ON THE INTEGRODIFFERENTIAL EQUATION OF TAKACS. L

By Epcar REeicu!

Unaversity of Minnesota

1. Introduction. This paper is devoted to a study of certain aspects of the
mixed-type Markov process #(f), originally treated by Takécs [8]. It extends
and unifies a number of results of previous workers.’

Let N(¢), N(0) = 0, ¢ = 0 denote max {n|?, < t}. We shall be especially
interested in the case where 0 < f; < f» < - - - are the events of an (in general)
mon-homogeneous Poisson process of density A(f) = 0. We assume that A(Z)
is Riemann integrable over all finite intervals. (The homogeneous Poisson proc-
ess corresponds to A(f) = const.) Let xo, x1, X2, - - - be a sequence of non-nega-
tive random variables. Except in a part of Section 5, they are mutually inde-
pendent, and independent of N(f); moreover, H(z) = Pr {x; < z} is the same
for ¢ = 1, 2, --- . Introducing the notations

¢ ~ Nt _fo,z=0
[ xt Nt = 0+ 3 o 1) = {2250,

-one may define (See Fig. 1)
1) 20 = [ xw ave) - [ L)

It is sometimes instructive to formally redefine x(¢) as a stochastic process with
x(®), x(¢), (¢ # t'), independent, Pr {x(f) = z} = H(z), ¢ > 0. One then con-
cludes immediately, from the functional form of (1.1) that 5(¢) is a Markov
process. Note that var (n(¢ + Af) — 5(2)) = O((A1)?), t: < ¢t < i1, so that
Feller’s [5] function a(t, z) = 0.

In Section 2, the problem of finding the distribution of 5(¢) will be reduced to
finding the unique solution of a Volterra equation of the second kind. In Section
3, the corresponding result is found for the process n*(¢), where, if ¢ is the first
zero of 5(2),

* —_ ﬂ(t),t < t,

) “{0 20

The work in Sections 2—4 generalizes results of Benes [2] who treated the Takdcs
process when A(f) = const (under somewhat milder restrictions on H). Section
5 contains some results on the asymptotic nature of 7(¢), derived from a more
general point of view than that employed in the preceding sections.

2. The Volterra equation for Pr {n(¢) = 0}.
Define A(f) = [fo(u)du, F(tz) = Pr {y(t) < z}, F(t) = F(t0) = Pr
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A - = - - -
e - —

Fi1c. 1

{n(t) = 0}, ¢(s) = Ee™, i =1,2,---, 8¢, s) = Ee ™, &(s) = &(0, s) =
Ee¢™*, (®s = 0). It then follows [8] that F(¢, z) is continuous, { = 0, z > 0,
and’

aF(t, x) _ AF(t, )
at ox

—NOF (G, 2) +70) [ He - ) 4, FG, ),
Consequently,

@(t S) + s f‘ e‘(‘—u)—[l—ﬂ'(&)] [A(t)—A(“)]F(u) du
1
2.1) 0

= Q(s)ett—ll—-l‘(c)ll\(t)’ ®s = 0.

Thus, if F(t) is known, F(¢, ) can be computed by quadratures. Equation (2.1)
contains two unknown functions, F(¢), and ®(¢, s), which might a priori lead one
to believe that, unless the explicit relation between the two functions were
brought into the picture, neither could be uniquely determined from (2.1) alone.
However, by taking advantage of the regularity properties of ®, (and certain
additional regularity properties of A, H) it turns out that (2.1) actually deter-
mines'F(f), and hence also &(¢, s), uniquely. (Cf. Bailey [1] where regularity prop-
erties are used to solve a functional equation containing two unknown functions.
See also [9], pp. 52-53.)

TaEOREM 1. Suppose (i) A(£) & £2 for every finite interval, (ii) H(z) = [§ h(£) d,
e “h(x) € £2(0, ) for some ¢ = 0. Then F(t) is the unique continuous solution

2 Two functions of ¢ will be written as equal, if they exist and are the same for almost all
t=0.
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of the Volterra equation of the second kind

t
(2.2) g = F@) + f K, w)F(u) du, where
0
1d f T e (A (—A )] -y A8
tu) = — %PV s
K(t, u) 21ridtPV z—iooe s’
g0 = L9 Thie B(s) g Iv@IA® 48 @> o
27I"L. dt z—1i00 82 ’ )

Lemma 2.1. If 2> 0, M >0, —o <+ < v, then 1/2ms [2Ti¥ ¢"*/sds is
bounded uniformly with respect to M, ~.

Proor. Let C, be the rectangular contour bounded by s = z =+ M, and paral-
lel lines extending to « in the right (left) half plane if ¥ < 0 (y > 0). Then

1 e"’ds=1+sgn'y

g’i c, S 2

: L/MM’_1<\L[ _ 1

.' 27t z—iM = 27l"£ Cy 27”: T—iM

K,
< =< =
On the other hand, if | ¥M | < 1, then
i M i M Y8
= [ —'1§,i.f ¢~ g
27t Jo—inm 2 2wt Jo—in s
z+iM
sk [ 'l‘%';ds; = 2K, |v| M = 2K,

Lemma 2.2. If 2 > 0, M > 0,0 £ & < ao, 7(t) € £10, ), R(s) = [ ¢ *'r(2)

dt, then 1/2x¢ [27i% R(s)e™ ds/s is bounded uniformly with respect to M, a.
Proor. Since the integral for R(s) converges uniformly on the line ®&s = =,

Y e as 05 f"" 1 f‘*‘” (a—ts dS
L = 2—1;‘[ R(S)e ? = A T(t) {*2—‘"-—2 g (4 —,ST dt.

z—iM —iM
Hence, by Lemma 2.1, | L | < K, [ | r(¢) | dt.
Proor oF THEOREM 1. Dividing both sides of (2.1) by ¢*, -and integrating along
the line ®s = = > ¢ from s = x — iM; to s = z + iM,, (M1, M, > 0), we
have ‘

z+iMy [ 2+iMy
1 a(t, 5) (_1; + f {i f (0 e= A=A ()] [1-9(o)] @} Flu) du
s 0o 2w Ja s

ﬁ z—iM) —iM
]. o+iMy _ _ ds
— B(s)ele— A i—wion dS />
z

2wt —iM 82 ! =

Since ®(¢, s) is regular, |®(2, s) | < 1, when ®s > 0, the first integral on the left

0.
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side converges (absolutely) to zero as M; , My — o, and the integral on the right
side converges absolutely to the function

1 [ te—A(t) 1~y (9)] 0S
10 = 5 [, 20 R

Hence

/ { 1 f (WA —A ] 1—¥)] dS} F(w) du
(23) Ml Mz—vw o |21 z—iM) 8

=g, t20z>c

In particular, we shall henceforth take M; = M, = M, in order to make it
possible to be able to invert the order of integration in (2.3). We can write

1 (™Y st ds L[ s poo 1ds
S Juine © ?—%Lwe[f'”*ww?
—ﬂ z+iM +iM
Z as ot Be [ as 20 =
+ 2 j;——iM + 271t Jomin ¥(s)e I+ I+ 10

By the Riemann-Lebesgue Lemma, limyj.« |¢¥(x + iy)l = 0. By Parseval’s
equality,

[w |y(x + ) P dy = fﬂ ¢ [h(z)]* dx < ». Hence,

2410
11 s gk [ w2 <

Therefore, as M — «, I converges absolutely, and umformly with respect to
a, B |a| £ a|B| = ﬁo By Lemma 2.1, limy... I = ¢, boundedly wit re-
spect M > 0,0 < a < a. By Lemma 2.2, limy..o II] = B¢ H(e), boundedly
with respect to M > 0,0 < a < ao. Thus we may rewrite (2.3) as the Volterra
equation of the first kind,

t
f G(t, wF(u) du = g(2), t=0, (x > ¢), where G(¢, w)
(24)
= PV. . f,_m (== (A=A () (1~9()] d?s — ole, B) — ola, B),

l z+1i0
play B) = 5= | &[0 — W(s)] + ¢,

ola, B) = BePH(a), a=t—uz0, B=A>F —A).

Next we deal with the question of the existence and nature of the derivative
g'(¢) for almost all ¢ = 0. First we focus on the existence and nature of

% fo p(a, B)F (u) du.
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Since p(a, B)F(u) is continuous in ¢, u, p(0, 0) = 1,
&1, oo P du = 1) + [ [ ot P ]
dt Jo ’ dt Jo ’ et

The partial derivatives p, , ps exist and are uniformly continuousin0 < a < ao ,
0=B=p8. Thus Ap = paBa + psAB + @A + &AB, limaasseoe; = 0, &
uniformly bounded with respect to @, 8, 0 < o < ap, 0 < 8 < . We have
Ap (ps + @) [T
Al = Pa + g + ——=
Let E = {t|A'(£) = \(®)}. We see that for ¢ ¢ E, Ap/At is bounded uniformly
with respect to u, and dp/df = p. + ps\(f). Hence, by the bounded conver-
gence theorem,

A) dv.

d [T [T gy
& fo oF(w) du = fo 2 F@) du.

and therefore

(2.6) g_tfo‘ oloy HF() du = F() +/; g?pF(“) du
= [ 0P au +30) [ poF ) du.

We see, by (2.6), that

3—:’e£2(A), A={tu!|0=u<=<t.

Also, [0 8p/t F(u) du € £ (for every finite interval). Next, consider

[ ' o, B)F (u) da.
By noting that fact ([4], pp. 111 ff.) that for continuous Q(u), and h & £%,
d/dt fo ‘ QuH(E — u)du = L t Q(u)h(! — w) du = continuous function of ¢,
for all ¢, one finds that d/dtfs o(e, B)F(u) du = [ do/0t F(u) du e £, with

da/0t € £2(A). Thus (2.2) holds for almost all t, with

K(t,u) = M e £4(n),

and ¢'(¢) € £ over every ﬁmte interval. Under these conditions it is known [7]
that (2.2) has a unique £ solution, F(¢); in particular, there is a unique con-
tinuous solution.

3. The Volterra equation for Pr {7*(t) = 0}.
Define B(¢, z) = Pr {n*() < z}, B(t) = Pr {9*(¥) = 0} = Pr {t’ < 1},

¢, s) = Ee™ ", 8(s) = Ee™ = E¢™"©. Then [2]
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3B(t, z) _ 9B(t, 2)
at iz

~MOBG2) +20) [ Ba — 44 dHE)

+ A()[1 — H@)]BO).

Hence
a1 @, s) + fo {s — ANu)[1 — ¢(s)]}e I~ I¥OIABO=ADI By Gy

= $(s)e"ITVEIRD L gs > 0.

TaEOREM 2. Under the same assumptions on \ and H as for Theorem 1, B(t)
18 the unique continuous solution of the Volterra equation of the second kind

(3.2) 7) = BO + [ K0, 0BG du

where
1 d [=+iuo
* = e —
K*(t, w) 53 di PV. o
ds

s = N@)[1 = y(s)]e" UM A®=A] g

, r > c

Proor. The proof proceeds as for Theorem 1, except that, before differentia-
tion, the kernel now contains an additional term of the type

F o]

p*(a §) = 5 P, f

1 2410

[1 — y(s)]emru—ve! ng

—100

(R0 R VR O

- 2—71'—7, z—i
+ B - l)e_ﬁ fa H(r) dr.
0

This expression is treated in the same manner as p(a, ) was treated.

4. Y(s) Regular at infinity. We shall briefly remark on the practically important
case when y¥(s) is regular at infinity (e.g. when ¥/(s) is rational). This assumption
regarding ¥ is more restrictive than the assumptions in the hypotheses of Theo-
rems 1 and 2, because by Pincherle’s Theorem ([4], pg. 263),

Y(s) = as™ + as " + -

is the Laplace transform of a density

h(®) = 21?' = jre"tl/(s) ds, t>0,

where T' is a contour, on and outside of which ¥(s) is regular. In particular, if
¥ is a rectangle on which ®s < & > 0, then we see that | k(f) | £ Ké’*. Thus
one may choose ¢ = 0.
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Instead of multiplying (2.1) (or (3.1)) by the “convergence factor” s, it is
sometimes more convenient to use (s + u)~, u > 0. For example, the kernel
G(t, u) of (2.4) then becomes

“.1) Gt ) = __1__f s(s + p) T AW=AGI V@] g
’ ’ 27t Jr ’

and K(t, u) = (9/0t)G(t, w). For instance, if ¢(s) = (L 4 s)7", and if we choose
u = 1, then, if I, is the modified Bessel function,

e_(t_u)—[A(t)—A(u)]Io[2(t _ u)m(A(t) _ A(u))”’] e u)llz

0y = | QO = AEDTILRE — WA ~ Aw)™,
G0 = Ve ay = 4w,

e — ¢t — W), if AG) = A(w).

This is rather similar to the kernel encountered by Clarke [3] by a completely
different approach.

6. Asymptotic behavior of 5(f). Unless specifically stated, no restrictions
regarding the distribution, or sndependence of the sequences {x:}, x: = 0, and
{t.},0 < t < tp, -+, shall be made in this section. Therefore, we cannot use
the results of Sections 24, but must return to the fundamental relation (1.1).

Lemma 5.1.

() = sup [[‘; x(u) dN (u) — x]

Proor. Let y = {max u|u = ¢, n(u) = 0}. Then

20 = [ xtw) NG — ¢ =),
On the other hand,

t

2O =t -2+ [ xaNe) ~ [ L) auz [ x) aNe) =

THEOREM 3. If N(f) = M + o(t) ast — ©, D i1 xi = an + o(n),asn — w,
A £ 1, then 9(t) = o(b).

Proor. We note first that the hypothesis implies that if 0 < y1 < v < 7s,
then

vt !
lim ! I: [ x(u) dN(u) — 'yakt] =0,
uniformly with respect to v. Let 8, ¢ > 0, be given. Then if 0 < z < (1 — )¢,
there exists a T, , such-that
(1—z/t)

r [f.; x(u) dN (u) — x] = [f_:. x(w) dNG) — f_.,, x() dN(u)]

— (@) San— (1 —z/t)ar + e — z/t S ¢,
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if £ > Tes . On the other hand, if z > (1 — §), there exists a T such that
t

! [f x() dN(u) — x:l
t—z

§f‘[[:x(u)dN(u)]—x/tgax+e—(1 —8) < e+,

if £t > T.. Hence n(t) /¢t < e+ 8 if t > max (Te, Tegs).

CoROLLARY. If N (t) ¢s a Poisson process with cumulative mass A(t) = N + o(f)
as t— o, D iaxi=cn+on), as n — o, \a < 1, then q(t) = o(f) with
probability 1.

Proor. If A(w) < «, the result is trivial, as then () = O(1), with prob-
ability one. Assume A(w) = «. Let N*(¢, w), £ 2, be a homogeneous Poisson
process with unit density. Then N(¢, w) = N*(A(t), w) is a Poisson process with
density A(¢). Hence )

A 2.2.0.
t—>00 t t->00 A (t) t ’ @

The following result follows from results of Kiefer and Wolfowitz [6], after
some elementary transformations.

THEOREM 4. Suppose A(t) = N + O(1), as t — ». If {x;} are independent of
each other, and N(t), and are equidistributed, and if x:A < 1, x2 < o, then

En(t, + 0) = 0(1),

asn — .

The hypothesis on A(?) is satisfied, e.g., if A(#) is periodic with mean A, It
may be shown, by counterexample, that the conclusion of Theorem 4 becomes
false if the hypothesis is weakened to A() = M + o(f).
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