TRANSIENT ATOMIC MARKOV CHAINS WITH A DENUMERABLE
NUMBER OF STATES!

By Leo BREIMAN
University of California

1. Introduction. Many of the more interesting transient Markov chains have
the property that for any set of states 4 and any initial distribution, the prob-
ability of entering A infinitely often (i.0.) is either zero always or one always.
This type of chain has been termed atomic by D. Blackwell [1] and is exemplified
by the three-dimensional random walk or by the successive sums of independent,
identically distributed random variables.

In this paper we investigate the “fine structure” of an atomic chain, that is,
we try to characterize the class of all sets 4 such that P(z, ¢ 4 i.0.) = 0. The
study is restricted to atomic chains with a countable set of states which, for con-
venience of notation, we identify with the integers, and with stationary transi-
tion probabilities p{7’.

The martingale convergence theorem is used in [1] to show that a necessary
and sufficient condition for atomicity is that every bounded solution ¢ of

6(0) = E p:i(j)

be constant. We use as our main tool the semi-martingale convergence theorem
and the corresponding equation ¢(7) = D pisé(j) and obtain a complete, but
7

not simple, characterization of the fine structure of transient atomic chains.

To illustrate the use of the above characterization we prove two theorems
regarding the return to equilibrium times xo, 1, - - - in the coin-tossing game.
The latter of these is then used to prove that there exists no set of numbers
{Am} such that’ P(z, e 4 i.0.) = 0 D meadm < ®.

This last result shows that, in general, there is no simple resolution to the ques-
tion of defining the fine structure. There are, however, a number of interesting
transient atomic chains which have the property that every infinite set of states
is entered infinitely often with probability one. These chains are the subject of
papers by Chung and Derman [2], and Breiman [3].

2. Use of the semi-martingale theorem.
TureorEM 1. Let 29, 71, - - - be an atomic chain. Then for ¢ any nonnegative
solution of

() $() = ; p:i9(j)

1 This paper was prepared with the support of the Office of Ordnance Research, U.S.
Army, under Contract DA-04-200-ORD-171.

2 The referee has informed us that a similar theorem for the three-dimensional random
walk has been proved by P. Erdés and B. J. Murdoch (unpublished).
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which is finite for at least one value of 7, ¢(x.) converges almost surely (a.s.) to a con-
stant independent of the initial distribution.

Proor. Let ¢ be a nonnegative solution of (a) with ¢(0) < -, and let R be
the set of all states ¢ such that P (entering ¢ | zo = 0) > 0. From the atomicity
and P(z, ¢ R i.0. | 2)) = 0, where R is the complement of R, follows P(z, ¢ R
i.0.) = 0. Therefore, it is sufficient to prove the theorem for initial distributions
concentrated on R noting that ¢ is finite on R. Pick any such distribution {p;}
such that D> ;pé(j) <  and p; > 0, all j ¢ R. The random variables ¢(z,)
form a semi-martingale with respect to the fields generated by zo, 1, - - - , since

E@@(a) | #na, -+, 20) = E@(2a) | 2a1) = 22 Paney$() S ¢(n),
E|¢(x,)| = Ep(zn) < Ep(o) < .

By the semi-martingale theorem [4], ¢(x.) converges a.s. Suppose this limit is
nonconstant, then there will be a number a > 0 such that if 4 is the set of states
defined by {j; ¢(j) = a}, then 0 < P(z, ¢ 4 i.0.) < 1. Hence the limit is con-
stant, and since ¢(z,) must converge to this same constant with the initial dis-
tribution concentrated at any single state in R, the theorem is valid.

We note that the same result is true for ¢ any bounded solution of (a) because
for any sufficiently large constant «, ¢ 4+ « is a positive solution.

A simple but informative corollary of the above theorem demonstrates the
special applicability of (a) to the transient case.

CoroLLARY. All the states of an atomic chain are recurrent if and only if all
bounded solutions of (a) are constant. For a transient atomic chain there is at least
one nonconstant bounded solution of (a)

Proor. Let ¢(2) = P (entering 4o | 20 = <), so that ¢(¢) = 1, and

$(i) = E(P(entering i |z, @) |20 = i) 2 B@(@) |20 = i) = X;pi(i)-

If every solution of (a) is constant, then for every 7, we have P(entering %o | o =
1) = 1. This implies that return to every state is certain. Now assume that every
state is recurrent and let ¢ be any bounded solution of (a). If ¢(¢) > ¢(j),
¢(x,) cannot possibly converge to a constant since both 7 and j are entered i.o.
with probability one. If there are transient states present the function ¢ defined
above cannot be constant for all 7, .

3. Characterization of the fine structure. We use the notation

ug = E(number of visits to k | zo = 17),

(n) (n—1)
Us —_ 81. + i + coe + i 81. =
& k Dik Dik & 0, i k,

and recall that ug = lim, uip’.

THEOREM 2. If 2o, 21, * -+ 18 an atomic chain, then for every nonnegative se-
quence of numbers {ox} with Y i unox < % and every e > 0, the set of states
Ao = {i; Druaar = €} has the property P(x, € As i.0.) = 0. Conversely, every
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set. of states A such that P(x, € A 1.0.) = 0 s included in at least one of the sets
A, as defined above.

Proor. Let {a;} be a sequence fulfilling the conditions of the theorem and let
#(?) = D ruiar. The identity D_;piuj = uax — 04 leads to the equation
2 piid(j) = ¢(Z) — a;. Thus, theorem 1 applies and ¢(z,) converges a.s. to a
constant. Since the properties in which we are interested do not, in an atomic
chain, depend on initial conditions, it is sufficient to take o = 0. Then, iterat-
ing the equation which ¢ satisfies,

E(p(z,) |20 = 0) = Akv_, (uox — u(()l?))ak —0

and by a semi-martingale inequality ([4], p. 325) which states that
E(a.s. limit) = E¢(x,)

we are able to conclude that the a.s. limit of ¢(2,) is identically zero. This implies
that P(¢(x.) = €i.0.) = 0 and proves one part of the theorem.

To get the second part, let A be any set of states with P(x, ¢ A i.0.) = 0.
Form the function ¢(¢) = P(entering A |z, = 7), so that ¢(z) = 1, all 7 ¢ 4.
It is easy to verify that ¢ satisfies (a), and thus ¢(z.) converges a.s. to some con-
stant. We deduce that this constant is zero by noting that P(entering A after
n — 1 steps) = E¢(x,). Since P(z, € A i.0.) = 0 we conclude that E¢(z,) — 0
and apply the bounded convergence theorem to get the result. Let the nonnega-
tive sequence {a;} be defined by ¢(:) = a: + 2_; pi0(j). Iterating this equation

o(@) = ; 2P0 + ; uPa;.

By the boundedness of ¢ the second sum converges to ) ; usja;. The first sum
must also converge to some bounded limit sequence {A(z)}. Since

AE) = 225 piA(d),
by Blackwell’s theorem as quoted above this sequence is constant, and by the

convergence of ¢(x,) to zero, A(z) = 0. The set A is contained in the set 4, =
{¢; D uaox = 1} which proves the theorem.

4. Two theorems concerning the coin-tossing game. We apply theorem 2 to
the Markov chain zy, 2;, - - - whose values are the successive times of return
to equilibrium in the fair coin-tossing game. The set of states is the set of all
nonnegative even integers and we use the fact that this chain, being the sum of
independent and identically distributed random variables,-is atomic. It is well
known that

Ui = 0, E< i,
c

~ T k> .

As it is evident that the characterization given in theorem 2 is invariant under
asymptotic equivalence, we use 1/4/k — ¢ throughout this section in place of
ug with the convention /0 = 1 and 1/4/— = 0.
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The first theorem we prove is similar to a theorem stated by Chung and Erdos
[5].

THEOREM 3. Let the sequence of even positive integers {m.} be such that the se-
quence {A;} defined by A; = m; — m;_y is nondecreasing. Then

P(zne{m;}i0) = 0 = Z \/177 < o,

Proor. If 37;1/4/m; < o5, the assertion follows immediately from the Borel-
Cantelli lemma. Now assume that P(z, ¢ {m.} i.0.) = 0, but that > ; 1/v/m; =
. By theorem 2, there is a nonnegative sequence {a;} such that > ai, /VE <
w-and {m;} C {¢; D rar/Ak — i = €}. From this we have for all m;

(23]
—_—— >
Zk'\/k—mi=e.

b=xmg
Define ;¥ by
Y 1
AWM _ g'\/mi Vk — m;
k - N 1 .
% V/m;

It is evident that D . M™ax = ¢, all N, and that limy A = 0 for & fixed.

We will show that A < ¢/ \/E—,-all k, N, and conclude from the bounded con-
vergence theorem the contradiction that limy D A" a; = 0. To begin with,

assume that & = my , then

N
S 1

Vmy 2 ———

_\/E)\’(‘N) < =0 Nm,lx/m,v - m..
% Vm

By splitting the top sum into the two parts m; < my/2, m; > my/2 and using
our assumption concerning A;, we get VVEMY < 4. Now if k = my, let m,
be the largest of the m, which is <k. With this

N

1
Vi s Y E Ve =,

1
=] ms

and repeating the above argument results again in /&A™ < 4.

It is clear that in the above context, a little more attention to the appropriate
inequalities would result in a considerable weakening of the growth condition on
the sequence {m,}.

We can get a result in another direction by combining our characterization
with different inequalities. Let all the states between and including n; and n,,
me 2 M, be called an interval and denoted by [n;, n,].
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TeEOREM 4. If the sequence of disjoint finite intervals {I;}, I; = [m;, M}
18 such that for some & > 0, mj = (1 + 8)M;, then, denoting

li=M; —m;+ 2,
PlaneUIi0) =0 X2 VI;/M; < .
1 1’

Proor. Define a sequence of intervals I P = Imj, Mj] by m; = M;, M P =
M; + \/T;, where \/1; is here to be interpreted as the greatest even integer
less than \/I;. Let D>.; +/I;/M; < = and define a; by
r ifkeUl;,

J

0 otherwise.

&
I

By these definitions

ZjélE\/l/Mm .

Thus the set 4 = {7; Z,,ak/ Vk- } has the property that P(x, ¢ 4 1.0.)
= 0. The set A includes, in partlcular the integers ¢ such that 7z = M; and

b= 2 S VM = — Vm =).

keI A

This inequality can be easily shown to be satisfied by all 2 = m;, which
proves the theorem going one way.

To go the other way, assume that P(z, ¢ U; I; <. 0.) = 0. Then there is a non-
negative sequence a; such that D xar/v% < @ andU,I; C {3; D o/ Vk4 = ¢},
from which, if 7 ¢ I, then Zk;m,. ar/N\ k< = e. We wish to conclude that part
of this sum is negligible and argue that if 7 ¢ I; ,and if j is sufficiently large

IC & Mmjy1 ._a_k. < E
kz§+1 "/’G -1 \/— = mi — M; k;;i“ VE=2
so that if ¢ ¢ I;,

ag
"‘i+l§z"‘i Vi — i

We sum this last inequality over 7 € I; to get

v

€
5

z -1

€
Z J

It can be easily shown that

and using this we conclude that

FVRE TS VI
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6. The nonsimplicity of the fine structure of the coin-tossing game. The pur-
pose of this section is to prove the following theorem.

THEOREM 5. Let o, 21, - - - be the successive times of return to equilibrium in
the fair coin-tossing game. Then there exists no weighting {Am}, Am Z 0 of the post-
tive even integers such that

Ple,eAio) =0 D Ap < .

med

Proor. Consider any set U;I; where the I; are disjoint finite intervals which
we can represent as [m;, mi(l + a;)], 0 < a; S 1, where m;; = 3m;. By

theorem 4
P(z, e U I;io0) = O@Z\/Zj < o,
H 1

Let now {\As} be any weighting of the positive even integers having the
property stated in the theorem. By this property, limn A» = 0 since otherwise
we could find an indefinitely sparse set A which would be entered i.o. with prob-
ability one. We define a function ¢(a), 0 = a < = by

ne®

$(a) = lim inf 25 Am,

where in writing the upper limit of summation as ne® it is immaterial whether we
take the next greater integer, or the previous integer.

PROPOSITION. ¢(c) s monofone nondecreasing, ¢(a + B) = ¢(a) + ¢(8)
and there is a neighborhood of the origin in which ¢(a) < .

Proor. The first assertion is immediate. As to the second, we write:

neaeh ne® neceB
nminf(z) xm) = ﬁxninf(Z A+ D 7\".)

nex nef
= lim inf(Z) 7\,,.) + nminf(z x”.).

Finally, suppose that ¢(a) =  for all « > 0, and consider any sequence
{a;}, 0 < a; = 1, such that > iVa; < . Since lim, Z,’,‘..‘.l,’."“") Am = o for
all j, we find a sequence of intervals I; = [m;, m;(1 + «;)] as far apart as de-
sired having the undesirable property 2 _; Z,,.u, Am = oo,

To complete the proof of the theorem, we note that as a well-known conse-
quence of the proposition there is a neighborhood N of the origin and a constant
¢ < « such that ¢(a) < ga, @ ¢ N. Take {a;}, @; > 0, such that Dia; < o
but 2_; Va; = ®, and {a;} C N. Then we may find a sequence {m;} increas-
ing as rapidly as desired such that

m; (1+a;)
Am = 2qa;.
m=m;j

Hence, taking I; = [m;, m;i(1 + a;)] we have

;\/Z,-=oo but ZZ)\,.<°°.

i melj
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It is a pleasure to acknowledge my debt to David Blackwell who brought
my attention to the problems treated above.
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