ASYMPTOTIC APPROXIMATIONS TO DISTRIBUTIONS!

By Davip L. WaALLACE
University of Chicago

1. Introduction. The study of approximations to distributions formed a major
part of statistical developments during the early part of this century and included
important work by Charlier, Edgeworth, Pearson and numerous others. The
principal problem was the approximation to empirical distributions by theo-
retical functions and the methods proposed consisted chiefly either of choosing
an approximating function from some class of functions, such as the Pearson
type distributions or the Gram-Charlier functions, or of choosing a transforma-
tion of the variable which would reduce the distribution to approximate nor-
mality.

With the increasing importance of statistical inference, interest in the original
problem of approximating to empirical distributions virtually disappeared. But
interest in approximations has continued because of the increasing number and
complexity of theoretical distributions and the need for usable approximations
to them. In addition to the direct use for approximate evaluation of the dis-
tribution functions or the quantiles of complicated distributions, approximations
have been valuable in such problems as the Behrens-Fisher problem and in the
investigation of robustness of standard tests of hypotheses.

There are several general approaches to distribution approximations. The one
to which I restrict attention is that of finding asymptotic expansions—in which
the errors of approximation approach zero as some parameter, typically a sample
size, approaches infinity. Essentially, the method consists of finding improve-
ments to the large sample approximations used throughout statistics. A variety
of expansions have been developed for many problems and the approximations
are amenable to theoretical as well as empirical study.

In a simple and common form, each function F,(z) in a sequence of functions is
approximated by any partial sum of a series

f: A (z)
= Vo)
and the errors satisfy the condition
L AR |- G
Fn(x) ; ('\/;L)’ = (\/ﬁ)r—i—l ’
that is, the errors, using any partial sum, are of the same order of magnitude as
the first neglected term. I call an asymptotic expansion valid to r terms if the
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first » 4+ 1 partial sums have this property, and valid uniformly in z if the
bounds C:(x) do not depend on z. (The theory of asymptotic expansions is given,
for example, by Erdelyi [28].)

There are a few points on the use of asymptotic expansions which have caused
some confusion. Frequently, an expansion can be extended validly to infinitely
many terms. For any fixed n, the infinite series may be convergent, but in
statistical applications usually is not. The asymptotic property is a property of
finite partial sums, and though the addition of the next term will for sufficiently
large n improve the approximation, for any prescribed n it may not do so.
Typically the bounds C,(z) increase rapidly with , and for small n only the first
few terms are improvements.

Ideally, sharp values of C.(xz) should be known. (This is rare in statistical
applications but common in applications to special functions like the gamma or
Bessel functions.) Then successive terms could be added until the error bound
reaches its minimum, giving the best guaranteed approximation, or an earlier
sum used if the error is small enough. But asymptotic expansions, except where
convergent, have the inherent limitation that there is a minimum error which
limits the accuracy achievable.

For the aymptotic expansions used in statistics, the state of knowledge is much
less satisfactory. Usually, only the order of magnitude of the errors is known,
and only rarely are explicit bounds known—and these are far from sharp. Indeed,
many expansions in common use have been obtained by formal operations with
terms collected according to their order of magnitude, but without proof that the
errors are of correct order. I call these formal asymptotic expansions and will
try to indicate where they can be proved valid by careful but simple analysis.

The approximations discussed in this paper divide into two groups, the first
consisting of approximations based ultimately on the central limit theorem and
which use only the moments of the distribution to be approximated, and the
second including various approximations using detailed information about the
distribution.

2. The central limit theorem. The center of a large part of the asymptotic
theory is the central limit theorem for sums of independent random variables.
Let {X,} be a sequence of independent random variables. Denote by F, the dis-
tribution function of the standardized sum

i (Xi — E(X)))
V3, Var (X))

and by @ the unit normal distribution function. The central limit theorem then
states that lim,.. F.(z) = ®(z) for every fixed z, provided only that the means
and variances are finite. If the {X;} are not identically distributed, an additional
condition guaranteeing that the distributions are.not too disbalanced is necessary
(Lindeberg [51]).

The best possible general results on the order of magnitude of the errors in

2.1) Y, =
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the central limit theorem were obtained during the 1940’s by Berry [7], Esseen
[29], [30], and Bergstrom [4], [5], [6]. Their results are of considerable interest and
their methods are extremely important in much of asymptotic theory. The
result for the sum of identically distributed random variables is that

Cﬂs
sup | Fa(z P(x -
1p | Fa®) — ®(@)| = Vo
in which B; is the third absolute moment and o’ the variance of the component
random variables. Several values for the constant C have been published, but
only Berry’s calculations have been published. Hsu [45] pointed out an error in
Berry’s calculation. This error can be corrected without affecting the result, but
there is another more serious error. I have followed through the calculation and
have found that 2.05 is a satisfactory replacement for the value 1.88 given by
Berry. A more careful calculation would reduce this slightly. None of the other
bounds suggested is as low as 2.05. Recent work of Esseen [31] has shown that as
n approaches infinity, the minimum correct value of C' approaches
AV/10+3 1
—  41.
6 \/ 2
This value is achieved as n approaches infinity for a certain binomial distribution.

The bound holds also for sums of nonidentically distributed random variables,
though the second and third moments enter in more complicated ways. Although
the corrected Berry constant is the lowest known, the results of Iisseen and
Bergstrom are generally stronger because of the way that the second and third
moments enter the bound.

All of the methods proceed by choosing as a kernel a distribution whose density
function has a sharp maximum at the origin. A bound on the maximum difference
of any two functions F(x) — G(z) can be obtained from any bound on the con-
volution of this difference .with the kernel distribution. The most common method
of bounding the convolution has been to pass by Parseval’s theorem to the
characteristic functions and bound the resultant integral.

Much earlier, Lyapounov ([52], [53]) obtained a bound of order log n/vn
for the central limit theorem error by using a normal distribution with variance
of order 1/n for a kernel. Berry and Esseen were able to get the best result by
choosing kernel distributions whose characteristic functions vanished outside
a finite interval. The bounding then reduces to showing

T = 9@ o, _ 1
[t (1)

where 1/7 is the order of magnitude desired for the final result and where f and g
are the characteristic functions of F and G respectively. For the central limit
theorem, F is F, , G is the normal distribution ® and T is of order Vn.
Bergstrom used the same choice as Lyapounov of a normal density for kernel,
but he worked directly with the convolution integral. His method has proved
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valuable in extensions to the multivariate central limit theorems and he has
proved ([5], [6]) that the error there is again of order 1/n!. The characteristic
function techniques have not here been used successfully.

While the central limit theorem is very useful theoretically and often in prac-
tice, it is not always satisfactory. For small or moderate n, the errors of the
normal approximation may be too large. Indeed, Berry’s bound on the error is
usually intolerable except for very large samples. Error bounds for special classes
of distributions—chiefly the binomial and Poisson- distributions—have been
found by Uspensky [70] and others ([14], [33], [54], [55]).

3. Edgeworth series for sums. To obtain improvements and to prepare for
later expansions, it will be convenient to develop a class of formal expansions
sometimes known as the Charlier differential series [11]. In this formal develop-
ment, the parameter n plays no role. The expansion is based on a distribution
¥ which need not be a normal distribution. Let ¢ be its characteristic function
and {v,} its cumulants. Let F be the distribution to be approximated, f its char-
acteristic function and {«,} its cumulants. By the definition of the cumulants,
the characteristic functions satisfy the formal identity

31) 0 = exp (Zrater = v @Y w00,

If now, ¥ and all its derivatives vanish at the extremes of the range of x and
exist for all z in that range, then by integration by parts, (it)"¥(¢) is the chaxr-
acteristic function of (—1)¥"(z). Introducing the differential operator D to
represent differentiation with respect to z, the formal identity corresponds term-
wise in any formal expansion to the formal identity

32) P = exp (S5 — 1) 2 9.

One can formally and apparently construct a distribution with prescribed cumu-
lants by choosing ¥ and formally expanding.

The most important developing function ¥(x) is a normal distribution and with
that choice, the formal expansion had been given earlier by Chebyshev [13],
Edgeworth [27] and Charlier [10].

Chebyshev and Charlier proceeded by expanding and collecting terms accord-
ing to the order of the derivatives. The resulting expansion is most commonly
known as the Gram-Charlier A series and is identical with the formal expansion
of F — ¥ in Hermite orthogonal functions. It is a least squares expansion in
derivatives of the normal integral ¥ with respect to a weight function which is
the reciprocal of the normal density ¥’. In this form, the expansion was de-
veloped and studied earlier by Chebyshev [12], Gram [41] and others.

The A-series converges for functions F whose tails approach zero faster than
¥ (see Szégo [63] or Cramér [19]). Convergence obtains for all distributions on
finite intervals but few others of any interest. The developing normal distribution
is usually chosen to have the same mean and variance as the given distribution F.
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This choice has no effect on convergence, though it clearly has a tremendous
effect on the quality of approximation by the first few terms. Altogether, the
convergence properties are of little value and the importance of the Gram-
Charlier series arises from its properties as an inferior form of an asymptotic
expansion.

The preferable development was done by Edgeworth as an improvement to
the central limit theorem. Let the distribution to be approximated again be the
distribution F, of the standardized sum Y, (eqn. 2.1) of independent random
rariables. Take the component random variables identically distributed with
mean p, variance ¢, and higher cumulants {o"\, ; 7 = 3}. Take the developing
function ¥ to be the unit normal distribution function ®. Then the cumulant
differences in the formal identity (3.1) are

Ki— v =0=k — v

— - Xr
K3 Y3 = i1 r

3.

(1%

The Edgeworth series is obtained by collecting terms in the formal expansion
according to powers of n, thus yielding a formal asymptotic expansion of the
characteristic function of the form

fn(t) = (1 + z‘:: P’(it)>e-—ﬂ/2

nr/2

with P, a polynomial of degree 3r with coefficients depending on the cumulants
of orders 3 through r 4+ 2. If powers of ® are interpreted as derivatives, the
corresponding distribution function expansion is
e~ P.(—®

Fu(2) = @(x) + 22 Lﬁ(i))
1 n
It is important to note that every term beyond the normal approximation can
be expressed as the product of the normal density and a polynomial in z. The
first few terms of the expansion are:

M2 1 [m *¥(@) , Aa® (x>] + .
6vn Tal 2@t o
In 1928, Cramér [20] proved the series valid uniformly in z, but gave no explicit
bounds on errors. Apart from requiring that one more cumulant exist than used
in any partial sum, the proof assumes that the characteristic*function h of the
component random variables satisfies the condition

(3.3) lim sup | A(f) | < 1.
[t]>00

This is satisfied if the component distribution has an absolutely continuous part.
It is not satisfied for discrete distributions and the result then is generally not
true.
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The elementary proofs given later by Esseen [30] and Hsu [45] use the method
developed for the central limit theorem bound and amount to showing that

@) — gai® ], (1
[ 0(?)

with T = ¢(n!)* and with g, .(¢) the expansion of the characteristic function
through ferms of order (1/7')*™ and using cumulants through order & + 1.
Using a Maclaurin’s expansion of the characteristic function, the integral up to
n! is easily bounded by (coBr+2)/ T with the unknown distribution entering only
through the absolute moment or order & + 2. An efficient determination of
¢. would be extremely difficult.

Using the Cramér condition (3.3) on the characteristic function, the integral
from n! to T is easily bounded by ¢;/7T. But by this evaluation, the resulting
bound c¢; depends on the unknown distribution through its characteristic function
and this even more seriously prevents the determination of any numerically
useful bounds.

Cramér [21] also proved the validity of the asymptotic expansion for sums of
non-identically distributed random variables. The conditions are somewhat
more restrictive. Cramér [20] showed that the termwise differentiated Edgeworth
series is a valid expansion for the density function, provided the component
random variables have a density function of bounded variation. Gnedenko and
Kolmogorov [40] weaken this condition. They also present most of the work of
Cramér and Esseen discussed here.

Esseen [30] studied the expansion problem when the Cramér condition (3.3)
on the characteristic function is not satisfied. The error in using the first ap-
proximation

_ )\3 ‘I’(a) ( IIJ)

Tovn
is of smaller order than 1/n! provided only that the third moment is finite and
that the distribution is not a lattice distribution. If the distribution of the com-
ponent random variables is lattice, i.e., takes all probability on a set of equally
spaced points, a different expansion is available. The Edgeworth density function
expansion is, except for a constant multiple, a valid expansion for the jumps
at each possible point. The usual Edgeworth expansion for the distribution
function can be modified by the addition of terms (discontinuous) so that the
resultant expansion is a valid expansion, uniformly for all z: The corrections,
when evaluated at the points half-way between possible values of the stand-
ardized sum, have no effect of order 1/a}, but do for all higher orders. Thus, for
example, the usual Edgeworth series when applied to a binomial or Poisson dis-
tribution and evaluated only at half-integers is correct through order 1/2} but
needs a correction of order 1/n.

Since the Gram-Charlier A series is only a rearrangement of the Edgeworth
series, its asymptotic properties follow directly. Of course, many higher terms
must be used before all terms of the desired order are included. What makes the

®(x)
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Gram-Charlier arrangement so bad in practice is that these extra terms involve
cumulants of much higher order.

Multivariate Edgeworth series can be developed in complete analogy with
the univariate expansions. Other than bounds for the normal approximation
error, little theoretical work has been done with the multivariate expansions.
Specifically, the multivariate Edgeworth series for sums of independent random
variables has not been shown to be a valid asymptotic expansion. This would
seem the most serious gap in theoretical knowledge of asymptotic approximations

4. General Edgeworth and Cornish-Fisher series. Many sample functions
have distributions asymptotically normal for increasing sample size, but not all
admit asymptotic expansions beyond the normal distribution term. Expansions
can be constructed for functions, such as most functions of sample moments,
behaving asymptotically as sums of independent random variables. To illustrate
with the simplest example, let H(X) be an arbitrary function, not depending
on 7, of the sample mean in a sample of size n from a population with cumulants
{u, o", a'\,}. The distribution of

_VAEE) — HG)
Ve = =0

is asymptotically unit normal, provided that H'(u) 0 and H is smooth enough
at u. (The assumption H'(u) % 0 and its equivalent for functions of several
moments rule out many interesting functions for which no general theor; of
asymptotic expansions is known.) Assume H’'(u) > 0. Then the distribution
function K, of W, is given by

K.(z) = PW, £ 2)

g

(4.1)

in which I denotes the uniquely defined function inverse to H near u and all
other solutions of the inequality are easily shown to be of higher order than
any power of 1/n. If the population satisfies the Cramér condition (3.3), the
standardized mean has a valid Edgeworth expansion so that

5= P(—3(w))

K.(2) = ®(u) + ; + 07

nr 2
in which

’ZW(I[H@H_}B]_M)

u
o

Further, each derivative & (u) can be expanded in a Taylor series in 1 /n’ about
n = o, evaluating the derivatives of I at H(u) from the derivatives of H at p.
If H is smooth enough at u, and with some natural rearrangement of terms, a
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valid asymptotic expansion of the same general form as the Edgeworth series
for sums is obtained. I call these series also Edgeworth series.

The construction would extend directly to the multivariate expansion of r
functions of r sample moments if only the multivariate Edgeworth expansion
for sums were valid. The expansion for the distribution of a single function of
r moments could then be easily obtained as a marginal expansign.

I know of no literature on any of these expansions for general functions. Hsu
[45] and Chung [17] proved respectively that the sample variance and the one
sample f-statistic have valid expansions. (There are several errors in Chung’s
explicit expansion—equation (35).) Hsu proved several results needed for proofs
for functions of any number of moments. But a very large amount of work was
involved in completing the proof for each separate function. Hsu stated that
students were working on other sample function, but I know of no others pub-
lished except for a statement by Sun [62] that he had proved the result for the
third moment about the mean and a proof by Hsu [46] for the expansion of the
distribution of the ratios of two independent means.

A general result would be highly desirable or else an example of a statistic,
smooth enough at the population value, but for which the series is not a valid
asymptotic expansion to show that the construction described is not valid as
generally as appears plausible.

The expansions can be obtained formally by a different approach using the
Charlier differential series identity (3.2) and the classical so-called §-method for
calculating moments. Formally compute the moments and from them: the cumu-
lants of the statistic W, of equation (4.1) by expanding H(X) in a Taylor series
in X — u and integrating term by term. The formal cumulant expansions for
W, are of the form:

mwg=o+0(l)

Tn
MWQ=1+OG)

n
(W, = 0" r> 2

so that the leading terms behave exactly as for standardized sums of random
variables. If these formal cumulant expansions are substituted in the symbolic
identity (3.2), using the unit normal as the developing function, and if the ex-
ponential operator is expanded formally and terms collected according to powers
of n!, the same expansion as previously constructed is obtained.

This latter method is almost always easier to use in practice, especially for
functions of several moments. Most applications of Edgeworth series use this
method or some slight variation of it, such as using exact or valid expansions for
the moments, which are frequently obtainable.

The 8-method is often used to obtain formal asymptotic expressions for mo-
ments and cumulants of statistics. A few examples of such use—for various pur-
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poses—will be found in references [25], [26], [42], and [76]. The §-method moment
expansions are known to be valid in some special cases. If a function of sample
moments is uniformly bounded by a power of the sample size, is smooth enough
at the population moments, and if enough population moments (far more than
apparently needed) exist, then the expansion can be proved valid by extending
Cramér’s proof [23, p. 354] for the leading terms of the mean and variance.
Under severe distributional assumptions (for example, for functions of (normal
theory) mean square variates—see section seven), the method can be shown valid.
But there are also examples where the method is not valid, and a wide range of
applications in between. However, as long as the moments are used only to
get distribution approximations, it is generally plausible and sometimes known
to be true that the distribution approximations are valid whether the moment
expansions are or are not.

In many statistical applications, quantiles of a distribution are needed. From
an Edgeworth expansion of a distribution function F, , as asymptotic expansion
for a quantile z of F, in terms of the corresponding normal quantile z can be ob-
tained by formal substitutions, Taylor expansions, and identification of co-
efficients of powers of n. The expansion is of the form

_ Siz) | S , .
r=z-+ Vi + v +
in which the {S;} are polynomials. The reverse expansion
_ Ri(z) R2(«’U)
(4.2) z-—x+\/ﬁ+\/ﬁ+

is obtained as an intermediate step and is often useful in itself, giving an asymp-
totic transformation of a variate z with distribution F, into a unit normal deviate.
An expansion of the type (4.2) is often called a normalization formula. Numeri-
cally it serves the same purpose as the Edgeworth expansion but is often more
convenient and possibly more accurate.

Cornish and Fisher [18] carried out these inversions, treating each cumulant
of F, according to the order of magnitude of its leading term as determined by
the 6-method. For the expansion of z in terms of 2, they table, for seven common
probability levels, all the polynomials needed to obtain all terms through order
1/n%, that is, using up through the sixth cumulants.

For an absolutely continuous distribution, both of the inverted series, which
I will call Cornish-Fisher series, can be proved to be valid asymptotic expansions
for every probability level, whenever the initial Edgeworth series is valid. I
know of no published proof of this, though Wasow’s [73] proof of the invertability
of a special class of distribution expansions can be modified and extended to
work here.

The Edgeworth and Cornish-Fisher approximations have some faults which
show up in the tails of the distribution. The distribution function approximations
are not probability distributions and both monotonicity and the 0-1 range prop-
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erty are violated in parts of one or both tails. Similarly the quantile approxi-
mations are not always monotone in the probability levels. These troubles don’t
contradict the uniform validity of the Edgeworth expansion because it only
refers to the absolute difference of two functions each approaching zero (or one)
and not to the relative error. The validity of the Cornish-Fisher series is uniform
for the probability level in each interior interval but the error increases as the
level approaches O or 1.

Cramér [22], and others [15], [32], [61] in important work have investigated
the relative accuracy of the central limit theorem approximation, but for the
Edgeworth and Cornish-Fisher approximations, the importance of these tail
difficulties at present must be determined from empirical evidence. Some differ-
ent expansions constructed to eliminate the tail difficulty will be discussed in
section six for several specific distributions.

There have been only a few numerical evaluations of the accuracy of these
approximations, largely because of the difficulty of obtaining exact values for
comparison.

In a major piece of unpublished work, Teichroew [65] has used the terms of
the Cornish-Fisher series through n™° to evaluate the quantiles of the normal
theory chi-square distribution for a variety of degrees of freedom and probability
levels. He has found that the accuracy of this approximation for four degrees of
freedom, provided that the probability level is not in the extreme half of one
percent, is at least three decimals with the accuracy improving rapidly as the
degrees of freedom increase. Even for two degrees of freedom, the series is ac-
curate to two decimals except in the extreme one percent. The series for the x*
is the most accurate application known.

For the standardized sums of samples of size ten from four symmetrical non-
normal populations, Chand [9] compared the exact quantiles with the Cornish-
Fisher approximations through orders 1/n and 1/n’. The latter gave better than
three decimal accuracy and the former better than two decimal accuracy for
probability levels ranging from } % to 25%.

Many more empirical studies of accuracy would be desirable including studies
of the comparative accuracies of the Edgeworth expansion and the normaliza-
tion expansion (4.2).

b. Investigations of robustness. Asymptotic expansions play an important
part in investigations of the effect of deviations from normality (or other popu-
lation) on the size and power of various tests. I use the null distribution of the
one-sample #-statistic as an example. Denote by F, and G, respectively the
general and normal population distributions of the #-statistic in samples of
size n. Formal Edgeworth expansions of F, and @, can be obtained and for the
t-statistic (but not otherwise) these have been proved valid Since the difference
F.(x) — G.(z) here is of interest, the difference of the two expansions provides
a valid asymptotic expansion for the deviation in terms of powers of 1 /nt and
of normal derivatives.

Effectively, the original Edgeworth series for F, has been replaced by one
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in which the leading term is G, (assumed known). The approximations to F,
are then exact for a normal population and greatly improved for “near normal”
populations. Similar modifications of successively higher order terms might be
expected to give improved accuracy, especially for small n. The possibility
(quite generally) of using expansions

F.(z) ~ 2_:0 Bi(z)H(z, n),

asymptotically equivalent (at every partial sum) to
Fal@) ~ 2 Ax)n™™"
i=0

is a powerful tool to permit improved acsuracy of expansiqns. There is no theory
on how to choose good functions H;, but useful choices can often be made on
heuristic grounds or on the basis of a few computations.

In the #-statistic example, the expansion of F, in terms of successive deriva-
tives of the normal theory f-distribution might appear natural. Geary [39] ob-
tained such an expansion by formally applying the Charlier differential series
(equation 3.2) with G, as the generating distribution, collecting terms according
to their orders or magnitude. The result can be proved asymptotically equivalent

‘to the Edgeworth expansion and hence valid. Geary applies the same formal
method to an F-statistic (though even the formal derivation of the Charlier
identity is not valid) and Bartsch [3] applies the method to various
-type statistics.

In the most substantial investigations of this kind, Gayen ([35], [36], [37],
[38]) has obtained a different asymptotically equivalent expansion for the dis-
tribution of ¢ (as well as for two-sample ¢, the variance ratio, and the correlation
coefficient). He has given extensive tables and graphs so his expansions are far
more easily used than any alternative expansions. The expansions possess also
a different asymptotic property.

There seem to be no comparisons of the quality of the several approximations.
Seemingly, the only feasible method for proving the validity of any of these ex-
pansions is to show equivalence to the Edgeworth series and to prove it valid
(if possible). This method would never lead to useful information on accuracy
since the Edgeworth series is surely much less accurate than these modified
expansions.

Although Gayen’s expansions are asymptotically equivalent (in n) to the
Edgeworth and other series, they have an additional property, not shared by the
other series mentioned, of being a formal asymptotic expansion for any fixed
finite n as the population “nonnormality” approaches zero. This is made definite
by assuming that the population distribution itself can be expressed by an Edge-
worth expansion in some unknown parameter m (i.e., that the population values
themselves are the means of m independent “elementary errors’”). The Gayen
expansion is a formal asymptotic expansion in powers of 1/m? (m does not need
to be known to write down the series). This approach seems conceptually more
relevant to robustness problems than asymptotic expansions in the sample size.
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Theoretical study of the properties of these series would be desirable, as would
some comparative computations on various approximations.

6. Quantile expansions for specific distributions. The expansions that have
been considered have made use of only the moments or cumulants of a distribu-
tion. Many useful asymptotic approximations have been developed from analytic
expressions for the density function of the distribution to be approximated. As
practically the only distributions known analytically, normal theory distributions
are the object of most of these expansions. However, the normal distribution
does not here play the central role that it does in the Edgeworth theory.

Consider first the expansion of a quantile of one distribution of a convergent
sequence in terms of the corresponding quantile of the limiting distribution or the
reverse expansion. When the normal distribution is the limiting distribution, the
results are necessarily exactly those given by the Cornish-Fisher expansions but
use of the explicit analytic form greatly simplifies the derivation of higher order
terms and proofs of validity.

Let {f.} be a sequence of density functions which converges to a density
function . The desired expansions are found as the solutions either for £ or for z
-of the equation

[ ; falz) dz = [ : Y(z) dz

or equivalently of the differential equation
dt
(6.1 70 & = 4o

In 1923, Campbell [8] obtained a formal series solution of the differential equation
for the quantiles of the x* distribution in terms of those of the normal distribu-
tion. He carried the series to ten terms beyond the normal approximation.
Teichroew [64] has tabled these polynomial terms and used them for the com-
putation described in section four.

Hotelling and Frankel [44] followed the same procedure to get four correction
terms for the transformation of a Student’s ¢ variate into a unit normal deviate
and also for the transformation of a Hotelling’s 7" variate into a chi-square
variate. They proved the validity of the expansions.

Wasow [73] has given conditions on a sequence of distributions with a normal
limiting distribution such that these expansions can be validly obtained by the
natural formal methods, and further that each term will be a polynomial in the
variate.

The accuracy of these expansions decreases as the probability level becomes
more extreme. Consider the transformation of Student’s ¢ to a normal deviate.

It has the form
z=¢[1+P2(t)+f‘_(Q+ ]

n n?
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in which the {P;} are even polynomials of the indicated order. Hotelling and
Frankel observed empirically that the series is of no value for # greater than n.
Clearly, the expansion cannot be valid for ¢ of the order of n! since, from the
order of the polynomials, no term would approach zero with increasing n. The
usefulness of the series for small n is severely limited.

To obtain expansions useful in the tails of the distribution, Teichroew [66]
has considered a limiting process in which ¢ and z both approach infinity with n.
His results are rather spectacular.

Set ¢ = bn! + u with b a constant for later choice and the variable u to be kept
finite. Similarly, set z = cn! + v. The choice ¢ = [log (1 + b%)"] is forced by ex-
amining leading terms in the differential equation (6.1) relating z and ¢. The
equation becomes an equation relating v and v and a formal expansion of » in
terms of u is easily, though tediously, obtained:

v = ) +%§’§+Bif§‘-)+
The {p.(u)} are polynomials of the indicated order, respectively odd and even.
The dependence on b is very complicated. The whole procedure can be reversed,
treating c as fixed and getting a series for « in terms of v. In actual use, with a
given value of ¢ and n, b would be chosen so that « is made small or zero thus
keeping the polynomial terms small. If  is made to be zero, all odd order poly-
nomials vanish. For 1 degree of freedom and a selection of ¢ values corresponding
to tail probability levels ranging from 1 to 10~°, choosing b so that u is zero and
using the first five non-zero terms, the approximation gives the equivalent normal
deviate to better than two decimal places. The ordinary series is totally worthless.
The first term is of interest. Taking u = 0, b = ¢/2}, it is

20 = Vnlog (1 + t2/_n_).

This reduces to the usual normal approximation as n approaches « with £ fixed.
By direct analysis, Wallace [72] has shown that for all# > 0 and n = 1, it satisfies
the bounds

3

- <z—2=0.
vn ~ -

Knowing that the first term is correct to the indicated order, the entire ex-
pansion can then be shown to be a valid asymptotic expansion, uniformly for u
in any finite interval. No bounds are known beyond the first term.

Teichroew has treated the x® distribution in the same way with the same
spectacular results. Wallace has obtained a bound as with ¢ for the first term
approximation in the upper tail.

The method is applicable to many other distributions but I know of no further
applications.
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7. Laplace’s method and studentization. Many calculations in statistics can
be reduced to the evaluation of the expected value of some function of a mean-
square variate:

G = e [ f@)0"P76™" i,
0
The integral here is a special case of the integral

fg(u)e——nh(u) du.

Its asymptotic evaluation by Laplace’s method is very important in the theory
of asymptotic expansions. If g and & are well-behaved functions, then for large n,
the integral except in the neighborhood of the minimum of 4 is relatively negligi-
ble to an exponential order in n. Valid asymptotic expansions can be obtained.

This integral evaluation is an important part of the method of steepest descent
(128], p. 38) in which the path of integration, considered in the complex plane is
chosen to pass through a minimum of 4 and in such a way that the absolute value
of the exponential ¢™® falls off most rapidly from its maximum. The integral
is then expanded by Laplace’s method.

The method of steepest descent (and not just the Laplace integral evaluation)
has been used by Daniels [24] to obtain some interesting expansions that gen-
eralize the Edgeworth expansions for sums. They have some superior properties
but make use of explicit knowledge of the moment generating function.

In the expansion of E[f(v)], a simple application of the §-method is much more
convenient than a straight application of Laplace’s method (because of the
constant ¢, in the expansion for E[f(v)]). Expand f(v) in a Taylor series about the
population value of v (here equal to one) and integrate term by term. If the ex-
pectation exists for sufficiently large n and if f has bounded derivatives near one,
then the expansion obtained is valid. Since the moments of v about its mean
involve several powers of 1/n, some rearrangement is needed to get an expansion

of the form

B0 ~ T4

But for this last step, the development would have gone as well using a root
mean square variate s = ! as argument in the Taylor expansion and integration.

This expansion method and its natural extension to functions of several inde-
pendent mean square variates are widely applicable in statistical work. They
are unusually tractable for obtaining bounds on errors of approximation, but I
am not aware of any such bounds.

One important application is to finding the distribution function H of a
studentized statistic ¥/»! in which ¥/¢ has the known distribugion function G
and v is an independent mean square estimate of the squared scale factor o

Then }
v - 5[o(=0)]
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and its expansion is obtained as described. The terms in the expansion are all
linear functions of the unstudentized distribution function G and its derivatives.
The expansion was first obtained, in a different way, by Hartley [43]. Moriguti
[56] developed the result as given here, except that he used the root mean square
as argument with a consequent unnecessary complication. (His error bound
(3.2) is incorrect).

Examples of the use of the expansion to get distributions of various studentized
statistics are found in references [34], [58], [59], [60], and [69]. Ito [47] develops
an example of a generalization to multivariate studentization.

8. The Behrens-Fisher problem. Another application is part of the develop-
ment of what is to me the most interesting use of asymptotic expansions: the
Welch solution for the Behrens-Fisher problem and the various extensions and
analogous treatments of problems like finding confidence limits for variance
components or for weighted averages when the weights must be estimated.

There have been a large number of papers attacking these problems, frequently
repeating the same work ([1], [16], [57], [48], [49], [50], [67], [68], [71], [75], and
others). Most of the work has consisted of formal expansions with no proofs
that errors are really of their apparent order of magnitude and there has been
some confusion as to what the expansions do provide. There have been a very
few computations, and these very difficult, that indicate the accuracy of the
approximations.

I consider in some detail a reduced form of the Behrens-Fisher problem. Let
Y be normally distributed with mean u and variance ) \io: with {A;} known
positive constants and with the unknown variances o> estimated by independent
mean square variates s; respectively with n; degrees of freedom. The problem
is to find a test of the hypothesis 4 = 0, which has significance level « identically
in the parameters o7 .

The problem is already reduced to the sufficient statistics. Restrict it further
by considering only one-sided tests of the form: reject if ¥ > h(si, a, s, ns)
with & chosen so that P(¥ > h(s’)) = a. The Welch solution consists in an
expansion

(8.1) h(s") = ho(s®) + hu(s?) + ho(s®) + - -

in which h(s®) is of order n™* in the degrees of freedom.

To my knowledge, it is still not known whether a non-randomized similar
level « test exists. If there is no function h, the asymptotic expansion (8.1) cannot
be valid. But the expansion is still of value because it provides tests that are
asymptotically similar, that is, such that

P (Y > ;1 h,-(sz)> = a+.0@n7).

This interpretation of the asymptotic property was not clear in the original
papers and was the source of confusion. From the large sample result that
Y/(3_\ish)} is asymptotically normally distributed the first term must be ho(s®)
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= 2(2_\is})? with 2 the level @ normal quantile. Further terms are determined
successively so that

r(rs% h) = 1= at 0,

for getting several terms the formal operator formula given by Welch is probably
the most efficient procedure. The work is straightforward but Aspin [1] reported
that 100 pages of detailed algebra were required to determiine theé term h, .

I take a method that illustrates how a proof of validity could be given, but
determine only one term. Suppose first that hy(s*) is any function of the variances
such that it and all its partial derivatives through order two are of order 1/x.
Let Q(o*) = (Z 7\,-03)* and let

w(s) = ho(s )Q (‘|;2 )hl(s:') )

P(Y £ ho(s") + m(s")) = E{®(ui(s))}.

To evaluate E{®(u:(s”))} expand &(ui(s?)) in a Taylor series in wu;(s*) — z and
integrate with respect to the distributions of the s?.

i) = 1= a + 6@BuE) — o + 42 Bu() — 2

+ €8 Bl - o + cBluts?) — o1

Each of these integrals here is of the form discussed in section seven and is
validly expanded through formal Taylor expansions and termwise integration.
Carrying out the process far enough to get all terms of order 1/n, and remember-
ing that A, and its derivatives are of order 1/n, leads to the expression

PY Sh(s) + (D) =1 -«
ha(o®) 201 { 2¢(2) [8°Q(sD) Z'e'(2) [aQ(sH T }
+ ["’(’) o T 2% 20 [ a@%?‘lz..,z t 20 [‘a<s'%>‘ ]- ]

+o($-2).

If hy is chosen to make the 1/n term vanish, it clearly has all the assumed prop-
erties.

The determination and proof of validity for each additional term is essentially
the same.

The first approximation is

Z )\% 8:
o A +2) % 0
/E s [1 + d = M’;W].
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It is particularly interesting because it is equivalent, through terms of order
1/n, to a Student’s ¢ approximation using a degrees of freedom determined by
the {si} and the {\;} that was proposed much earlier by Welch [74].

Welch (appendix to [2]) has computed the true significance levels obtained
using the expansion through k; for two variances, each with 6 degrees of freedom,
and using a nominal level of .05. He found that the variation from .05 does not
exceed .0002. This result seems quite satisfactory, but several more computations
would be helpful in view of the importance of the procedure.

The theory of the expansions used by Welch and others was given in a 1949
paper by Chernoff [16]. None of the papers written on these subjects take any
notice of the Chernoff work. He gives conditions for validity of expansions in
an asymptotic studentization procedure due to Wald. Although his detailed
results are for one nuisance parameter, he illustrates the extension to several
nuisance parameters by essentially the same construction as here indicated for
the Welch solution of the Behrens-Fisher problem.

A straightforward application of the Chernoff results yields an asymptotic
series solution for a confidence interval for a variance component v, where esti-
mates v; of ¢° + v and v; of ¢” are available. The expansion for this problem was
first developed and proved valid by Moriguti [57]. ‘

Most notable of the other work along this line is the work of James ([48],
[49], [50]), who has extended the Welch formal expansion to univariate and
multivariate tests of general linear hypotheses with unknown and unequal
variances and covariances as nuisance parameters.

9. Conclusion. I have by no means covered all the interesting and important
work on asymptotic approximations and have not even considered any non-
asymptotic approaches to approximations. I have discussed what are to me some
of the interesting problems, attacks, and results. Much more work is needed,
particularly theoretical and empirical studies of the qualities of the approxi-

mations.
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