4+ 1)st stage of the interarrival period is in progress. Similarly, put b(t) = r,
r=20,1,---,k — 1, if the (r + 1)st stage of the service period is in progress;
if the counter is empty, b(t) = 0. Define

a(t) _ b(t)
FE

The realizations of the process 7(¢) are constant except for jumps of height
1/4, upward, and jumps of height 1/k, downward. We make the following ob-
servation.

TaroreM 7°. If j and k are relatively prime, 7(t) is a Markov process.

Proof. 1f the hypothesis is satisfied, n(t), a(t), b(to) can be recovered from
a knowledge of 7(%).

We conclude that if 7 and & are relatively prime, and j = k, then 7#(?) is re-
versible. Since j = &k = 1 is the only admissible possibility, the special nature of
the B,/ E1/ 1 queue is seen in a new light.

A straightforward computation shows that the following partial converse of
Theorem 4a holds.

(6) it) = n(t) +

5 This fact enables one to study the transient behavior of n(t) for E;/Ex/1, j, k relatively
prime. We shall not explore this further at this time, however.
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TurorEM 8. If the arrival and departure epochs of a single-counter queue are both
Poisson, then the service time distribution is exponential, or a step function at 0.

The author has had valuable discussions with A. W. Marshall and T. E. Harris
in connection with this work.
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ON THE POWER OF OPTIMUM TOLERANCE REGIONS WHEN
SAMPLING FROM NORMAL DISTRIBUTIONS!

By IrwiN GUTTMAN

University of Alberta

1. Introduction and Summary. In [1], optimum g-expectation tolerance regions
were found by reducing the problem to that of solving an equivalent hypothesis
testing problem. The regions produced when sampling from a k-variate normal
distribution were found to be of similar 8-expectation and optimum in the sense
of minimax and most stringency. It is the purpose of this paper to discuss the
“Power” or ‘“Merit”’ of such regions, when sampling from the k-variate normal
distribution.

Let X = (X;, ---, X,) be a random sample pcint in n dimensions, where
each X, is an independent observation, distributed by N(, ¢°). It is often de-
sirable to estimate on the basis of such a sample point a region which contains
a given fraction 8 of the parent distribution. We usually seek to estimate the
center 1008 % of the parent distribution and/or the 1008 % left-hand tail of the
parent distribution.
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