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1. Introduction. In 1951, Gnedenko and Korolyuk published an elegant
derivation ([6])' of the null distribution of the Kolmogorov-Smirnov statistic
D;,,, for two samples of equal size n. The statistic D,,, is given by

(1) D2,n = Sltlp I F2,n(t) - Fl.n(t) I )

where F; () is the sample cumulative distribution function for the ith sample.
The distribution derived by Gnedenko and Korolyuk is

@ - Pr{Dz,,, > %} =2 (2")_1 [Z)/:] (- ™ (nz_f‘ﬂ).

Since
(a—kva)
(3) lim _n_j__kﬂ = e'kz,
n-»00 2n
n

(2) easily leads to the familiar asymptotic result

4) lim Pr {anz,,, = )\} =2 Zl (— 1) ™2,
n-»0 =

Gnedenko and Korolyuk’s proof hinges on the fact that, in the null case
(for two samples drawn from the same continuous distribution), Pr{D,, = I/n}
equals the probability that the maximum deviation from the origin of a certain
random walk in the line is at least I. The random paths involved in this random
walk start at the origin, and consist of 2n unit steps, n to the left and n to the
right, with all possible permutations of left and right steps equally likely. The

probability Pr{D. . = I/n} is thus equal to, say, M / (21:?), where (21?) is the

total number of equally likely paths, and M is the number of these paths with
maximum deviation from the origin at least I. M can be computed by the re-
flection principle in the line ([2], [1]), leading to (2).

In this paper I show that the null distribution of the three-sample extension
D3, (see (6) below) of D.,, can be derived by extending the geometric approach
of [6] from the line to the plane.
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D;,» is but one of several “distance” criteria that have recently appeared in
the literature. Fisz and Kiefer [4], [7]?> have shown that the criterion

R, = max {Slzp IFa.n(t) - F2.n(t) l, SUEP I2F1.n(t) - F2.n(t) - F3.n(t) I},

and extensions of R, to k samples and unequal sample sizes, can be used with
existing Kolmogorov-Smirnov tables because the events

A: [Sutp | F3u(t) — Fou(t) | £ N

and
B: [SI:P | 2F1,n(f) — F2,a(f) — F3a(t) | £ N\

are independent. It may be of interest to note that the criterion R, corresponds
to using a rectangular boundary on the hexagonal grid of Figure 1, and that
the independence of the events A and B, and distribution of R, , follow easily
from this representation.

Ozols’ [8)? treatment of the criterion

Sa = max {sup (F3,a(t) — F2,a(2)), sup (Fa,a(8) — F1,u(8))},

is similar to my treatment of the criterion Ds, . The boundary corresponding
to S, is an infinite 60° wedge on the hexagonal grid of Figure 1.
Finally, Kiefer [7] and Gihman [5]* consider a criterion T, (or Di) of form

(3 Fenl) = F0OY), Tl = X Feali/h

and extensions of this criterion to unequal sample sizes; Kiefer [7] also considers
the k-sample extension V., of the statistic (5) given below in section 2.

Kiefer has shown in [7] that ‘“distance” criteria of the type discussed above
have good power properties. Among such criteria, one might suspect on heuristic
grounds that Dj;,, has especially good power characteristics against the ‘“one-
sided” alternative H:[(X < Y < Z)or (Y < Z < X)or (Z < X < Y)).
This is because H 4 tends to generate paths, on the grid of Figure 1, in the direc-
tions 7/6, v/6, +2x/3, or /6 + 4x/3.

2. A three-sample Kolmogorov-Smirnov statistic and its small-sample null
distribution. A natural three-sample extension of (1) would be

Max {Sltlp I'FZ,n(t) - Fl,n(t) I; Sltlp |F3,n(t) - F2,n(t) ‘)

5
() sup | Fia(®) = Fal®) 1)

2 I owe these references to an associate editor.
2 T owe this reference to Milton Sobel.



844 HERBERT T. DAVID

But (5) does not lend itself easily to an extension of Gnedenko and Korolyuk’s
geonietric method; a statistic that does so lend itself is that obtained from (5)
by deleting the absolute value signs:

D3, = Max {S‘zlp (F2,n(t) - Fl,n(t))) Sltlp (F3,n(t) — F2,n(t))1

(6)
sup (Fia(t) — Fs.(1)}.

The null distribution of Dj; , is its distribution when the three samples are drawn
from the same continuous population. This null distribution is derived as fol-
lows.

A step of type A in the plane is defined to be a unit step to the right (direc-
tion 0); a step of type B is a unit step in the direction 27/3, and a step of type
C is a unit step in the direction 47 /3.

In the null case considered, ties occur with probability zero; hence (almost)
every set of three samples of n leads to a ranking of the 3n sample values mak-
ing up the three samples. Corresponding to each set of three samples, consider
a path p;,. from the origin, composed of 3n unit steps, with the kth step of
Ps.» of type A if the rank % belongs to the first sample, etc. Clearly every ps..
contains n steps of each of the three types 4, B and C.

Next, consider the equilateral triangle in the plane that is centered at the
origin, has sides of length 3/, and is oriented such that one of its sides is hori-
zontal. Call this equilateral triangle T'; . Clearly

(7 {D3,n = %} & {(ps.. n Ty) is not empty}.

But in the null case every path p;,. (permutation of 3n steps, n each of type
A, B and C) is possible, and each of the (3n)!/(n!)* such paths is equally likely.
Hence (7) implies

(8) Pr{D,o,,,. > %} = Pr {(P;. n T) is not empty} = N/(3n)!/(n!)’,

where N is the number of paths p; . touching or piercing T'; . The small-sample
problem is therefore solved if N can be evaluated.

N is evaluated by extending to the plane the principle of reflection that
yielded M. Consider a hexagonal grid in the plane, consisting of “@” points
and “©7” points, as indicated in figure 1 for the case (n = 7, 1 = 2). The ex-
tent of the grid is fixed by the fact that the distance between the origin 0 and
each of the three “vertices” (indicated by the letters Vi, V,, Vy in figure 1) is
(381)([n/1]). This distance is of course (3.2)([7/2]) = 18 for the case illustrated
by figure 1. The central triangle indicated by the heavy line in figure 1 repre-
sents T'; .
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Fia. 1

Any path from the origin 0 to a @ point, that consists of 3n steps of type
A, B or C, is called a path of type @. A path of type © is defined similarly. A
path of type @ or © is called an auxiliary path . Again, any path from the
origin to the origin, that consists of 3n steps of type A, B or C, and that touches
the boundary T, is called a boundary path 8. Finally, Ne, No and N, are,
respectively, the total number of paths of type @, the total number of paths of
type ©, and the total number of boundary paths.

The argument now is as follows.

For any particular endpoint, whether it be a @ point, a © point, or the
) origin 0, the specification  that there be 3n steps ih a boundary path or
auxiliary path from the origin to that endpoint actually determines the
numbers m,4 , mp and mc of steps of types A, B and C involved in the path.
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(9) follows from the fact that the location of the endpoint provides three
equations in m, , mg and m¢ , which, together with

(10a) my + mp + me = 3n,
yield m, , mp and m¢ . These three equations are
{10b) me — mp = K,
(10¢) mg — me = K,
(10d) mpg — ma = Kj.

K., K; and K; are determined by the signed perpendicular distances d; , d, and
ds of the endpoint from the lines L;, L, and L; (see figure 1). For example,
K, = 2d,/3" if the endpoint is d; units below L, , and K; = —2di/3! if the end-
point is d; units above L; .

In particular, for every path from the origin to the origin, (10b), (10c¢) and
(10d) become m¢ — mp = my — m¢ = mp — my = 0, which, together with
(10a), yield m4 = mz = m¢ = n. This last implies that the boundary paths
are exactly the paths enumerated by N, or

(11) No = N.

Next, we introduce the operation of reflection. Reflection is an operation
performed on an auxiliary path = that yields a path p(w) which can be either
an auxiliary path or a boundary path. Reflection is defined as follows.

Let = be an auxiliary path whose last point of contact (proceeding along =
from the origin) with T'; is the point u.

1) Suppose first that u is not a vertex of T';. Suppose for example that u
lies within the horizontal side of I'; (i.e. the side oriented in the direction of a
step of type A.) Then p(w) is obtained from = by replacing every step of type
B occurring after u by a step of type C, and every step of type C occurring
after u by a step of type B. Analogously, if u lies within the side of I'; oriented
in the direction of a step of type B, then p(w) is obtained from = by replacing
steps of type A occurring after u by steps of type C, and vice-versa; if u lies
within the side of I'; oriented in the direction of a step of type C, the transposi-
tion of step types involves types A and B.

For example, reflection of the path 4 (see figure 1) leads to the path s .

2) If u is a vertex of T';, then reflection consists, as in 1), of a transposition
of two step types. Which two step types are involved is determined by the re-
quirement that the step occurring immediately after w be converted into a
step lying in T';. Thus, for example, if u is the vertex of T'; lying on both of
the two non-horizontal sides of T';, and if the step occurring immediately after
u is a step of type 4, then the two step types involved in the transposition are
types A and C; in other words, p(w) is obtained from = by replacing every
step of type A occurring after u by a step of type C, and every step of type C
occurring after u by a step of type A.



KOLMOGOROV-SMIRNOV TEST 847

The operations of reflection, performed on an auxiliary path =, yields a path
p(w) which 1) contains 3n steps, 2) contains no steps of types other than A4,
B and C; and 3) begins at the origin and ends at a @ point, at a © point, or
at the origin. (Endpoints exterior to the grid of figure 1, such as the endpoint
of the path m; for example, cannot result from reflection, because, for such end-
points, equations (10) have at least one negative solution). Finally, it is clear
that: 4) the number of steps of 7 exterior to T';, from the point of last contact
of v with T; to the endpoint of =, is greater by at least one than the number
of steps of p(«) exterior to I';, from the point of last contact of p(x) with T; to
the endpoint of p(w).

By 1), 2) and 3), p(x) is either an auxiliary path or a boundary path, and,
by 4), successive reflection py(w), pa(pi(m)), ps(P2(pr(7))), - - - eventually lead to
a boundary path, say pr(pr—a( - -+ pi(wr) - -+ ); this boundary path is called the
image B(w) of =.

Our discussion of reflection can be summarized by:

To every auxiliary path 7 there corresponds a unique image path g(xr),

(12) which is a boundary path obtained from = by successive reflections.

Further,

among all the auxiliary paths with the same image path, the number of

(13) paths of type @ exceeds the number of paths of type © by one.

(13) follows from the fact that the auxiliary paths with the same image path
B come in pairs of type (@, ©), as illustrated in figure 1 by paths = and =3,
except for a single “bachelor” path of type @ from the origin to one of the
three @ points immediately next to I'; .

The bachelor path of type @ is the auxiliary path yielding 8 after only one
reflection; it is uniquely defined for any boundary path 8, and is constructed
from B as follows. Let v be the last point of contact of 8 with T';, proceeding
along B from the origin in accordance with the directions associated with each
of the three step types. (Note that 8 has at least one point of contact with T';,
since 8 is a boundary path). The bachelor auxiliary path is constructed from g8
by “reflecting” the portion of 8 following v. (The word “reflection” is put in
quotes because, up to now, reflection has been defined only as an operation on
auxiliary paths. But the construction involved here is entirely analogous to
the earlier operation.) For example, if » lies in the horizontal side of T';, then
“reflection” of the portion of 8 following v consists of replacing every step of
type B by a step of type C, and every step of type C by a step of type B; the
procedure is analogous if v lies in one of the other two sides of I';. (Note that
v is never a vertex of T';).

The pairing of the other auxiliary paths with image 8 is accomplished by
“reflection” about the last point of contact with the triangular grid lines in-
dicated by the dashed lines in figure 1. (The word “reflection” again is put in
quotes, because the usage here does not correspond exactly to the operation
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yielding p(r) from =). For example, consider an auxiliary path w, with image
8, and let the last point of contact of m, with the triangular grid lines be w; sup-
pose for example that w lies on a grid line oriented in the direction of a step of
type B (as illustrated in figure 1). Then, as indicated in figure 1, the mate r; of
w2 is obtained from = by replacing every step of type C occurring after w by
a-step of type A, and every step of type 4 by a step of type C. The same “re-
flection” operation, applied to =3, yields m, , which establishes the pairing.

That =, and its mate 73 have the same image 8 is best verified by imagining
w2 and s as undergoing reflection simultaneously.

Except for the single bachelor path, auxiliary paths with the same image thus
come in pairs of type (@, ©), except possibly in the case of an auxiliary path,
such as that indicated by o in figure 1, whose potential mate m; is not one of
the auxiliary paths. However, auxiliary paths such as 7y do not exist, and this
is shown as follows.

Suppose there were an auxiliary path, such as m , to an endpoint at the outer
edge of the hexagonal grid of ® points and © points, which entered the triangu-
lar cell containing this endpoint from an ‘‘exterior’” side of the cell. The four
equations (10a), (10b), (10c) and (10d) yield m¢ = n — I([n/I]) for any auxil-
iary path to any endpoint between the two vertices V; and V, . (Correspondingly
ms = n — l([n/l]) and my = n — I([n/l]) for the other two sets of ‘“‘outer”
endpoints). Hence, if m, existed, it would contain » — I([n/l]) steps of type C.
But then m; would contain n — I([n/l}) — [ steps of type C, which could not be
because n — I([n/l]) — lis negative.

Finally,

(14) Every boundary path is the image of at least one auxiliary path,

because every boundary path is the image at least of its corresponding
“bachelor” path.
(12), (13), and (14) imply

(15) No = Ng — No.

(15) is shown as follows. Let = denote an auxiliary path, let 8 denote a bound-
ary path, and define the function f(w, 8) as follows.

fGr, B) =1 if 8 is the image of =, and = is a path of type @.
fGr, B) = —1 if Bis the image of m, and =.is a path of type ©.
Jm,B8) =0 if B8 is not the image of .
Now, for any fixed B, |
2 fx, B) = 1

by (13) and (14), so that
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(16) 2 12 fr, B)] = No

Again, by (12), it is true for every fixed = that
;f('lr, B = +1 for = of type @

= —1 for « of type ©,
so that
a7) 2 [3 fr, B] = No — No,

and (15) follows from (16) and (17).
(11) and (15) yield

(18) N = Ng — No

In view of (8), equation (18) represents the solution of the small-sample
problem, because the computation of Ng and of N is straightforward. For ex-
ample, Ng is the total number of paths of type @, which is easily computed
because the number of paths to any particular @ point is given by the usual
trinomial coefficient, the count being entirely unrestricted. The three argu-
ments of this trinomial coefficient are the numbers of steps of types 4, B and
C involved in any auxiliary path to this @ point; these numbers are of course
fixed by the location of the ® point, in view of equations (10). There remains
only the problem of efficient enumeration of ® points and 8 points; one such
enumeration gives for Pr {D;, = l/n} the expression

[n/l]

(19) 3 2 5(3) (£)0)/(n — Dln + ) + G — N,
1= 1eJ (¢

where the set J(7) consists of the integers (2 — 7,3 — 4,5 — 4,6 — 4,8 — 4,

9 —14 11 — 4,12 — 4, ---, 24), and where the (&) sign indicates that, for

fixed %, successive terms in the finite series indexed by j have alternating signs,

beginning with + forj = 2 — ¢, — forj = 3 — 4, + forj = 5 — 4, etc.

3. Large-sample distribution. The asymptotic distribution of Dj;, is given
by the following theorem.
THEOREM. For M} inlegral

0

lim Pr {n!D;, = \} = 3 Z E (£)g P2

n->0 i=1 jeJ(3)

It

where the set J(i) and the sign () are as defined in (19).
Proor. Put ! = M} in (19). Since, for fixed k; , ks , ks with &y + &y + ks = 0,

)

. (n)? _ —hRIHREED
(20) 1,}.12, (n + kind)(n + kend)!(n + ksnb)!
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it suffices to show that,

(for k large enough,
[”llz /]

R, n,N) =| X2 2 (£)@)/(n — ix')!

(21) D, 1=k jer(a)
“(n + A 4+ G — D!

[is arbitrarily small, uniformly in n for large n.

Rewriting the terms of (21) and putting the absolute value signs inside the
first summation,
[nl/2/)\]

R(k,n,\) = Z=‘,k ()%/(n — ixn®) 120 + ixn''%)1)

(22) T
< 3 (i)<2n+z>\n ) >

jeJ (8) n + j)\nllz
For fixed 7, the absolute values of the terms of the alternating series increase
monotonically to the maximum

< o2n + '’
n + [£/2] Mm'?

and then decrease monotonically. Hence
on + izn'? on + iz’
E (:I:) o 1/2 = 2 . 1/2 ’
JeJ(4) n +]Xn n + 11,/2] AR

and (22) yields

,,1/2/)‘
(23) R(k,n,\) < 2[ 2 ]b;,

i=k
where

24) b= @)¥/(n — ') !(n + [g] m‘”)!(n + (z - [12]) m"*) .

It is easy to show by direct computation that
1) bi/bis1 is increasing in ¢,

Anl/2
2)br/bra = (1 + []23] Y 2) , which is uniformly close to

"™ for n large.
Hence, by (23), R(k, n, \) is essentially bounded by
(25) 2bi/(1 — ¢~ MMy
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for n large. But, by (20) and (24), (25) is approximated by
26—(k3+[k1213—k[k/21)/(1 _ e—[k/z])ﬁ)

for n large; this establishes (21).
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