EXACT MARKOV PROBABILITIES FROM ORIENTED LINEAR GRAPHS

By Reep Dawson anp I. J. Goop
Silver Spring, Maryland and Cheltenham, England

0. Summary. Using a theorem due to de Bruijn, van Aardenne-Ehrenfest,
C. A. B. Smith and Tutte concerning the number of circuits in oriented linear
graphs, an expression is found for the probability of a specified frequency count
of m-tuples in a circular sequence where the n-tuple (n < m) count is given.
The corresponding result for linear sequences can be deduced—see [14]. The
result is valid for stationary Markovity of any order up to and including the
(n — 1)-st. A method of deriving asymptotic distributions is indicated, and a
few additional observations made concerning the distribution of pairs in a cir-
cular array.

1. Introduction. In studying runs, W. L. Stevens [10] considered the distribu-
tion of pairs of successive digits when n zeros and N — n ones are randomly
permuted about an oriented circle. He found the probability of 4 occurrences of
0 followed by 0, B occurrences of 01, C' of 10 and D of 11, for any 4, B, C, D
subject to

A4+B=A+4+C=n and C+ D =B+ D =N — n.

(Stevens’ result has been generalized by Mood [9] and Whittle [13].) By using a
combinatorial theorem due to de Bruijn, van Aardenne-Ehrenfest, C. A. B.
Smith and Tutte (hereinafter known by initials as the BEST theorem), Stevens’
result can be generalized to an expression for the probability of a specified m-
tuple frequency count in a (circular) sequence of given n-tuple count, where the
alphabet may be of any finite size. The-BEST theorem was first stated, im-
plicitly, as a “note added in proof” on page 217 of de Bruijn and Ehrenfest [2],
and is largely based on Tutte [11] and Tutte and Smith [12].

2. The BEST theorem. Given any % X u matrix of nonnegative integers there
corresponds an oriented linear graph, with vertices 1, 2, ..., u, such that the
number of oriented paths (edges) leading from vertex r to vertex s equals the
matrix element in row r and column s. The matrix, unique to within the same
rearrangement of rows as of columns, is called the “incidence matrix” of the
corresponding oriented linear graph. The graph is “simple” (in the sense of
Tutte [11] or a “T-graph” in the notation of de Bruijn and Ehrenfest [2]) if the
number of edges leading into each vertex equals the number leading out, or, in
terms of the incidence matrix, if each row has the same sum as the corresponding
column. A (complete) circuit in such a graph is defined as a unicursal path passing
exactly once through each edge (in the right direction). The BEST theorem
gives the number of distinet circuits when all edges are regarded as distinguish-
able.
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Let M = [m;;] be the incidence matrix of some simple oriented linear graph

and let,
= Sy = S
J J

be the surm of the ith row (and of thesth column). Let M’ = [m;,] be the ' X u’
matrix formed from M by deleting every row and column consisting wholly of
zeros (in effect eliminating vertices lying on no edges). Then

7 ! ’ ! .
Zmi,~=zmh«=mi, say, where m; > 0, =1, ---,u.
7 i

Let M* = [m; B,,] — M, i.e., the matrix of entries m}; = — mi; for ¢ J and
ml = m; — m“ . Since M *1i 1s a square matrix with each row and column sum-
ming to zero, the cofactors of its elements are all equal; let || M* || be the com-
mon value of these cofactors. Then the BEST theorem asserts that the number
of circuits, C(M), in a simple oriented linear graph with incidence matrix M is

u’

6)) CM) = | M*| - H (m; — 1)1,

3. Distribution of pairs. In applying graph theory to circular arrangements of
letters the several occurrences of one letter will be regarded as distinguishable,
so that there will be (N — 1)! possible circular sequences having a given fre-
quency count of letters; for the present these sequences will be assumed equally
probable. Let the frequenmes of the individual letters be fi, f2, -+, f; with
> fi = N; the probability P(F) that pairs of successive letters (¢, 7) will have
the matrix of frequencies F = [f;;], where

;fif'—"fj; ;fij=f¢, :A:jfﬁzN;

may be determined as follows. Imagine an oriented linear graph consisting of one
vertex for each of the ¢ letters in the alphabet, together with f;; distinguishable
oriented edges from vertex 7 to vertex 7 (¢, = 1, -- -, £); then the number of
circuits is C(F) (Eq. (1)). Although each circuit corresponds to a circular se-
quence of letters with the pair-frequencies ¥, the enumeration of the circular
sequences requires distinguishing the f; uses of the vertex < and then identifying
the f;; edges leading from vertex 7 to vertex 7. Hence the total number of circular
sequences with the pair-frequencies F is

(Ls:y/11fhem),

and the probability of F is

noo  Lfit
@ ) s e

(See [14] for a proof that Whittle’s formula (8) in [13] is essentially equivalent to
ours and can therefore also be derived from the BEST theorem. We independently
noticed this fact, but would not have done so had Goodman not first drawn our
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attention to the existence of Whittle’s paper. We had prepared a second ap-
pendix, in which Whittle’s formula was deduced from the BEST theorem, but
decided not to include it so as to avoid overlap with [14].)

4. Extension to n-tuples. The general formula for the number of circular
sequences of NV given letters having prescribed n-tuple frequencies is obtained by
considering the oriented linear graph with vertices corresponding to (n — 1)-
tuples and edges corresponding to n-tuples. Let f; ..., edges (in accordance with
the prescription) run from the vertex (4 - - - 7,—1) to the vertex (4, - - - 7.). By
the BEST theorem the number of circuits in this graph is C(F) where F =
[fiy---:,) is the incidence matrix of the graph. (For an example of this notation,
combined with the asterisk and cofactor notation of Sec. 2, see the Appendix.)
Each circuit corresponds to]] fi! circular sequences with the correct n-tuple
frequencies except that the f;,...;, n-tuples (4...7,) are given a separate identity.
Hence the total number of circular permutations (of N given letters) having
prescribed n-tuple frequencies is

@) e IIrVII Ui,  ifm>1, or (N — 1) if n = 1.

If all (N — 1)! circular sequences are equally likely, the probability of specified
m-tuple frequencies, given the n-tuple frequencies (n < m), is simply the ratio of
the corresponding numbers of circular sequences satisfying the requirement, viz.,

CUfir-vinl)® v/ CUfizeiad)  T1 firvoihs itn > 1;
Clfsyerin)) - TLf: /(N — I T Firenvinly ifn=1.

It should be noted that the m-tuple frequencies imply unique n-tuple frequencies;
for any other given n-tuple frequencies the probabilities (4) must be replaced by
zero. The logarithm of the ratio (4) may be compared with the statistic VL. —
VL, in paragraph 8 of Good [4].

(4)

5. Linear sequences. In most applications, such as the analysis of Markov
processes, the sequence is linear rather than circular; but the circular model is
mathematically simpler. For example, in a linear sequence it is not always true
that the n-tuple frequencies of the linear sequence determine the (n — 1)-tuple
frequencies; nor do the n-tuple frequencies necessarily determine the n-tuple
frequencies of the circular sequence obtained by regarding the first letter of the
linear sequence as the successor of the last letter. The linear sequences ABCAB
and BCABC share the same triples (ABC, BCA, CAB) but differ in pair fre-
quencies, single-letter frequencies, and in the triple frequencies of the correspond-
ing circular sequences. [However, the n-tuple frequencies of a linear sequence do
determine the (n — 1)-tuple frequencies unless

(L) izfn--.i,,_li,. = izfinil"'in—l

for all 4, ---, 4._1. If condition (L) is not satisfied, then the first and last
(n — 1)-tuples (and hence the complete (n — 1)-tuple frequencies as well as the
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circular n-tuple frequencies) can be determined.] One way of treating linear se-
quences (for another see Whittle [13]) is to regard a linear sequence of N letters as
consisting of N + 1 characters, the new character being a blank placed at the
end. Then the new n-tuple frequencies (including the n-tuple ending with the
blank) will determine uniquely the n-tuple frequencies of the corresponding
circular sequence; and, conversely, the n-tuple frequencies in any circular
sequence containing a blank will determine uniquely the n-tuple frequencies of
the corresponding linear sequence formed by cutting the circular sequence right
after the blank. Hence, in a linear sequence ending with a blank, we may define
the probability of specified m-tuple frequencies, given the n-tuple frequencies, as
the value found by circularizing the sequence (retaining the blank) and applying
formula (4).

6. Negligible Markovity. The probability P(a:a. - - - ax) of a specified linear
sequence a; , @z, - - - , ay of N distinguishable letters under a Markov process of
order n — 1 or less is

H fi 1P(ay- - ‘an)P(an+1 I dg- - @) ‘P(aN f ON—nt1** -ay-1)

=II#! Play- - -an)Plag- - - @np1) - - Pl@n—ny1- - -Ox)
. P(az' ’ 'an)P(as° : 'an+l) . ’P(aN—n+l' ‘ 'aN—-l)

(to be interpreted as zero if any factor in the numerator is zero), or
ILst IL PG--eins e
i
II PG da) i im

i1t dn—1

(5) P(ax‘ . 'aN) =

where 0° is interpreted as 1. Now if the n-tuple probabilities of the alphabet and
the n-tuple frequencies of the augmented sequence a;, ---, av, b (where b is
the terminal blank) are given, then the (n — 1)-tuple frequencies and probabili-
ties, and also the single-letter frequencies, are determined. Under these con-
ditions the probability (5), being also determined, is mathematically inde-
pendent of any further knowledge of the (n 4 1)-tuple frequencies, so that. the
probability of a specified (n + 1)-tuple frequency-count is proportional to the
number of ways in which this count can occur. It follows that, in applying
formula (4) to linear sequences, the assumption that all permutatiohs are
equally likely may be replaced by the more general assumption of Markovity of
order » — 1 or less without affecting the probability of the specified m-tuple
_frequencies. If a circular sequence is defined as a linear sequence with the ends
joined (the most natural definition in interpreting the circular sequence as a
Markov process), the total probability of the circular sequence (a; , as, - - - , an)
is the sum of the probability (5) over all N cyclic permutations of the linear
sequence a;, @z, - -+, ay. Then by the same argument the probability of a
circular m-tuple frequency-count, as given by formula (4), is valid for all orders
of Markovity up to and including the (n — 1)-st.
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7. Asymptotic relationships. The arguments are based on the following
lemma.

LEMMA,

Hypotheses. (a) An experiment (with a parameter N) has, for each value of N
(posttive integers tending to infinity) a finite set F¥ = {FY} of possible outcomes.
Px (or simply P) and Py (or simply P’) are two probability measures over F".

(b) P'(F?)/P(FY) converges in the probability P to unity in the sense that for
all > 0 and 6 > O there exists an No such that, for all N > N, ,

(6) Proby {P/(F})/P(FY) ¢ I} > | — o,

where 15 is the interval (1 — 6, 1 + &), and P’ (FY)/P(FY) is regarded as a
statistic whose distribution is determined by P.

(c) S(FY) is a statistic whose cumulative distribution Sfunction ®x converges, as N
becomes infinite, to a Limiting distribution ® under P.

ConcLusioN. The distribution function ®y of S(FY) under P’ converges to the
same limiting distribution &.

Proor. Let Ay (or simply A) be the set of all indices ¢ for which S(FY) £,
where N is any real number. Let A be the set of all indices ¢ for which
P/(F{/P(F}) ¢ I , for any fixed arbitrary é. Let A’ be the complement of A, and
let AA be the intersection of A and A. Suppose an arbitrary 7 given, and that
N > No(n, 8). Forallzin A, | P/(FY) — P(F}) | < 8P(FY). Hence Y.a P'(F}) =
>4 P(FY) — 5. But, by hypothesis (), 2o P(FY) > 1 — 4 (a restatement of
(6) above). Therefore D o P/(F?) > 1 — 5 — 8, or ) o P(FY) < 9+ 6. It
follows that | waP'(FY) — 2 P(FY)|= 6 and | Yo P'(FY) —
2_aar P(FY) | < 27 + 8. Therefore | 34 P/(FY) — S, P(FY) | = |&4(\) —
®y(A) | < 2(n + 5). But  and & are arbitrary, and so ®y(A) — ®(\) implies
®y(\) — ®()), and the conclusion follows.

If all the f; are strictly positive, formula (4) for the probability of an m-tuple
frequency count, given the single-letter frequency count {f;}, may be written
in the form

N ” [fufm]* “ Hfil'-'im—l ! Hf'; !
7 P({fiy..c}) = .
@) (s H I fain NI fopevin !

The second of these two factors will be recognized [7] as the probability
P'([f;...:,]) of the cell entries [f;...;,] in an ordinary contingency table with
fixed marginal totals {f;...;,_,} and {f.}, under the hypothesis that the two
attributes are independent. Suppose N approaches infinity while each f;/N con-
verges to a strictly positive constant k; , with all (N — 1)! circular permutations
always equally probable. Then, for any fixed m, the relative frequencies of the
m-tuples converge in probability to the corresponding product of &;s:

f/,‘l .. .1'm/N—)‘pk,'l . -kim ,

implying
U Lfaeinl® /N7 o | ety - - Rl ]
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The latter can be evaluated in various ways including factonng out the common
factor in each row and diagonalizing; its value is (kiks - -+ k)™ "™ . (For
another proof see the Appendix.) But

I Finas = N (lky - - k)™ "7,

and so the first factor in (7) converges in probability to unity. (The test may be
applied to a linear sequence by applying the test to the corresponding circu-
larized sequence without the blank (or see [14]).) Therefore, in view of the
lemma, the hypothesis (Ho) of independence may be tested (IV large) within the
hypotheses (H ;) of Markowty of order m — 1 (see Good [4]) by any asymp-
totic test of contingency in the ordinary contingency table described above.
Indeed, the statistic —2 log No,m—1 of [4] for testing Hy within H,.—; is identical
to the log likelihood-ratio statistic in the corresponding contingency table. (The
asymptotic validity of the usual %’ tests on the contingency table corresponding
to a Markov chain has already been indicated by Goodman [6], but the rela-
tionship between the exact probabilities for the contingency table and for the
Markov chain is interesting.)

8. Distribution of pairs. In accordance with Sec. 6, the probability P(F) of the
specified pair-frequencies F = [f;;] arising in a circular permutation (see formula
(2)) is asymptotic (in the stochastic sense) to the probability P’/(F) of the same
entries F appearing in a contingency table of fixed marginal totals {fi}. By
formulas (1) and (2),

P(F)/P'(F) = NC(F)/I1f:.

It follows that the expectation E’g of a function g(¥) with respect to P’ may
be converted to an expectation Eg with respect to P by the relation

(8) Eg = (N/IIf:NE(g-C).
For example, the expectation of a product of factorial powers of the cell entries

{f:;} of a contingency table with fixed marginal totals f;, = >_;f:; and f; =
> fi; is (cf. Haldane [7]), under the hypothesis of independence,

(9) B H ﬁ;}w) — Hfz(az) Hﬁ(ja.i)/N(a)
i i

where
= Zan‘, a; = Zaii and a = thu‘-
J 1 2]
The «;; are nonnegative integers.
[Proof of (9):
B 557 = X 1152 P @
(fii}

(oiny Lo L TT 15
(fzz;) 117 NI fat
_ II 7é T £ > IO G —a) I (5 — a!
N@ it (N — a)! H (fii — ai)! .
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But the terms of the latter sum are zero except when each fi; = a.; . Hence the
sum may be taken over nonnegative values of {f;; — a:;}, and so be recognized
as a sum of probabilities in a (new) contingency table, and hence unity. This
expectation is undoubtedly known, but the article by Haldane, who uses the
same method for less general expectancies, is the only reference known to the
authors.] If f;, = f; = f;, then

E H fzg;grei) Hf(vu )f(a..-)/N(a).

Now the relation (8) and some algebraic manipulations give the corresponding
expectation with respect to P:

(10) E H f(au) H figa.i)f'gai') . | [fzau _ aij]l .

(N — 1)@ 11
where the vertical bars indicate the determinant of the enclosed matrix.

[Outline of steps necessary to obtain (10): The essence of the problem may be
described as the evaluation of the factor X for which

fz —f22 —fu
B IL £ = X-E J] 55,
N —
Since £V fi; = aufiF” + fi717™ ) and since the f; and the @,; commute with
E’, part of X (neglecting for the moment the expectation of terms containing
the “higher powers” a;; + 1) is

f2—0122"' — Qg

—'Oftz"'ft—au

The next terms to consider are those which arise from se]ectmg just one higher
power factor. The effect of i 1ncreasmg one a;; to az; + 1in BT £ is to mul-
tiply the expectation by

(fi — ai)(fi — a.3)/(N — a).

Adding in these new terms gives

=m — Z (fi — a:)(fi — fApi/(N — a) + R,

7,j=2

where u;; is the cofactor, in m, of the entry containing «;;, and R,
the remainder, consists of the expectation of terms containing two or more of
the higher powers. But for each such term there is a term of equal and opposite
expectation arising from using a different path through the determinant, namely
the altered path which replaces the first (in the sense of going from
the top down, say) two elements by the other two corners of the rectangle they
span. Hence B = 0, and all that remains to be shown is that

(N — a)m — Z (f - ai.)(fj - Of.j)#ij = I[flaij - Ola'j] l

i.=2
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Working backwards one finds, by elementary row and column operations,

f1—'a11 — a1z c o — oy fl_'a.l f2—'a.2"'fz—‘0£.t
— an f2—'a22"' — Qg | — Qg f2—0122 — Q
- Q1 —az'z"'ft—au ‘ - Oy —'Olm"'fz—'au
N —a« f2—0!.2"'fz—a.t ,
_ _:fz —oa fo—amr —oaw|_ (N — a)m — iz_2 (fi — i )(f; — a.ual.
fo— .  —am e fi— o ’

In particular,
(11) EfiY = 1i°(f; — 8:) /(N — 1D,

whence the distribution of the frequency of a single pair (z, j) is found to be

(12) P(fi =1 = <J;> (?j_— at,:f;) / (;,Y—_ 5,1)'

(The simplest verification is to compute the factorial moments of (12), but it
is also possible to proceed directly with the help of Good and Toulmin [5], p.
46, together with Vandermonde’s theorem.) One way of testing the null hy-
pothesis of independence in a process against any alternative altering the prob-
abilities of the consecutive pairs would be to use the familiar-looking statistic

> (fis — Ef:)'/Ef:;

(where Ef;; is given by (11) with « = 1) on the circularized sample; the distribu-
tion is asymptotically gamma-variate with (¢ — 1)* degrees of freedom. Good-
man [6] has found the same statistic except for the use here of the exact mean;
and the analogous likelihood-ratio statistic is given by Hoel [8].

9. Acknowledgment. The authors are indebted to L. A. Goodman for valuable
comments and suggestions.

APPENDIX
Evaluation of || [ki, - - - ks, ]* || . We shall prove, without insisting on the con-
dition
@ b+ ket -+ k=1,
that

) | Ty e R ¥ = Ceika e k)T T ey e A BT
Proor. Let M = [k;, --- k;,]. Then M = UG where U is the diagonal ma-
trix {ki, --- ki,_,}, and G is the matrix that has zero elements at all places

except in rows and columns with labels of the form
(il y Ty im—l) and (i2 y " im)’

while at these places G has the element k,, . For example, with { = m = 3, and
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with ky = a, ks = b, ks = ¢, we have

[aa 0 0 0 0 0 0 0 O

0 a6 0 0 0 0 0 0 O

0 0 ac¢ 0 0 0 0 O O

0 0 0 b« 0 0 0O O O
U=10 0 0 O % 0 0 0 o0,

0 0 0 0 0 b 0 0 O

0 0 0 0 0 O ¢ca 0 O

0O 0 0 0 0 O 0 ¢ O

|0 0 0 0 0 0 0 0 ccf

(@ © ¢ 00 0 0 0 0]

0 00 a dbc 0O0TO0

000 0 O0O0 abdc

a b c¢c 00 00 O0O0
G=]0 0 0 a b ¢c 000

0 000 OO0 abdec

a be 000000

000 adc 000

(000000 abd c]

The matrix whose cofactors we want is
M*=sU—-M="U@GI — @) = U-K, say,
where
s=ki+k+---+k.

The rows of K each add up to zero while the rows and the columns of M*
each add up to zero. Thus the cofactors of all the elements in a fixed row of K
are equal, while the cofactors of all the elements of M* are equal. Denote their
common value by

ko= Tay - ke ]* |

« may be obtained from the cofactor of any element in the »th row of K by
multiplying this cofactor by the product of all the elements of U except its »th
one. Therefore the sum of the cofactors of the diagonal elements of K is equal
to

(iii) K Z kil .. 'k’im—l —_ Ksm_l/(kl' . 'kt)(m—l)‘m—2,

H ki ki
But it is also equal to plus or minus the coefficient of A in the characteristic
polynomial of K, | \] — K |. This coefficient can be found by considering the
eigenvalues of G.
In the above example with £ = m = 3, by assuming that the components of
a column eigenvector are x;, 3, - -+, %o, and by multiplying this eigenvector
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by G, we easily see that either the corresponding eigenvalue is zero, or else it is
sand 2, = 2, = --- = . These two eigenvalues both occur at least once, so
the characteristic polynomial of @ is of the form
Gv) |M — G| = 2*(\ — 8 (@>0,8>0,a+8=1"". (A more
explicit proof of (iv) is given below.) Hence the characteristic polynomial of
K is of the form
X’O‘ - S)a’

and, since « is positive, Eq. (iit) shows that 8 = 1 and that (ii) is true.

" The following checks of equation (ii) will help to clarify its relationship to
previous literature. If we put k, = k, = --- = k, = 1 and apply the BEST
theorem, then we find that the number of circular arrays that contain each
m-tuple precisely once is

@™,

and this agrees with p. 203 of de Bruijn and Ehrenfest 12]. If instead we put
ky = ky = -+ = k, = k'™, then we find that if each m-tuple is to appear ex-

actly k times the number of arrays is
(COT I

and this agrees with Theorem 3 of the same paper.

The following proof of (iv) was kindly provided by Mr. O. 8. Rothaus. If
we insist on condition (i), and it is easily seen that there is no real loss of gen-
erality in doing so, then G gives the (m — 1)-tuple transition probabilities in
an independent and stationary process. Now G™ has constant columns; in
fact every entry in the column labelled %5, - - - , ¢m is ks, - - - ki,,.. The stochastic
matrix G™ " is of rank 1. It has the eigenvalue 1 and all other eigenvalues are
zero. Since G is stochastic, it too has the eigenvalue 1; but the eigenvalues of
@™ are the (m — 1)-st powers of those of @, and so the other eigenvalues of
@G must all be zero. This proves (iv) and also that 8 = 1.

REFERENCES

. M. 8. BarTLETT, “The frequency goodness of fit test for probability chains,” Proc.
Cambridge Philos. Soc., Vol. 47 (1951), pp. 86-95.

2. N. G. pE BrunsN aND T. vaAN AARDENNE-EHRENFEST, ‘‘Circuits and trees in oriented
linear graphs,’”” Simon Stevin, Vol. 4 (1950-51), pp. 203-217.

3. I. J. Goop, “The serial test for sampling numbers and other tests for randomness,’’
Proc. Cambridge Philos. Soc., Vol. 49 (1953), pp. 276-284.

4. 1. J. Goop, ‘“The likelihood ratio test for Markoff chains,” Biometrika, Vol. 42 (1955),
pp- 531-533; corrigenda, Vol. 44 (1957), p. 301.

5. I. J. Goop anp G. H. TourMmiN, “The number of new species, and the increase in popu-
lation coverage, when a sample is increased,” Biometrika, Vol. 43 (1956), pp.
45-63.

6. L. A. GoopMmaN, ““On the statistical analysis of Markov chains,” Ann. Math. Stat.,
Vol. 26 (1955), p. 771.

7. J. B. S. HALDANE, “The mean and variance of x2, when used as a test of homogeneity,

when expectations are small,”” Biometrika, Vol. 31 (1940), pp. 346-355.

[



956 REED DAWSON AND I. J. GOOD

8. P. G. HokL, ““A test for Markoff chains,” Biometrika, Vol. 41 (1954), pp. 430-433.
9. A. M. Moop, ‘“The distribution theory of runs,”’ Ann. Math. Stat., Vol. 11 (1940), pp.
367-392.
10. W. L. STEVENS, ‘“Distribution of groups in a sequence of alternatives,”” Ann. Engenics,
Vol. 9 (1939), pp. 10-17.
11. W. T. Turte, “The dissection of equilateral triangles into equilateral triangles,”
Proc. Cambridge Philos. Soc., Vol. 44 (1948), pp. 463-482.
12. W. T. Turte anp C. A. B. SmrtH, “On unicursal paths in a network of degree 4,”" Amer.
Math. Monthly, Vol. 48 (1941), pp. 233-237.
13. P. WarrtLe, “Some distribution and moment formulae for the Markov chain,” J. Roy.
Stat. Soc., Series B, Vol. 17 (1955), pp. 235-242.
14. L. A. GoopmaN, “Exact probabilities and asymptotic relationships for some statistics
from m-th order Markov chains,”” to appear.



