COMPONENTS OF VARIANCE ANALYSIS FOR
PROPORTIONAL FREQUENCIES

By J. D. Bankier aAND R. E. WALPOLE

McMaster Unaversity and Virginia Polytechnic Institute

1. Summary. With the exception of papers by G. W. Snedecor, G. M. Cox,
and H. F. Smith ([8], [9], [10]), there seems to be little about proportional fre-
quencies in the literature. In this paper we consider two-way crossed classifi-
cations and two-way nested classifications. The expected values of the sums of
squares are obtained in a form which is applicable to a variety of components
of variance models. The tests of several hypotheses are considered.

2. The Type I model for two-way crossed classifications. We consider an
experiment in which p treatments are applied to g blocks. The 7th treatment is
applied to the jth block 7;; times. The n;;’s having been displayed in a matrix
with 7;; in the 7th row and jth column, we assume that the n;/s in a given row
are proportional to the n;;’s in any other row. This implies that

_m.n;

(1) N5 N

where

q y 4
o= Yong,  my= Yom, N = Done..
j=1 i=1 i=1

Consider the model
(2) Yijk,-,' = ,U»+ Ti + ﬂ]'l" (Tﬁ)u"' €ijksj s 1= 1’2’ o ,p;j = 1)27 5,4

ki = 1,2, -++, ni;, where the e;,,’s are NID (0, o”) and the parameters are
subject to the conditions

D q b q
3) iZIni.n = j_zln.jﬁj = ;ni.(‘rﬂ)ﬁ = ]Zln.j(rﬁ),-j = 0.

If we denote E(Y;,;) by &:;, the above conditions are equivalent to defining
p=E., =% —%., Bi=Et;—E., (78)ij = & — & — E;+ £,

where

_ 1 q _ 1 y4 _ 1 .4
& = wr Z:l Nij&ijs £ = o ;nﬁfz‘j: (.= N %: Nij&ij.

A more realistic model, such as is considered by Anderson and Bancroft [1], will
be studied in a later section.
We now rewrite Egs. (2) in a form where the theory given by Anderson and
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PROPORTIONAL FREQUENCIES 743
Bancroft [1] may be applied. They may be put in the form

v q »9q
(4) Y, =p+ Zl Uiitor + Zl ViiBir + 25 Waopis(8)iy + Eijkijs
/= ir= gt
where
Ui =8y, Vis=055, Wojis = b0ibjrj,

6” belng the Kronecker 6. If we order the Yip,;, calling them Y,(a = 1, 2,
, N), we may write Eqgs. (4) in the vector form

5) Y=0u+ Z:l Uiri + Zl ViB;i + Z Wii(8)i; + e.
1= = 1,J
Denoting the elements of the vector U; by Ul , we define
Z Uia = Uia = Uy — rji
a=-1 R
so that
N »
0= Z Uia = Z Nir Ugsr .
a=1 §/=1
Similarly,
V.i=n'j; Wij=n"—ij Zn i’ Vijr = Znu’wnw'—o

N N’ 5

Changing our notation, we denote by U, V;, W,;, the vectors U.I, V;I Wi,
where 7 is a column vector all of those N elements are equal to unity. Then if
we set

=U:=Ui, 0,=V;=V;, w;=W,—Ws;,
we may write Eq. (5) in the form
P q ».9
(6) Y=u+ Z} Ui + Zl v;B; + 22 wii(m8) i + .
= j= %,

It is necessary that the w.’s, v’s, and w,,’s form a linearly independent set of
vectors. Since this is not the case, we use the conditions (3) to eliminate

7o, Bgs (B it = 1,2 ---,p)and ("'B)pj(j =12 .- - 1), obtaining
2—1
_M_{..Z < -——up>r,+;<v, ——1—&——1).,>ﬁ,
(7)

p—1 g—1 .. X
+ X >y (:f — Yia _ Wpi ) ()i + e
q

t=1 j==1 i Niq Npj
We note that

n;,

u,.=U¢—

D. D.

Uy
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and a similar statement may be made about the coefficient vectors of 8; and
(78):; . Making use of the relations

Ui.Ui' = n,.&w N U,,V] = Nij;, Ui.Wi'j = ni,ﬁw, Vj.er = ’)’L,j5jj/ )
ViWijpr = nijpdyr,  WiWeyp = niudiy ,

it may be proved that the coefficient vectors of the r’s, 8;’s, (78):;’s form three
sets of linearly independent vectors and a vector from any set is orthogonal
to the vectors of the other two sets. Thus, when the three sets are combined,
they form a set of linearly independent vectors.

We shall be interested in testing three hypotheses

Hl:(‘rﬁ)’if=07 Z=1,2,,P_17.7=1,2,;Q"17
Hy:r; =0, i=1y27"')p—17
H3:i8.1' =0; j=1)21"'7q;1'

The restrictions (3) imply that not only the parameters in a given hypothesis
are zero but also all other parameters of the same kind. To test H;, we first
compute

SSE = Z [Yijki,‘ —m— b — bJ' - (tb)z’j]Z;

1,5,k 5

where m, ¢;, b; and (¢b),; are the least squares estimates of u, 74 8;, and (78).;,
respectively, and SSE is the minimized value of the residual sum of squares.
Next, we compute SSE,, the corresponding minimum obtained under the
assumption that H; holds. Then

N
R = Z ?/i - SSE)
a=1

where y, = Y, — Y, is the reduction in the sum of squares when all the parame-
ters are used while

N
R1 = Z yi - SSEl
a=1
is the reduction due to the parameters left when H; is true. The additional re-
duction in the sum of squares due to the (78);;’s is
SS(TB) = R — R, = SSE, — SSE.

In the same way, SSE; and SSE; denote the minima obtained subject to H,
and H;, respectively, and the reductions in the sum of squares due to the r,’s
and the 3,’s are

SST = SSE, — SSE and SSB = SSE; — SSE,

respectively. Anderson and Bancroft [1] show that

N
> yi = SST + SSB + SS(TB) + SSE,
a=1
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and that, subject to the corresponding hypotheses, SST, SSB, SS(T'B) and
SSE are independently distributed as x’¢” with p — 1, ¢ — 1, (p — 1)(¢ — 1),
and N — pq degrees of freedom. The hypotheses Hy, H,, and H; are tested by
the statistics

P MS(TB) _ MST 7 MSB
! MSE ’ - MSE’ 7~ MSE’

respectively, where M SE, for example, is SSE divided by the corresponding
number of degrees of freedom.

F,

3. The sums of squares. The following theorem, a slight generalization of
one stated by Mann [5], will be used in computing the sums of squares.
THEOREM A. If

y
MW=M+;&m

and
MI=2X, s=p
k=1
@) X,,X,, -+, X, form a mutually orthogonal set of vectors,
3) anm = 0, an #= 0,
k=1 k=1
(4) any number of other conditions hold for 7e41, Ter2, <+ +, 7o, Such that the

method of Lagrange multipliers may be used,

then condition (3) may be ignored in the minimizing of
P 2
SSE = (Y —ul — ZXm>.
k=1

Our estimates of u, 7:, 8;, (78):; are m, t;, b;, (tb):;, respectively, where
these values minimize SSE subject to the conditions (3). By Theorem A, we
may ignore the conditions on the 7.’s and the 8;’s. The conditions on the (78):;’s
will have to be considered in the computation of SSE; and SSE; but in the
computation of SSE they can be avoided by expressing SSE in a different form.
We have

SSE = 2 (Yipy; — i)

ki

Taking partial derivatives, we find our estimate of &;; is é,-,- = Y,;. , where this
notation indicates an average over the missing subscript. Then, by the in-
variance property of such estimators,

m=7Y., t.=Y,.. — Y., by = Y, —-Y.,
)y =Y — Y. =Y, +Y.,
and

2
SSE = Z (Y"jkii — Yij.)Z — Z Y%jk‘i _ Z Y,'j.

i,4.k5 .3,k 4,5 MNij
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where Y,;. is the sum of all the observations on the ith treatment in the jth
block.

In obtaining SSE;, all of the conditions (3) may be ignored, but, to deter-
mine SSE, and SSE;, the method of Lagrange multipliers must be used. As
a result of these calculations, we find that

0.9
SS(TB) = E (Vi — Yo, — Y + Y.)%
]

zp: % > \2 Zp: Y? y?
SST = — ’n,(Y, e Y) = s — _]_V_ ,
and
L] q 2 2
SSB = on (P — V.= Yi_ Lo
7=1 =1 N N

4. Other models. We still assume that
Yy = p+ 7i+ B8+ (78)i; + €isig; -

For the Type II model we assume that the 7.’s, 8;’s (78):;’s and e;,;’s are NID
with zero means and variances o , s , o28, and o°, respectively. For the Type
ITI model we assume that the =.’s, 8;’s, and (#8):;’s come from finite independent
populations of size P > p, @ > ¢, and PQ, respectively, with zero means and
variances

P Q P.Q

I 2 6 \ ; (18)3;

2 =1 =1

2
O; = ———r gg = ——

P—1 Q-1 T @®E-D@-1
The assumption of zero means implies that
P Q P,Q
.Zl"" =0, Zlﬂi =0, 2, (B)i = 0,
1= J= 1,7

and, in addition, we assume that
P Q
z:l (m8)i; = Zl (m8)i; = 0.
1= J=

For the mixed model we may assume that the 7.’s, 8,’s, and (78):;’s are of any
of the types described above. In addition when the 7/’s, say, are of Type I
and the 8;’s of Type II, Anderson and Kempthorne ([1], [2]) have shown that
it is desirable to assume that, corresponding to each 3;, there exists a population
of (78):;’s consisting of p elements such that

? . ; (Tﬁ)fl
‘;1 (Tﬁ)ij = O, T8 = -—p—-_-_——l——

If the r’s came from a Type III population, we would replace p by P in the
above definitions, and if the roles of the 7,’s and B,’s were interchanged, we
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would interchange 7 and j and replace p by g. We always assume the ,;,,’s are
NID (0, ¢*).

6. The expected values of the sums of squares. In every case we shall arbi-
trarily begin with the sums of squares obtained for the Type I model. To deter-
mine their expected values, we shall make use of the following theorem which is
a slight generalization of one stated by Tukey [11].

TuaEOREM B.

If 41, Yo, - -+ , Yp have means py , pa, -+ , Up , variances s o3, -, o5, and
every pair has the same covariance, \, then

y

E%i ny: — ?7)2} = > nipi — B)° + i:lni <1 - %) (67 — )

=1 =1

where ]
Y4 Y4
B ; nyi ;1 Nipks P
y- = N b ”'. = N y N = ;ni .
We find that
vd q
SST = > ni(w; — ®), SSB = > n;y; — 4.),
t=1 J=1
P.g Pdini ]
SS(TB) = D nij(z: —2)%,  SSE = D (ein;; — &.)%
¥ $.90ks §
where

w, = 7+ (8. + &.., yi=B8;+ (B).; + &;.,
2, = (18)s; — (#B)i. + &j. — &..

and
2 mas ,.Z; n.i8; . ; n.(18):;
T. = N 5 = N (Tﬂ)i- = —Af—":
D TN C ) PR Sy v e
() = ", (). =T m.

N

In order to apply Theorem B, we need the variances and covariances of the
w;, Y;, and z; in a form that does not depend on the form of the model. By

using the methods employed by Bennett and Franklin [3], we find for the Type
IIT model that

pi = E(w) = (1 — 8,)7:, B =0,

1 1\ 1 /< N? a
o= 5,<1 -—I—,>af+a,,,<1 _F>z”\ﬁ<,;"'2" —6>afﬂ+a.
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2 ‘q 2
o, 1 2 N 2
= _51 o 61 Ao g T/ T
A P aPN2(j=ZInJ Q>”ﬂ’
where 8, = 0 if the 7,’s come from a Type I population, 8, = 1 otherwise, and
a similar definition holds for 6,4 .

Application of Theorem B enables us to find £(SST) and division by p — 1
gives us

E(MST)
a2 0.0 L 2 N ba 2, (1 —28)< 2
a+(p—1)N2<:§=:an ’Q Urﬂ+ 1 7+ — Z;x 3.T¢
where
a=N — 1 Zp:')f
N&E™”
Similarly
E(MSB)
2 5,-51) L 2 N2> 2 5ﬂb 2 (1 - 5#) I 2
’“‘T+(q_1)N2<§n:. T)—Gvﬁ‘i"q_lde‘i‘ 1 Z: Bi s
where
b= N — L3
N = 7
and

p.q
2
,5ab (1 — 8. 'Z’: ni;(18)"i;
(p— (g — DN —=1D@—-1
Finally, by the theory for the Type I model, we know that SSE is distributed
as x’o" with N — pq degrees of freedom and hence E(MSE) = o°. We also note

that, if all the n;; = 1, SSE = 0 and it is impossible to carry out any of the
F tests which involve division by this quantity.

EIMS(TB)] = o + ol +

6. Models with no interaction. In this case, for the Type I model,
Yijki,' = M + Ti _"- .3] + eijk;i .
We find, as in Sec. 2, that

and
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of that section plays the role of SSE. We also saw in Sec. 2 that
SSE, = SSE + SS(TB)
so, if we had accepted
Hy:(78)i; = 0,

and decided to change models in midstream, all that would be necessary to
obtain SSE; would be to pool the interaction and error sums of squares. We
find the same expressions for SST and SSB as in Sec. 3 and that the degrees
of freedom associated with SSE; are those obtained by pooling the degrees of
freedom associated with SS(TB) and SSE. To obtain the expected values of
MST and MSB one need only omit the terms involving the (#8);;, and it is
easily verified that E(MSE;) = ¢". A discussion as to when pooling is desirable
is to be found in Bechhofer’s thesis [2] and in a paper by Bozivich, Bancroft
and Hartley [4].

7. Distributions of the sums of squares. Corresponding to the hypotheses
Hy:(78):5 = 0, Hy:r; = 0, H;:8; = 0,
we have the hypotheses
o = 0, o =0, o5 = 0,

if the corresponding variables are from other than a Type I population. Then’
since the populations have zero means, it follows that the corresponding vari-
ables are equal to zero. We have already referred to the tests for the above
hypotheses for the Type I model at the end of Sec. 2. If there is no interaction
term, subject to H, and Hj, the sums of squares SST and SSB reduce to the
corresponding expressions for the Type I model and the tests of Sec. 6 apply
no matter which model we may be considering. If there is an interaction term,
the same argument shows that the Type I test can be used for H,. Thus our
problem is reduced to testing H, and H; when there is interaction and we are
not dealing with a Type I model.

We first consider the Type IT model where the parameters are NID with zero
means and variances o- , o5 , and oug . If all the n;’s are equal to n, say, using
methods similar to those of Mood [6], it can be shown that SST, SSB, SS(TB)
and SSE are independently distributed as x’E(M ST), x’E(M SB), xX"E[M S(TB)],
and x’o" with p — 1, ¢ — 1, (p — 1)(¢ — 1), and N — pq degrees of freedom,
respectively. These results hold independent of the validity of H,, Hs, and H; .
Since some of the details differ from those given by Mood we shall outline the
proof of the above results.

The theory for the Type I model shows that

to=Y.. — Y., bj=Y,;, —Y., t)ij =Y. — Vi, — YV, + Y.,

t=12---,p—1;5=1,2,---, ¢ — 1, are distributed independently of
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PN
SSE = Z (eijk'.]. _— éﬁ,)z.
G5k
Therefore any function of these statistics is distributed independently of SSE,
and, in particular, this holds for ¢,, b, (tb),; and (¢b):, . These results hold for
the particular case where Y1 = €, . Hence

&. —E., €5 —E.., &j. — &, — &5 T E..,
=12 .- ,p;5=12, - g, are distributed independently of SSE. It may
be shown that any variable of the above three types is independent of any

variable of the other two types by computing the appropriate covariances. We
know that

vd
SST = ¢gn Z‘ (w; — »)°

where

2
g

2
wi =7+ (78)i. + .., E(w;) =0, var (w) = o7 + Z;—B + gn’

cov (wy ,w;) =0, EMST) = ¢ + nors + qnot .

It follows that SST / E(MST) has a x* distribution with p — 1 degrees of
freedom. Similarly SSB is distributed as x’E(MSB) with ¢ — 1 degrees of
freedom.

Consider the three sets of variables

B)i.— @B).., @B~ B)..,  (B)ij— @B)i.— (B).;+ (7B)...

As with the ¢;;’s, it may be shown that any variable of the above three types
is independent of any variable of the other two types. Then it follows that the
three sets of variables

w; — W,, Yi— 9., 2 — 2,
are independently distributed and hence so are SST, SSB, and SS(TB).

If, in the results for the Type I model, we set u, the 7,’s and the 8;’s equal to
zero and assume the (78);;’s are NID (0, o2s),

Yip = (iB)is + e,  Yis. = (B)si + &j. s
‘ 2
E(Y") = 0, var (Yn) = 0'36 + Gn;,

and the Y;’s are independent. We carry out an analysis of variance on the
Y.;’s according to the model of Sec. 6, where there is no interaction, with the N
of that section equal to pq and n;; = 1, to obtain
pa _ _ _
SSE, = SSE + 8S8(TB) = Z (Y. — Y. = Y+ 7))

"
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since, under these conditions, the Y,; of that section is equal to Y,; . The
theory of Sec. 6, when we replace o® by o3 + o°/n, tells us that SSE; is dis-
tributed as x*(no’s + o°) and hence

».q

SS(TB) = Zn(Yij. - Y. —-Y. . 4+7.)

5
is distributed as x*(noss + o°) with pg — p — g+ 1= (p— 1)(¢g — 1) degrees
of freedom. It then follows that the appropriate tests for H, , H,, H; are given
by the statistics

7. - MS(TB) 7o MST 5. - _MSB
Y7 TMSE *~ MS(TB)’ = MS(TB)’

respectively. A proof of these results is also outlined by Anderson and Bancroft
[1]. .

The above results are for the case where n;; = n. If this condition does not
hold, we can no longer say that F, and F; have the F distribution. This may be
shown by considering the special case where p = 3, ¢ = 2, nyy = np, = 1,
Ny = Ngg = 2, Ny = Ny = 3 and N = 12. Then the moment generating function
of SST is

[1 — 4(11z + 36°)t/3 + 4(362° + 22x4° + 34%)¢/3]™*
where £ = o + o2/2. This is not the moment generating function of a variable
of the form ¢x’ unless z = 0. Thus there is no hope of F; having an F distribution
and a similar argument holds for F; .

For a Type III model with interaction we cannot expect to obtain the dis-
tributions necessary for F tests of H, and Hj; since the (8);;’s are not normally
distributed. An approach similar to the one given above could be used in the
case of the mixed model.

8. The two-way nested classifications. This model is discussed by Bennett
and Franklin [3]. We assume that

Yip = p+ 7o 4 Bico + €iny;

yd q
Z;n,;n = 0, Z;n_jﬂj(.-) = 0, 7 = 1, 2, ctc, D
= J=

We test two hypotheses, )
Hy:Bi = 0, i=1,2--,p;i=12--,q

and
HzIT,"—:O, i=1y27"'7p$
using the statistics, for the Type I model,
F, = MSB (with p(¢ — 1) and N — pq degrees of freedom),

MSE
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and

MST
MSE

where SST and SSE have the values given earlier and

X _ . 2a y2. 2 y?
SSB = Znij(Yij. — V)= ey S
)

Fg_

— pq degrees of freedom),

4,7 MNij i=1 N;,

The Type IT model is defined as before but, in the case of the Type IIT model,
we assume that the r,’s come from a finite population of size P, mean zero, and
variance

D

2
2 7
i=1

P—-1

2
Or =

while the 8;,’s come from P populations of size @, corresponding to the different
values of 7, these populations being independent of each other and the popu-
lation of 7,’s, with zero means and common variance

S 2

Zﬁm)
2 _ j=1
(il

The expected values of the mean squares are
2
EMST) = * + —2%___ 90 [Zn, - Q:Io'a

(p — 1)N?
+ 6ra' 03‘*"(1-6)2 1Tz;

p—1 p—1 i1
2 Ssb 65) 2
E(MSB) = o' + == + Z niBio,  E(MSE) = o',
where the §’s have the meaning as&gned in Sec. 5 and
P q
2 i 2
- N — izl A =
a=N N b=N N

Examination of M SB indicates that, rio matter what model we may use, we
may test the hypothesis H, by the statistic F, given earlier in this section. For
a Type IT model with n,; = n, we test H, with the statistic

MST

MSB’

For other cases an approximate method must be used such as is given elsewhere
in the literature [7].

F=
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