TESTS OF FIT IN THE PRESENCE OF NUISANCE LOCATION
AND SCALE PARAMETERS!

By LioNeL WEISS

Cornell University

1. Summary. Certain functions of the sample spacings are shown to con-
verge stochastically as the sample size increases. This leads to certain con-
venient tests of fit which are consistent against wide classes of alternatives.

2. The stochastic convergence of certain functions of sample spacings.
Suppose X, X,, ---, X, are n independent and identically distributed chance
variables, each with density function f(z). Let ¥; < Y, < --- = Y, denote the
ordered values of X;, X;,---, X,.,and let U;denote ¥Y,;y — Y; (¢ =1, ---,
n — 1). Let g(v) be a bounded nonnegative function of » defined for 0 < » = 1,
and r be a number greater than or equal to unity. Define the chance variable
U(r) as n D 15 g(¢/n)U;. Then we have

TaEOREM 2.1. If f(x) = 1 for 0 £ 2 = 1, and f(x) = O elsewhere, then

U@ = T(r + D[l / T(n + r + 11251 96/n)|

converges stochastically to zero as n increases.
Proor. 1t is shown in [1] that for any positive number s,

E{Ui} = [nIT(s+ 1)/ T(n + s+ 1)]

for any 4, and E{U;Uj} = [n!I*(s + 1) / T(n + 2s + 1)] for any 7 = j.
From this, we find immediately that

E{U(n)} = T + D" "'l/T(n + r + DI 96G/n),

and, remembering that g(v) is bounded, we find that the variance of U(r) ap-
proaches zero as n increases. This completes the proof.

COROLLARY. If f(z) = 1for 0 £ 2 < 1, and f(z) = O elsewhere, and [ g(v) dv
exists (in the Riemann sense), then U(r) converges stochastically to

T(r+ DfsgQ) dv

as m increases

Proor. If [§g(v)dv exists, n" [n!/ D(n + r 4+ 1)] D121 g(i/n) approaches
it as m increases.

Let us denote . f(y) dy by F(x). Suppose that on the interval [4, B}, f(z)
is continuous and f(z) = D > 0 for each x in [4, B]. Suppose h(v) is a nonnega-
tive bounded function of »(0 < v < 1), and [} k(v) dv exists (in the Riemann
sense). Define the chance variable R as an(_4)<,~<,,m3) h(j/n)(Y ;0 — Yj),
and S as 1Y .r<icar@ h(G/m)[Y 1 — Y. Then we have
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THEOREM 2.2. A s n increases, R converges stochastically to ARV WA [F ()]}
dv, and S converges stochastically to 2 ih() / {fIF 1)1} d.
Proor. If Y;,, and Y; are both in the interval [4, B], we may write

F(Yin) — F(Y) = f(0)[Y i — Y],

where Y, < 8; < Y1 . Let Fi(z) denote the empirical distribution function
based on Xi, Xa, -+, X, . That is, for each z, Fx(x) equals the proportion of
the values (X;, Xz, -+, X,) which are no greater than z. Define \; as

[F(Y.) — (¢/n),

which is the same as |F(Y;) — F*(Y,)|. It is well known that if 6 is any positive
number, then maxn" *7)\; converges stochastically to zero as n increases. De-
fine &; as |Y: — F'(s/n)|. If Y; and F'(i/n) are both in the interval [4, B,
then, since f(z) = D on that interval, we have 8; < (\;/D). Then, if ¥;, Y41,
F(j/n), and F7(j + 1)/n] are all in [4, B], we have |6; — F'(j/n)| <
1/nD + 8; + 8;41, and we can write

o2 ) — ) = [ (£)] s = 1) 4 0l ¥,

where v; = f(8;) — fIF'(j/n)]. But because of the uniform continuity of f(x)
in [4, B, the inequality for |8, — F'(j/n)|, and the Glivenko-Cantelli theorem,
it is easily seen that max,r.<j<nrmlvil converges stochastically to zero as n
increases. We denote F(Y ;1) — F(Y;) by U;, and note that {U;} has the same
distribution as in Theorem 2.1. From (2.2.1) we have
ST J
nF(A)<j<nF(B) n fl:F—l (]_)]
n

222
222 Vi — ¥

o Bt O[]

The expression on the left of (2.2.2) converges stochastically to
8 {h() / fIF ()]} db,

by the corollary to Theorem 2.1. Let us denote the second term on the right of
(2.2.2) by R'. As n increases, the probability that |R’| will be no greater than
(max;|y;|/D)R approaches one. This means that |R’|/R converges stochastically
to zero as m increases. But R 4 R’ converges stochastically to

[+ {h(v) / fIF ()]} dv
as n increases. This proves Theorem 2.2 as far as R is concerned. The proof for:
‘S is entirely similar.

3. Application to tests of fit. We need the following lemma.
Lemma 3.1. If F(x) and G(x) are two distribution functions, and u, v0 = u <
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v £ 1) are two given numbers, suppose F(u), F'(v), G '(u), G (v) are all
umquely determined. Also suppose that F(x) has a derivative f(x) between F~ Y(u)
and F'(v), and G(z) has a derivative g(x) between G (w) and G(v). Then a neces-
sary and sufficient condition that fIF(r)] = kglG™'(r)] for almost all r in [u, v]
(where k is a positive constant) vs that there are two constants C, D(C' > 0), such
that F(Cx + D) = G(x) for all z in the interval [G " (u), G ()].

Proor.

(a) Sufficiency. Suppose there are constants C, D such that F(Cx + D) =
G(z) for all z in [ (), G (v)]. For any such z, Cf(Cx + D) = g(z). There is an
7 in [u, v] such that x = G7'(r). Then Cx + D = F'(r), so that Cf[F (r)] =
g[G™'(r)]. For any r in [u, v] we can find a value z so r = G(z), and this com-
pletes the proof of sufficiency.

(b) Necessity. Suppose f[F ()] = kg[G'(r)] for almost all r in [u, v]. Since
F[F'(r)] = r, we find by differentiation that (d/dr)F'(r) = 1/{f[F ("]}
wherever f[F(r)] is positive. Therefore, at each r in [u, v] at which f[F'(r)] > 0,
(d/dr)G7'(r) = k(d/dr)F'(r). This implies that for all 7 in [u, v], G(r) =
kF'(r) + b, b a constant, or F'(r) = KG '(r) + B, B, K constants with K
positive. There is a value z in [G™'(u), G '(v)] with r = G(z). Then F [G(z)] =
Kz + B, or G(z) = F(Kz + B) for all z in [G¢'(u), G '(v)]. This completes
the proof of Lemma 3.1.

As an application, suppose we are to test the hypothesis to be described. X,
X,, .-+, X, are known to be independent and identically distributed chance
variables. Two known constants %, »(0 < u < v = 1) are given. The hypothesis
is that the common distribution function F(x) of X is, for each z in the interval
[F(w), F'(v)], equal to G(Cx + D), where C, D are some unspecified con-
stants (C > 0), and the distribution function G(z) is specified. We assume that
for each z in the interval [ (u), G*(v)], G(x) has a derivative g(z), with g(z) =
A > 0, and g(z) has at most a finite number of discontinuities in [¢*(w), G (v)].

We propose to test the hypothesis just described by means of the following

statistic:
nd ¢ [G_l (‘7—)] (Yia — ¥)°

Z . nu<Lj<ny
n

{oZole @ o - v}

From Theorem 2.2, we know that if the true common distribution F(z) has a
derivative f(z) on the interval [F*(u), F'(v)] with at most a finite number of
discontinuities in that interval, and if f(xr) 2 A’ > 0 on the interval, then
Z, converges stochastically to

) 2. {f[ﬁG:gﬂ} 2
[ (gl ar]
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as n increases. From Lemma 3.1, we know that f[F'(z)] = kg[G~'(x)] almost
everywhere on [u, v] if and only if the hypothesis is true. Therefore if the hy-
pothesis is true, Z, converges stochastically to 2/(v — u). If the hypothesis
is not true, but F(z) satisfies the conditions that guarantee that Z, converges
to (3.1), we see that Z, converges stochastically to

2 f 1) d

[ fu ’ h(x) dx:r

as n increases, where h(r) is a certain function not equal to a constant almost
everywhere on [u, v]. But then (3.2) has a value greater than 2/(v — u). There-
fore the test of the hypothesis which rejects when Z, is “too large” is consistent
against any alternative F(z) with a density function bounded away from zero
and with a finite number of discontinuities on the interval [F'(u), F'(v)].
If F(z) assigns zero probability to a subinterval of [F (), F_'(v)] of positive
length, while F'(v) — F'(u) is finite, it is easily verified that Z, approaches
infinity with probability one as n increases. Thus the test based on Z, is con-
sistent against a very wide class of alternatives. Another advantage of the test
is that the distribution of Z, does not depend upon the unknown parameters
when the hypothesis is true. Furthermore, the computation of Z, is fairly easy
if a table of values of G(z) and g(z) is available.

(3.2)

4. A conjecture about large-sample distributions. A reasonable conjecture
seems to be that the numerator and the square root of the denominator of the
chance variable Z, have a limiting distribution which is bivariate normal. The
remainder of this section will be a heuristic justification of this conjecture. We
denote 7Y mucicm §1GG/MI(Yin — Y3’ by @, and X aucicm 916G (/n)]
(Y1 —Y;) by W. Z, was defined as @/W?2. From the proof of Theorem 2.2,
W and @ have about the same joint distribution as

Zao O O]
and
U; 2

22l ON - O

where {U,} have the same joint distribution as in Theorem 2.1. Thus W is (ap-

proximately) a linear combination of U, - -+, Uw , and @ is (approximately) a

linear combination of U2, , - -+, Uy . Next we show that the mixed moments
f {nU;} approach the corresponding moments of {V;}, where Vi, Vs, -
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are independent chance variables, each with density ¢ for v > 0. In fact,

porte e T(ay +1) ---Tla + DI'(n + 1)
P(n+a1+...+ak+l) ’

which approaches I'(a; + 1) -+ - T'(ax + 1) as n increases, while
E{(V} ... Vil =T(a + 1) --- T'(ax + 1).

Thus the chance variables W and @ are essentially linear combinations of chance
variables which in important respects act like independent chance variables in
the limit. The bivariate central limit theorem suggests the limiting normality
of the joint distribution. If this conjecture is correct, then for large samples the
approximate critical value for Z, , as well as the power of the test against various
alternatives, can be very easily computed.

E{(U)™ --- U™} =
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