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[l ¢m(x-—m) Tt )xO) - ¢ﬂ(x—-ﬂ7 e )xo)l >€]

has the same measure as the set [|¢m(Tm, =+, Z0) — Ga(@a, -+-, To)| > 6.
Hence ¢n(z_n, - -, Zo) converges in probability and Theorem 1 applies.

The above theorem is an extension of the Hewitt-Savage zero-one law for
symmetric sets, as the following theorem makes clear.

THEOREM 5. Let xo, 11, - - - be a sequence of identically distributed, independ-
ent random variables and f any integrable function on the process such that f is
invariant under finite permutations of the coordinates. Then f is a.s. constant.

Proor. Let ¢n(zo, -+, 2,) = E(f| %0, -+, Za). Then ¢u(zn, -+, 20) =

én(Zo, -+, 2,) by the symmetry of f and the ¢.(z0, - - -, ) sequence forms a
martingale which converges a.s. to f. The conclusion follows from Theorem 3.
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A TEST OF FIT FOR MULTIVARIATE DISTRIBUTIONS!

By LioNneEr WEIss

Cornell University

1. Summary and introduction. Suppose X is a chance variable taking values
in k-dimensional Euclidean space. That is, X = (Y1, ---, Y&), where Y; is a

univariate chance variable. The joint distribution of (¥;, - -+, Y%) has density
f(yl‘) ) yk)) say.
We shall call a function h(y;, - - -, yx) ‘“piecewise continuous” if it is every-

where bounded, and k-dimensional Euclidean space can be broken into a finite
number of Borel-measurable subregions, such that in the interior of each sub-
region h(y:, -+, yx) is continuous, and the set of all boundary points of all
subregions has Lebesgue measure zero.

We assume that f(y;, - - -, yx) is piecewise continuous. Let k(y1, - - , %) be
some given nonnegative piecewise continuous function, and let X;, ---, X, be
independent chance variables, each with the density f(y1, - -, y). Choose a
nonnegative number ¢, and for each ¢, construct a k-dimensional sphere with
center at X; = (Y, -+, Ya) and of k-dimensional volume

th(Yi, -+, Ya)
—
Such a sphere will be called “of type s” if it contains exactly s of the (n — 1)
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596 LIONEL WEISS

points Xy, ---, Xiy, Xip1, -+, Xn. Let R.(¢; s) denote the proportion of
the n spheres which are of type s.

For typographical simplicity, we denote the vector (y;, ---, yx) by y. Let
S(¢; s) denote the multiple integral

(t'/sh f_ : f_ : R @) (y) exp {—th@W)f W)} dys - - - dys.

It is shown that R.(f; s) converges stochastically to S(¢; s) as n increases. This
result is then used to construct a test of the hypothesis that the unknown den-
sity f(y) is equal to a given density g(y).

2. Proof of the convergence of R.(t; s). We define the chance variable Z; to
be equal to one if the sphere centered at X is of type s, and to be equal to zero
otherwise. R,(t;8) = (1/n)(Z: + --- + Z,).

Let V(v; y) denote the probability assigned by the density f(y) to the sphere
of volume » and center at y. In any closed region in which f(y) is continuous,
V(v; y) can be written as vf(y) + ve(y; v), where e(y; v) approaches zero as »
approaches zero, uniformly in y throughout the region. Clearly, E{Z,} is equal

to
,[: o f_: s!(vfn——l 1—)-! s)! [V (thr(zy) ; y)]s
. [1 -V (ﬂ‘_;i/l, y>:|"-Hf(y) dys -+ dys.

The region of integration can be broken into a finite number of subregions, in
the interior of each of which f(y) and h(y) are continuous. A closed subset of
each such subregion can be found so that the measure of the set of points in
k-dimensional space outside these closed subsets is arbitrarily small. Within
each such closed subset, we may write

14 (ﬁl;(zy—),y) = ) 5 4 W) e(y; f%y—))

n n

2.1)

where e(y; th(y)/n) approaches zero as n increases, uniformly in y in the closed
subset. Then it follows easily that the multiple integral (2.1) converges to S(¢; s)
as n increases, so that E{R,({; s)} approaches S(f; s) as n increases.

To complete the proof that R.(f; s) converges stochastically to S(¢; s), we
shall show that Var {R.(¢; s)} approaches zero as n increases. Var {R,(¢; )} is
equal to

13 1
ﬁ;Var {Z:) + ;LEZ#,JZ‘, Cov {Z:, Z;}.

Since {Z;} are uniformly bounded variables, (1/n%). Var {Z;} approaches
zero as n increases. Therefore, to show that Var {R,(¢; s)} approaches zero, it
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will suffice to show that E{Z,Z,} approaches [S(¢; s)I” as n increases, since this
implies that Cov {Z,~ , Z;} approaches zero. E{Z.Z;} is equal to

[ [ (T (2]
I o &

< f@)f() dyy -+ - dysdey -+ dzs
+ [ - [ QW W)@ dys -+ dysden - da,

where R, is the region in (y, z) space such that the k-dimensional sphere of
volume th(y)/n centered at y does not intersect the k-dimensional sphere of
volume th(z)/n centered at z; R. is the remainder of (y, z) space; and Q(y, 2)
is the conditional probability that the spheres around X,; and X; are both of
type s, given that X; = y and X; = 2. Clearly, the second integral in (2.2) ap-
proaches zero as n increases, and the first approaches [S(¢; s)]>. This completes
the proof that R.(f; s) converges stochastically to S(f; s) as n increases.

3. Application to multivariate tests of fit. Suppose the density of X, f(y:,
-+, Y&) say, is unknown, and the hypothesis to be tested is that almost every-
where over a given region R, f(y1, -+, yx) = g(tr, -+ , Yx), where gy, - - -,
¥x) is a given piecewise continuous function, g(y1, ---, ¥x) = B > 0 at every
point of R, and

gf.;.fg(yl,...’yk)dyl...dyk>o.

The hypothesis says nothing about f(31, - - - , yx) outside the region R.

To construct a test of this hypothesis, we apply the result of Section 2 with
t=1,s=1,and h(y1, -+, yx) = 1/g(, ---, yu) for (y1, -+, %) in R,
h(yi, + -+, yx) = O elsewhere. Then

1) = 1@ . {f(y)
st;1) = [ -2 [ 10 2D oxp{ Wy . .

Using the fact that the function ue™™ takes on its absolute maximum at u = 1,
we find that

swnset [ [1@) - am,

with equality holding if and only if g(y) = f(y) almost everywhere on R where
f(y) > 0. Denote by @(n) the proportion of the observed points X;, X, -- -,
X, that fall in the region R. Q(n) converges stochastically to

[ [rway- an
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as n increases. Thus, if the hypothesis is true, B.(1; 1) converges stochastically
to

e—lf ” fg(y) dys -+ dys,

and Q(n) converges stochastically to

f; fg(y) dyy - -+ dys.

Conversely, if R,(1; 1) converges stochastically to

c_lf e fg(y) dyr -+ dys

and Q(n) converges stochastically to

f';}' fg(y) dy, -+ - dys,
then
St = [+ [16) dys - du,

so the hypothesis is true.
For a given n, we define the following test T', of the hypothesis. Accept the
hypothesis if and only if

R;) =& [ oo [ o dyi - g < A

and

Q(n) _/',}' fg(y) dyl---dygl < B.,

where A, , B, are numbers chosen to give the desired level of significance, and
it may (and will) be assumed that A, and B, both approach zero as n increases.
From the discussion above, it is clear that the sequence of tests {T'.} is con-
sistent against any piecewise continuous alternative f(y). To set the exact
values of A, , B, the joint distribution of @(n) and R,(1; 1) would be required,
but this distribution is unknown, although the author conjectures that it is
asymptotically normal. However, given the function g(y), the region E, and an
alternative f(y), the integrals (2.1) and (2.2) can be evaluated, at least approxi-
mately, and then Chebyshev inequalities can be used to give an upper bound
to the level of significance and a lower bound to the power, for a given choice
of A, and B, .

There are other consistent tests for the hypothesis under discussion: the
chi-square test and obvious extensions of the univariate Kolmogorov-Smirnov
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and von Mises tests. A comparison of the power functions of these tests would
be of great interest. Almost nothing is known of the small-sample power of any
of these tests. The large-sample power of the chi-square test is known. It is
the author’s conjecture that the limiting joint distribution of @(n) and R.(1; 1)
is bivariate normal under the alternatives as well as under the hypothesis. If
this conjecture could be proved, the asymptotic power of the proposed test
would be known.

—

TABLES FOR OBTAINING NON-PARAMETRIC TOLERANCE
LIMITS

By Paur N. SOMERVILLE!

General Analysis Corporation, Sierra Vista, Arizona

The general consideration of non-parametric tolerance limits had its origin
with Wilks [10]. Wilks showed that for continuous populations, the distribution
of P, the proportion of the population between two order statistics from a ran-
dom sample, was independent of the population sampled, and was in fact a func-
tion only of the particular order statistics chosen. Wald [9] and Tukey [8] ex-
tended the method to multivariate populations, Tukey being responsible for the
term ‘‘statistically equivalent block.” Their work was extended further by Fra-
ser (2], [3]. Murphy [4] presented graphs of minimum probable coverage by
sample blocks determined by order statistics of a sample from a population with
a continuous but unknown c.d.f. This note extends the results of Murphy, and
tabularizes the results in a manner which eliminates or minimizes interpolation,
particularly with respect to m, in a large number of cases. The form of Table I
parallels the tables of Eisenhart, Hastay and Wallis [1] ‘“Tolerance Factors for
Normal Distributions.”

Let P represent the proportion of the population between the r*: smallest
and the st largest value in a random sample of n from a population having a
continuous but unknown distribution function. Table I gives the largest value
of m = r 4+ s such that we have confidence of at least that 100 P percent of
the population lies between the 7™ smallest and s** largest in the sample. Note,
that we may choose any r, s = 0 such that'r 4+ s = m. We must, of course,
decide upon the values of r and s independently of the observations in
the sample. We obtain one-sided confidence intervals when we use r = 0 or
s = 0 for a given m. The values of m are the largest such that

Y é Il_p(m,n —_ ‘”ll + 1)
where I is the incompléte Beta function tabulated in [5] and [7].
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