INFORMATION THEORY FOR MATHEMATICIANS!

By J. WoLrowriTz

Cornell University

A more descriptive term for information theory and one preferred by the
present writer is ‘‘the theory of coding of messages.” In this expository note we
will describe briefly some basic concepts of this theory when transmission is
through a “noisy channel” (noise = chance errors). We shall assume that both
the transmitting alphabet and the receiving alphabet consist of two symbols,
0 and 1, say. This represents no loss in generality because the extension to any
other alphabet, say one of twenty-six symbols, is immediate and presents no
difficulty at all.

The fundamental paper of the theory is [1]; other important papers are [2],
[3], [4], and [5]. The papers most easily intelligible to the mathematician are
probably [3], [4], [7], and [8]. The latter three deal with the subject matter of the
present paper; [4] and [7] may each be read without any prior reading, and [8]
is a sequel of [7]. In the present paper we describe four theorems proved in [7]
and [8] and their relation to prior results. )

Suppose that a person has a vocabulary of S words, any of which he may want
to transmit, in any frequency and in any order, over some channel. We emphasize
that we do not assume anything about the frequency with which particular words
are transmitted, nor that the words to be transmitted are selected by any random
process; in this respect our treatment differs from most of those in the literature.

Let the words be numbered in some fixed but arbitrary manner. Then trans-
mitting a word is equivalent to transmitting one of the integers 1, 2, ---, S.
Let s = log S (all logarithms in this paper are to the base 2). Then there are S
sequences of s elements each’, each element either 0 or 1. If there is no noise,
i.e., error of transmission, then, to transmit any word one has only to transmit
the appropriate sequence of s zeros or ones.

If there is noise then this is clearly not enough, for the transmitted sequence
will usually be incorrectly received. What is needed is that the received sequence,
which will usually be a moderately garbled version of the transmitted sequence,
should still be different from the moderately garbled version of any other trans-
mitted sequencé, so that one can infer what sequence it is that has been trans-
mitted. But this requires that the sequences to be sent be not too similar in some
reasonable sense, lest they be confused in transmission. Hence one must employ
sequences of length greater than s, and not all such sequences (so that “neigh-
boring’’ sequences be not sent). All these remarks will now be made precise.

Lettheinteger m (= 0) bethe““memory”’. A sequence of n (respectively (n — m),
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1 Rietz lecture delivered (under a different title) at the Atlantic City meeting of the
Institute of Mathematical Statistics on September 10, 1957, by invitation of the Council
of the Institute. Work under contract with the Office of Naval Research.

2 Obviously, if 8 is not an integer one should replace it by the smallest integer 2 s.
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(m 4 1)) elements, each zero or one, will be called an z-sequence (resp., a
y-sequence, an a-sequence).’ A transmitted sequence (received sequence) is al-
ways an z-sequence (y-sequence). There is given a “channel probability
function” p, defined in the domain of all a-sequences, such that, for any a-
sequence a, 0 < p(a) = 1. The “noisy channel” transmits an z-sequence = as
follows: Let a; be the a-sequence of the first (m + 1) elements of z. The
channel “performs” a chance experiment with one of two possible outcomes, 1
and 0, with respective probabilities p(a;) and 1 — p(a1). The outcome of the ex-
periment is the first element of the received sequence Y (x). Let o be the a-
sequence -of the 2nd, 3rd, - - -, (m + 2)th elements of x. The channel now per-
forms a chance experiment, independent of the first, with possible outcomes 1
and 0 and respective probabilities p(as) and 1 — p(as). This is repeated until
(n — m) independent experiments have been performed. The probabilities of the
outcomes one and zero in the ith experiment are p(a;) and 1 — p(as), respec-
tively, where a; is the a-sequence of the sth, ( + 1)st, - -+, ( + m)th elements
of z. The received sequence Y (z) is a chance y-sequence made up of the outcomes
of the experiments in consecutive order. Let yu; be any y-sequence. If
P{Y(z) = w1} > 0 (the symbol P { } denotes the probability of the relation in
braces) then ¢ is called a possible received sequence when z is transmitted.

Let \,0 < A <1, be a given number. A ‘“code” of length f is a set
{(xi, AJ), 1 = 1, ---, t} where each z; is an 2z-sequence, each 4 is a set of y-
sequences, the A; are all disjoint, and for each ¢,z = 1, --- ,

To be able to transmit S words we need a code of length S. The practical ap-
plication of a code is as follows: When one wishes to transmit the ith word one
transmits the z-sequence z, . Whenever the receiver receives a y-sequence which
isin 4;, he always concludes that the jth word has been sent. When the receiver
receives a y-sequence not in A;u A, U - - - U A; he may draw any conclusion he
wishes about the word that has been sent. The probability that any word trans-
mitted will be incorrectly received is < A.

The quantity (1/n) log ¢ is called therate of transmission. The practical advan-
tages of a high rate of transmission are obvious. In this paper we shall be con-
cerned with the problem of determining, or at least bounding, the highest possible
rate of transmission.

If p(as) = p(oz), then the two a-sequences a; and a are indistinguishable in
transmission. Barring such cases for simplicity, then, whatever be \,0 <\ < 1,
it is always possible to find an n and then a code of length S, provided one is
willing to transmit at a sufficiently small rate. By sufficient repetition of the word
to be transmitted one can insure that the probability of its correct reception
exceeds 1 — \.*

3 These terms are used only in [7] and [8].

4 For example, “‘estimation’’ of the word transmitted may be by the method of maximum
likelihood. The words in the vocabulary are the possible ‘‘values’ of the parameter to be
estimated. Since there are only finitely many words in the vocabulary the method of maxi-
mum likelihood is uniformly consistent.
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What we have called a code in the present paper is usually called “an error
correcting” code’ in the literature of coding theory. The latter often admits as
codes systems which do not meet the definition of code given above. Much of the
literature of coding theory is concerned with the situation where the words
to be transmitted are chosen from the vocabulary by a chance process with known
distribution. Without discussing this matter further here we invite the reader to
verify that the results cited below about the existence of (error correcting) codes
of certain lengths hold a fortiori when the words to be transmitted are chosen by
a chance process.

Let M, be the class of all stationary, metrically transitive stochastic processes

XI,X2’X3’...

where the chance variables X; can take only the values 0 and 1. Let M, be the
subclass of M, in which the X; constitute a Markov chain. Let M, be the sub-
class of M, in which the X; are independently distributed. We shall shortly define
a functional ¢ on every member of M, (more precisely, ¢ will be a functional of
the distribution functions of the stochastic processes). In the meantime, let
C., Cy, Cy, be, respectively, the supremum of ¢ over M, , M, , M, , respectively.
Then, of course, Cy < C; < C,.

Let ¢ always be an arbitrary positive number. The following Theorem A was
first proved by Shannon [1] for the situation when the words to be transmitted
are chosen by a known random process and for, in general, not error correcting
codes.

TuEOREM A. For sufficiently large n there extsts a code of length

2n(Cl~¢)

(In [1] Shannon not only proved this remarkable theorem but brilliantly laid the
foundations of the whole subject). Basing himself on the ingenious and im-
portant work of Feinstein [2] and McMillan [5], Khintchine in a very important
paper [4] rigorously proved THEOREM B. For sufficiently large n there exists a code
of length

2n(02—e)

While Khintchine’s paper does not explicitly treat error correcting codes, onecan
deduce from his proof that Theorem B holds for error correcting codes.

Theorem B obviously implies Theorem A (both for error correcting codes).
The question arises whether Theorem B is stronger than Theorem A, i.e.,
whether C, < C; . For m = 0 we will see below that the answer is in-the negative.
For general m the subject is under investigation.

In [7] (Theorem 3) the present author gave an extremely simple and very
much briefer proof of Theorem B. Using essentially the same simple methods he
proved the following improvement on Theorem A.

5 More about error correcting codes in, for example, [6].
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TaEOREM 1 of [7]: For any n there exists a code of length

nC1—K nl/?
2 ,

where K, is a positive constant’ which does not depend on n.

We next concern ourselves with the important and interesting question of an
upper bound for the length of an (error correcting) code. For the codes con-
sidered by Shannon the latter stated” ([1]) that there cannot exist a code of

length greater than
2 n(Co+e) .

Shannon gave a proof to which all others in the literature refer. Khintchine [4]
pointed out that neither the argument of [1] nor any of the arguments to be found
in the literature constitute a proof or even the outline of a proof; he also pointed
out the desirability of proving the result and mentioned some of the difficulties.

In [7] (Theorem 2) the author proved the following theorem: When m = 0
there is a positive constant’ K, such that there cannot exist an (error correcting)
code of length grealer than

27&(7(1'#1'(27;”2

An immediate consequence of this theorem is that, whenm = 0,Co = C, = C; .
Hence, when m = 0, Theorem B adds nothing to Theorem A, and both are weaker
than Theorem 1.

Before passing to the case m > 0 we complete the above discussion by de-
fining the functional ¢. Let

X=X, -, X
and define
Y(X) = (Y1, +, Yam) = Y (say).

(More detailed definitions in [7]; Y is essentially the chance sequence received
when the chance sequence X is sent.) Define the symbol

PlY =y|X =z} (P{X =2z|Y = y})

as the conditional probability that ¥ = y, given X = z (that X = z, given
Y = y). We define the following functions of the chance variables X and Y:
When X = zand Y = y, then

Sfunction equals
P{X) Pi{X = 2}

P{Y} P{Y = y}
P{X|Y} PIX =z|Y =y}
P{Y | X} P{Y = y|X = z}

¢ K, depends on the channel probability function.
7 There is some ambiguity about the theorem actually stated.
8 K, depends on the channel probability function.
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Let E denote the expected value operator. It is proved that the following limits
all exist:

lim — %E[log P{X}] = D:
lim — 7%E[log P{Y}] = D,

lim — %E[log P(X|Y}] = D

lim — %E[long{YlX}]

I
S

Also it is true and easy to prove that

D1+D4=D2+D3-
Then
¢:D1"-D3:D2—D4.

We now turn to the general case m = 0. For this case Theorem 4 of [8] gives a
general upper bound for the length of an (error correcting) code. When m = 0
Theorem 4 specializes to Theorem 2. Whether Theorem 4 gives the “best” upper
bound (as Theorem 2 does for m = 0) is still under investigation. Unfortunately,
to state Theorem 4 one needs a page of preliminary definitions and then the
theorem is stated in terms which require the reader to be familiar with the theory
of Markov chains. (However, the application of the theorem as described in the
discussion of [8] which follows its proof is little more difficult than that of Theorem
2). For these reasons it seems best to refer the interested reader to [8].

j’ostscript added in December, 1957 .

Since this paper was submitted for publication the author has obtained the
following result: A number J is defined by means of certain algebraic and analytic
operations on the channel probability function which we shall not describe here.
For any positive ¢ and n sufficiently large, there exists a code of length 2"~
and there cannot exist a code of length greater than 2“9, This result can be
approximately described by saying that 2" is the maximum achievable code
length. ‘
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