ON MIXED SINGLE SAMPLE EXPERIMENTS!

By LeoNarD COHEN

College of the City of New York

1. Introduction and summary. William Xruskal [1], Howard Raiffa [2],
J. L. Hodges, Jr. and E. L. Lehmann [4], have shown that in certain Neyman-
Pearson type problems of testing a simple hypothesis against a simple alterna-
tive, determining the sample size by means of a chance device yields improve-
ments over fixed sample size procedures. The purpose of this paper is not only
to investigate the general problem of randomizing over fixed sample size tests
of a simple hypothesis against a simple alternative, but also randomizing over
other fixed sample size procedures in topics such as confidence interval estima-
tion, the k-decision problem, etec.

In Section 2, a fixed sample size test of a simple hypothesis against a simple
alternative is identified with an operating characteristic (o, 8, n) where o de-
notes the probability of a type I error, 8 denotes the probability of a type IT
error, and n denotes the sample size. A mixed single sample test is defined as a
sequence of quadruples.

(yi, ai, Bi, i), wherevy; = 0,2 717, = 1, where (s, 8; , :) is a fixed sample
size test and where v; is interpreted as the probability of using the fixed sample
size test (a;, B:, n:) forz = 1,2, --- . A mixed single sample test is identified
with an operating characteristic (o, 8, #) = X s—17vi(e , 8, ). For each non-
negative integer n, the class 4, of admissible fixed sample size procedures of
sample size 7 is defined in an obvious way. Wedefine A = U7_0A4; and A* as the
convex hull of A. It is not necessarily true that A* is closed. An example is given
to show this. However, it is true that the lower boundary of A* is a subset of A*
so that the lower boundary of A* determines a minimally complete class, @, of
mixed single sample tests. The tests in @ are characterized from a Bayes point
of view and a technique for constructing the tests in @ is given.

In Section 3, the technique is applied to tests on the mean of a normal dis-
tribution with known variance. It is shown that the tests in @ are either

(a) fixed sample size tests, or

(b) mixtures of at most two fixed sample size tests.

It is shown that there exists a minimal subset @ of A such that all improved
randomized procedures are of the form (a, 8, ) = (0, 1, 0) + (1 — v)
(Olo ) 080) no) or (Ol, ﬁ; n) = 7(1) O; O) + (1 - 7)(“07 60) nO); where 0 < y < 1
and where (aq , 8¢, M0) € Qo . It is then shown how to construct ®. The following
problems (of the Neyman-Pearson type) are solved:

(a) Given « and 8, how can we find the test in @ with the given « and 8?
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948 LEONARD COHEN

(b) Given « and n, how can we find the test in @ with the given « and n?
Numerical examples are worked out.

In Section 4, the technique is applied to tests on the mean of a binomial dis-
tribution. Although no general results were obtained, numerical examples of
interest are given.

In Section 5, the technique is applied to tests on the range of a rectangular
distribution (when one end point is known). It is shown that if « > 0, n > 0,
and (e, B, n) € A, then (a, 8, n) £ @. The tests in @ are characterized by a simple
equation which makes it easy to

(a) determine whether a given point (a, 8, n) belongs to @, and

(b) construct any test in @, given two of the three coordinates.

It is shown that if (e, 8, n) € 4, , then there exists a test (a, 8, n’) in @ such that
n’ = (1 — o)n. Hence, the fractional saving in the expected sample size achieved
by randomization is equal to .

In Section 6, it is shown that in tests on the mean of a rectangular distribution
(with known range), it never pays to randomize.

In Section 7, confidence intervals are evaluated in terms of confidence co-
efficient (a), expected length (L) and expected sample size (n). For the problem
of obtaining a confidence interval for the mean of a normal distribution with
known variance, “improved” randomized procedures exist and are of the form
(o, L, n) = ¥(0,0,0) + (1 — v) (¢, L', n') where 0 < v < 1 and where (o,
L’, n') is a fixed sample size confidence interval procedure. Clearly, the random-
ized procedures obtained are of such a nature that the question of confidence in-
tervals evaluated in terms of expected length and/or expected sample size is
thrown open to discussion.

In Section 8, the k-decision problem is discussed. It is shown that improvements
can be obtained by randomization.

In Section 9, the problem of applying mixed single sample tests of a composite
hypothesis against a composite alternative is discussed.

In Section 10, mixed single sample procedures are compared to Wald’s se-
quential probability ratio test in the problem of tests on the range of a rectangular
distribution when one endpoint is known and are shown to be efficient in a certain
sense.

In Section 11, the estimation problem is mentioned. It is shown that in most
practical problems, fixed sample size procedures are optimal.

In Section 12, applications of mixed single sample tests are discussed.

2. Testing a simple hypothesis against a simple alternative. Let X denote a
random variable with density function (or discrete probability function) f(x, 6).
We wish to test the hypothesis Hyp:0 = 6, against the alternative Hy:0 = 6.
In the sequel, we shall restrict ourselves exclusively to fixed sample size tests,
both randomized and non-randomized, and mixtures of such tests. Any test of
the preceding kinds will be identified with an operating characteristic (o, 8, n),
where « denotes the probability of a type I error, 8 denotes the probability of a
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type II error, and n denotes the expected number of observations. If two tests
have the same operating characteristic, they will be considered equivalent.

Let (21,22, - - - , z.) denote a sample of n independent observations on X. Let
4. denote a real-valued, measurable function of n variables whose range is the
closed interval (0, 1). The expression 8,(x;, &2, -+, Z,) is interpreted as the
probability of rejecting Hy if (21, @2, - -+, z») is observed. Let A, denote the
class of functions {8,} of the preceding type.

Definition 1. For any integer n > 0, let S, = {(a, 8, n):a = E(.| 0), 8 =
E(1 — 6. 61), 6n € An}. S, is the class of tests of fixed sample size n. We define
So={(e,3,0):0=a=1a+8=1}.

Definition 2. For any integer n = 0, let A, = {(a, 8,n):a)(e, B, n) &€ S, , and b)
there exists no other test (o, 8, n) belonging to S, with the property that o’ < a,
B’ = B, at least one of these inequalities being strict.} '
The set 4, is the class of admissible procedure based on samples of fixed size n,
and is known to be complete. See Fig. 1.

Definition 3. Let A = U7 A;.

Definition4. Let A* = {(a, 8, n):(a, B, n) = D s=0vi(cs , Bs, ns) where v; = 0,
Droyi=1,and (e, B:i,m:) e Afori =0,1,2, --- }.

v: is interpreted as the probability of selecting the fixed sample size test
(ai,B:i,mi) fors = 0,1,2,--- . A* is the convex hull of 4.

Definition 5. Let @ = {(a, 8, n):0)(, B, n) € A*, and b) there exists no other
test (o, 6/, n’) belonging to A* with the property that o’ < o, 8/ = 6, 7' = n,
at least one of these inequalities being strict.}.

The set @ is the class of admissible mixed single sample tests.

We next wish to show that @ is complete, i.e., for any test (¢, 8/, n’) not in @,
there exists a test (o, 8, n) in @ such that o = o/, 8 < 8, n =< n’, at least one of
these inequalities being strict. If, in general, A* were closed, it would follow that
@ is complete. However, A* is not necessarily closed, as the following example
will illustrate.
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Example. Let f(x,0) =1 if =X =<6-+1
= 0 elsewhere.

We wish to test the hypothesis Hyp:6 = 0 against the alternative H;:0 = 6,,
where 0 < 6; < 1. A simple calculation shows that

¢y do={(, )0 a=s(1—0)"a+pB=(>1-06)"

We define a sequence {(e , Bi , )}, where (ax , 8r, ) = (1 — 1/k)(0, 1, 0) +
(1/k)(0, (1 — 6y)%, k). Clearly limy_(c , Bi , 7)) = (0, 1, 1). However, (0, 1, 1) ¢
A*. To prove this, assume (0, 1, 1) € A*. Then, since A* is a three-dimensional
convex set, (0, 1, 1) can be expressed as a convex linear combination of at most
four points in 4, i.e., (0, 1, 1) = > i1vi(os, B:, n:), Where v; = 0,0 i=1v; = 1
and (o, Bi,n:) e Afori=1,2,3, 4. SinceZL, viB: = 1, it follows that 8; = 1
if v; > 0. However, if 8; = 1, it follows from (1) that n; = 0, contradicting the
assumption > i van; = 1. Q.E.D.

In order to show that @ is complete, we define A% = {(a, 8, n): (a) («, 8, n)
is a boundary point of A*, and (b) there exists no test (o, 8’, n’) belonging to
A* such that o’ = a, 8/ < 8, n' = n, at least one of these inequalities being
strict.}.

The set A% is the “lower” boundary of A*. Clearly, @ < A% . We shall now
prove an important theorem.

TueoreM 1. AT C A*.

Proor. Suppose (e, 8, n) € A}. Then, since (o, 8, n) is a boundary point of A*,
there exists a sequence of points {(ax, 8x, 7:)} belonging to A* such that

(Ol, 67 n) = limk—-oo(ak y ,Bk , nk)

Since A* is a three dimensional convex set, each point (ar , 8r, 1) of this se-
quence can be expressed as a convex linear combination of at most four points in
A:ie., foreach k, there exist numbers v, , i, Bir , 7w such that (ax , Bi, ) =
Dt valow , Bax, nix), where va = 0,> 41 v = 1and (an, Ba, na) €4
for 7 = 1, 2, 3, 4. Without any loss of generality, we can assume that the se-
quences {va}, {es} and {Bs} are convergent for ¢ = 1, 2, 3, 4 as k tends to
inﬁnity. Let Yi = lim;.._,w Yik y Oz = limk_.w Ok ,3,' = lirﬁkqw ,B;k fori: = 1, 2,
3, 4. Clearly, v; = 0,2 ic1vi = 1 for ¢ = 1, 2, 3, 4. Before proceeding with
the proof of Theorem 1, we prove a useful lemma.

Lemma 1. If v; > 0, there exists a number N, such that ng < N, for all k.

Proor. Since limy, 7 = n, there exists a positive integer K such that if & > K,
nr < n -+ 1. Furthermore, since limy. v = v: > 0, there exists a number K;
such thatif k > K, ,ya > %v:.Let M; = max(K, K;). Then,if k > M;, 3yna <
Z:=l Yanag = M < n -+ 1. Thus, if k> M,’ ya < 2(% + 1)/’)/.;. Then, N; =
max[ni , N, *++ Nimi , 2(n + 1)/v4] is the required number, proving the lemma.

We now proceed with the proof of Theorem 1. Consider four cases.

Casel.v; > 0,7 = 1,2, 3, 4.
Let N = max(N,, N:, N3, Ns) where N, is defined in Lemma 1. Then, since
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0 = na = N, fori = 1,2, 3,4and all k, the sequences {n.} are bounded. Hence,
for each ¢, there exists a convergent subsequence which we denote by {7}.
Let {@x}, {Ba} and {7} denote respectively the subsequences of {au}, {Bu}
and {ya} corresponding to the convergent subsequence {7y} of {na}. Let
limy e A = n; . Clearly,

(ay B, n) = hm (ak s By nk) = lim Z Yaeloar , Bax n%k) E lim 'sz(atk ) Bik n@k)

k>0 1=1 1=1 k-»>o0

= Z lim ’sz(azk ) ﬂtk ’ nﬂc) = E ‘Yz(az ,Biy nz)

1=1 k>0
Since (@i , Bix , Air) € A for all 7 and %, and since A4 is closed,

}‘im(a,-k , ﬁ-uc , Mip) = (o ,Bi,ms) e A forz = 1,23, 4.
Furthermore, sincey; > 0,7 = 1,2, 3, 4, and D _ie1 v, = 1,2 i1 vi(es, Bi , m:) €
A*. Hence (a, 8, n) € A*,

The more difficult case to prove is Case 2.

Case 2. Exactly one of the v’s is 0.

To fix ideas, suppose y1 = 0,2 > 0,v3 > 0, y4 > 0. Let N = max(N,, N;,
N,). In a manner analogous to that used in Case 1, we define sequences {@i},
{Bi}, {Aa} and {¥a} for< = 2, 3, 4. We define ne w sequences

4
ar = yu(0) + 22 Vi Qi
=

4
(1) + Z_; Y Bire

2
I

4
e = yu(0) + 22 Yir Tk

where Jy = 1 — D i—s 7a . It is easily seen that

. !
lim a; = a,
k->c0

B,

lim B

k->c0

* .. ’
lim n; < n,
k>

Since (o, , B ,nz) € A*foreachk, and since (a, 8,n) € A} , it follows that the inequal-
ity limpo nt < n cannot hold. Hence,

(e, B, n) = hm (o , B, mi) = lim Z Vir (@i 5 Bik » i)

k> =2
4
22 lim (@ , Bk, Ar) = 22 vilai , Bi, mi).
1= 1=

Using the argument in Case 1, we find that («, 8, n) € 4*.



952 LEONARD COHEN

Case 3. Two of the v.’s are 0. The proof of Case 3 is analogous to the proof
of Case 2.

Case 4. Three of the v,’s are 0. The proof of Case 4 is analogous to the proof of
Case 2.

COROLLARY 1. @ = A} .

COROLLARY 2. @ 7s complete.

Proor. Let (o, 8/, n’) be a test which does not belong to @.

Let

A(a’ﬁ’) = {(0[, B) n):a) a = a,: B = Bl and (a) :B’ n) & A*}'
Ao g1 is non-empty since (o, 8/, n’) ¢ A p). Let

= ) o = inf n’
N— N(a B (n':(a',ﬁ',n')sA(ai,p')}

Then («/, 8/, N) ¢ @ = A} where N < n'.

Note: It is possible to show that @ is complete using a different approach. If
we define S = UT_yS; and S* as the convex hull of S, it can be shown that S*
is closed. This implies that @ is complete. However, to prove that S* is closed
requires a technique similar to that used in proving Theorem 1.

TueoreM 2. If f(x, 6)) = 0 if and only if f(x, 6:) = 0, then a necessary and suf-
Sicient condition for (a, 8, n) to belong to @ is that for some non-negative a and b and
positive ¢, we have

aa+bﬁ+cn=( ,ﬂrlnirlx)p {aa’ + b8’ + cn'}.

Proor. To prove the sufficiency of the condition, we consider 4 cases.

Case1.a = 0,b = 0,¢ > 0. Then aa’ + b8’ + en’ = cn’ is minimized only
by tests (a, 8, 0) belonging to A, . However, Ay C @, proving the sufficiency of
the condition if Case 1 holds.

Case2.a =0,b > 0,c¢ > 0. Then, aa’ + b8’ + ¢cn’ = b’ + cn’ is minimized
only by the test (1, 0, 0) which belongs to 4.

Case3.a > 0,b = 0, c > 0. (Similar to Case 2.)

Case4.a > 0,b > 0,¢ > 0. Then, it is well known, and can be easily proved
that any test (a, 8, n) such that aa + b8 + cn = min g 27 - a+(ac’ + b8 + en’)
belongs to G.

To prove the necessity of the condition, we assume (e, 8, n) ¢ Q.

(i) f n = 0, choosea = 0,b =0,¢c = 1.

(ii) If » > 0, then it is well known in the theory of convex sets that there exist

non-negative numbers a, b and ¢ such that

aax + b8 + cn = min (aa’ -+ bB' + cn').

(a'B',n’) cA*
It remains to show that ¢ > 0. Assume ¢ = 0. Then

aa + b8 = min  (aa’ + b8") = 0.
A*

(a'B''n')e
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Since (a, 8, n) € @, then there exist numbers v; , a;, 8:, n; such that (o, 8, n) =
Dot vi(es , Bi, mi), where y; = 0,2 imyvi = 1, (i, Bi, i) eAfors = 1,2, 3, 4.
Thus,

4 '
aa+bﬂ=a;17iai+bz;7iﬁi= 0.

Since both @ and b cannot equal 0, either « = 0 or 8 = 0. Assume o = 0. Then,
if v; > 0, a; = 0. Using the fact that f(z, 8) = 0 if and only if f(z, 6,) = 0, it
follows that if a; = 0, 8; = 1. Hence, (o, 8, n) = (0, 1, n). But, (0, 1,2) 2@
since (0, 1, 0) is preferred. Thus we are led to a contradiction of the fact that
(e, B, n) € @. If we assume 8 = 0, we are led to a similar contradiction. There-
fore, the assumption ¢ = 0 is false. Theorem 2 is thus proved.

Theorem 2 states, in effect, that the problem of generating @ reduces to con-
structing tests (@, 8, n) which minimize the expression aa + b8 + cn for all
choices of non-negative a and b and positive ¢. The cases where either a or b is
0 were discussed and disposed of in proving Theorem 2. The main problem, then,
is to construct the tests (@, 8, n) which minimize the expression aa: + b8 + cn.
We proceed as follows: without any loss of generality we may assume that
a+b=1and writea = rand b = 1 — 7, where 0 < 7= < 1. Then, we wish
to find the tests (@, 3, ») in @ such that

mae 4+ (1 — )8 4 cn =( ’ﬂ,mi? ) [ra’ + (1 — x)B’ + en’'].
a’'fn’) e A*
Clearly,
min [ra’ + (1 — x)B" 4+ ¢en']

(a',B' n') e ar

= min
[vi,@dBimni:yi 20,280 YimL(@sBing) £ 4]
im0,1,2,0+ «
0 0 0
fr S et Q=0 B vst oL vnd
i=0 i=0 i=0
= min
[viaiBimniyi 20280 vi=L(asBini) e Al
$=0,1,2,
o0 o0
: {Eo viras + 1 — )8 + ¢ g v n,}
== |
= min (¢N + + min
Nz0 (Yeomi:Z Yini=N 7 20,2 y;=1,i=0,1,2,-+)

. i vi min [ras + (1 — W)ﬂil}) .

1=0 (aiBing) e dn,

It should be noted that the operation “min”yzo is not restricted to integral
values of N.
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From the above, it is clear that the desired minimization can be accomplished
in 3 steps, which we shall now describe in detail.

Step 1. We can, for_each n;, find the tests (o, 8, n:) belonging to A,, which
minimize the expression ra; + (1 — 7)8; . For each n;, let

R, (n) = min {ra; + (1 — m)Bi}.
[CasBs):(@sBsni)edni]

R.(n:) may be interpreted as the Bayes risk for fixed s mple-size procedures of
sample size n; where  is the a priori probability that 6, is the true parameter
and 1 — = is the a priori probability that 6, is the true parameter.

In particular,

R.(0) = min {ra + (1 — 7)8} = min (r, 1 — ).
[aB:0< ag],atf=1]

If 0 < 7w < 1, R:(0) = w. The only test (e, 8, 0) belonging to A, satisfying the
equation 7 + (1 — w)B = = is the test (1,0, 0). Similarly,if 3 < 7 < 1, R.(0) =
1 — . The only test belonging to A, satisfying the equation ra + (1 — 7)8 =
1 — wis the test (0, 1, 0). If r = %, R.(0) = 1. Then, any test belonging to 4,
satisfies the equation e + 38 = %, sincea + 8 = 1.

We note that

min [ra’ + (1 — m)B" .+ cn’]

(a’,f'\n') € A*

— min {cN + : min i viR (ns)} .

Nz0 Yins i 20T P07 i=LE Lyv i ni=N] =0
Step 2. Subject to the conditions
vz 0,8 =0,1,2 -+, > %0y, = 1,2 i0vm = N,

we can, foreach non-negative value of N choose the vi’s so that Y i viRa(n:)
is minimized. To this end, let

Re=U_ (b R, ().

Let R¥ denote the convex hull of R, and let ®, denote the lower boundary of
RY ,ie, R, = {(k,7):(a) (k,r) ¢ R¥ and (b) there exists no point (k’, ) belong-
ing to R¥ such that &’ < k, 7’ < r, at least one of thescinequalities being strict.}.

Then, to accomplish Step 2 of the minimization, given N = 0, we merely select
the point (N, r) belonging to &, . Since (N, r) is a boundary point of a two di-
mensional convex set, (N, r) can always be expressed as a convex linear combina-
tion of at most two points in R. We define

ro(N) = min {io vi R,,(ni)} .

[romisviZ0Z Ry i=LE 2yyini=N.i=012, -]
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(0O,Ry©)
1, Re ()

o 1 2 3 % 5

See Fig. 2. We note that
min  [ra’ + (1 — m)’ + en’]l = min [7=(N) + ¢NI.

(a’,B',n’) e A*

Step 3. We now wish to choose N = 0 to minimize the expression r-(V) + cN.
Since r.(N) is a strictly decreasing, convex and piecewise linear function of N,
there exists at least one value of N and at most a finite interval of values of N
which minimize r-(V) + ¢N.

It should be noted that if we are given a specific value of N, then there exists
a number ¢ > 0 such that r,(N) + ¢N = min; [r-(k) + ck]. Therefore, for an
arbitrary but fixed value of N > 0 any procedure obtained in Step 2 will be an
admissible mixed single sample test so that Step 3 is inessential in constructing Q.

We shall apply the technique in several problems in the following sections.

3. Testing the mean of a normal distribution when the variance is known. Let

@.6) = 1 1 [z — 6\

1@, _\/EmrexP T2 7 !

where ¢ > 0 is known. We wish to test the hypothesis Ho:0 = 6, against the

alternative H;:0 = 61, 6o < 6. It can be shown that for any integer n = 0,
An = {(e,8,n):ia=1—8@),8 =t —nb) for —0 <t < o},

where

t 1
®(t) = o 75; e dy

and
5=

g
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Step 1. We have already seen that R-(0) = min (r, 1 — =). For any integer
n > 0,

R.(n) = min [ra + (1 — m)g]

{(a,B):(aBn) ¢ 4,)

= mfn {wll — @] + (1 — M — V/nd)}

=r[1-a (it P+ a-na(f5- )

where ¢ = log n/(1 — x). Furthermore, the test («, 8, n) such that

wm1-a(Jh+ V%) a5 =0 (- 0)

no 2 no 2

is unique. It should also be noted that for any = such that 0 < = < 1, R.(n) is
a strictly decreasing function of n. See Figure 3.

Step 2. To accomplish Step 2 of the minimization, we consider B.(n) formally
as a function of a continuous variable n. We shall first show that there exists a
number n; = n;(r) such that R.(n) is concave on the interval (0, n;) and convex
on the interval (n;, «). To show the existence of n;, we use the identities

(a) oz — y) = oz + y),
(b) ¢'(x) = —xp(x), where p(z) = ¥'(z).
A routine calculation shows that

@

d - £ Ve
© Bilo) = 5o (\fms + —zi)

(0,R()

(LR )

l\’n
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and
” _ 2.4 2 2 W\/;Ls ‘\/’Iw
(@) Biln) = (" + dns® — 48) 163¢(\/n6+ va).
Setting R (n) equal to 0, we find that

Therefore, ’(3) gives a unique inflection point of the function R,.(n). See Fig. 3.

Since R,(n), defined in (2), is defined only for integral values of n, and since
n; in general is not an integer, we assert that there exists an integer no = no(m)
such that R,(n) is concave on the interval (0, no) and convex on the interval
(no, =). See Fig. 3. It then follows that

(1——) 0 + ¥ . N < n

(N]+1 - N)R,([N]) + (N — [NDE.(N] + 1) N > n

Thus Step 2 of the minimization is achieved.

It now becomes clear that improved randomized procedures (a, 8, n) exist and
are of the form (e, 8,n) = ¥(0, 1, 0) + (I — ¥)(a0, Bo, M) Or (a, B, n) =
v(1,0,0) + (1 — ¥)(ao, Bo, o) where 0 < v < 1 and where

r+(N) =

ne = no(m), @ = am) =1-—2a (\/_ + \/;1_4,8)’
B = fuln) = @ ( e x/ans)

for some 7 such that 0 < = < 1.
It also becomes clear that a test (@, 8, n) € 4, if and only if n = n¢(r), where
= is defined by the equation

T
3=<I><10g1 —w—@).
V/1é

This gives a complete answer to the general question of whether or not a fixed
sample size procedure can be improved upon by means of randomization.

3.1. We now consider the following problem: Given « and 8, how can we find
the test in @ achieving the given « and 8? To this end, consider twn cases.

Case 1. o < 8. Let @ = {(ao , Bo, no):no = no(w), Bo = Bo(ﬂ'), oy = 00(7;-) for
1<r<l1y.

Let (a, B, n) denote the test in @ with the given a and n.

From the discussion of Step 2, it is evident that (a, 8, n) is an improved ran-
domized procedure if and only if (e, 8, n) = ¥(0, 1, 0) + (1 — ¥)(ao, Bo, o),
where 0 < v < 1 and where (ao, 8o, 7o) € @. In this case, @ = (1 — Y)ao, 8 =
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(1,0
A

F16. 4. Shaded region corresponds to the set of (, 8) for which the admissible test (a,B,n)
is a randomized procedure; B; = {(ac, 80)i70 = 3}, Uiz B = P(Gn | a, B).

¥4+ (1= 7%)8,n = (1 — v)ne. These equations imply that a/(1 — B) = as/
(1 — Bo)and 1 — v = a/ay. The equation a/(1 — B) = ay/(1 — Bo) when inter-
preted geometrically means that the points (0, 1), (@, 8) and (a0, Bo) are co-
linear. The equation 1 — v = a/ay when interpreted geometrically means that
(a, B) is between (0, 1) and (ao, Bo)-

If (a, B, n) is not an improved randomized procedure, then

(a) By n) = 'Y(al y B1, [n]) + (1 - 'Y)(az ’ 62y [n] + 1)

where 0 £ v £ 1 and where (a1, 81, [?]) and (a2, B2, [2] + 1) € 4 and is of
little interest.

We summarize the preceding as follows: Let P(Q | «, 8) denote the projection
of @ on the (a, B) plane. See Fig. 4. It was convenient to let § = 1. If (, ) lies
on a line segment joining (0, 1) to one of the points (ao , Bo) in P(Q | @, B8), then
the test (a, 8, n) = (1 — a/a0)(0, 1, 0) + a/as(ao, Bo, mo) is the test in @ with
the given «a and 8. Otherwise, (e, 8, n) is achieved by randomizing over two fixed
sample size procedures, one in A, and the other in A (41 .

Case 2. a > (. Similar to Case 1.

‘Table (1) shows the improvement in the expected sample size N which can be
achieved for selected tests (@, 8, n) belonging to A, — @. In this case, we let
6 = .1

3.2. Consider .next the following problem: Given a and n, how can we con-
struct the test in @ having the given @ and n? We solve this problem geometri-
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TABLE 1
Sample size, #, of admissible |, Expected sample size, IV, of Percent saving
. {e t hieving |2dmissible mixed single sample| N
* # S e iven wand B E|  test achieving the given P== X1
.005 .862 221 119 46
.005 732 383 287 25
.01 732 147 84 43
.01 .463 585 574 2
.05 .687 134 123 8
.05 .868 28 20 28

v > A

F1a6. 5. Shaded region corresponds to the set of («, n) £or which the admissible test (a, 8, n)
is a randomized procedure; C; = {(aw , n0):m0 = ¢}, Uiz C; = P(Qp ’ a, n).

cally. Let P(Go | @, n) denote the projection of the set @y on the («, n) plane. See
Fig. 5. Then, draw a line of slope n/a through the origin. Determine the point
of intersection (aq, mo) of this line and P(Qo | @, n). Clearly, n/a = no/ao . If
as > a, the test in @ having the given o and 7 is the mixture

g‘ (a0 )BO ;nﬁ) + (1 - "x“) (01 1: 0)
o e}
If ay £ o, the test in @ having the given a and » is a mixture of two tests, one in
A and the other in A, and hence is of little interest.
4. Tests on the mean of a binomial distribution. Let
f(z, 0) = 67(1 — 6)"™* ifz=0,1,
=0 elsewhere, 0 < 6 < 1.
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We wish to test the hypothesis Ho:0 = 6, against the alternative Hy:0 = 6,
61 > 6, . It is known that
n+1 n+1

CAn ={(a,ﬁ,n):a = é’)’iai,3= 4\:_;7;65,

Yo= 71 =i = Yiga = ' Yapp = 0,7: = 0,
n+1
Yit1 2 O’E Yi = 1:

1=0

n i==1

=, (:L) 6 (1 — )", Bi=2 (:2) 6 (1 — )",

t=1 r=0

'i=0,1,2,---'n+1}.

Howard Raiffa [2] has pointed out that if we consider the projections of 4,
and A; on the («, 8) plane, there exists a test in A, whose operating charac-
teristic is (6, 1 — 6y, 2). However, there exists a test in A; whose operating char-
acteristicis (6o, 1 — 6;, 1). Hence (6, 1 — 6;, 2) £ Q. See Fig. 6. Furthermore,
if  is such that

x 61— )
1 - 01(1 - 01),

then R,(1) = R.(2).
B

(601' . e.z)

(26,020-6))

0,0)
F16. 6
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TABLE 2
Probability of a type IT | p 1 peres
of ¢ y of a type II error
o " error of admissible single of randomized test havi Percent decrease
sample test having the the given « and n ne

given « and #

.512 30 .029 .018 38
.361 20 112 .090 19
.098 20 .320 .286 11
.360 40 .030 .024 20

Unlike the normal distribution, there does not exist an integer no(w) such that
R.(n) is concave on the interval (0, no(r)) and convex on the interval (no(mr), «).
Rather, it was found by numerical calculation that R.(n) has many inflection
points. Thus, we do not generalize any further and present the following examples.

Example 1. Let 6, = .04, 6, = .15. Table 2 shows the percent decrease in the
probability of a type II error that randomization achieves over fixed sample size
procedures for the given o and #n. Since R.(n) was calculated for values of n
where n = 5k where k is a non-negative integer, it cannot be said with certainty
that the improvements shown in Table 2 are optimal. However, the optimal im-
provements are at least as great as the ones recorded.

Example I1. We again wish to test the hypothesis Ho:0 = 6, against the al-
ternative Hi:0 = 6; where 6y < 6, . Then, it is well known that any test (o, 8, 1)
such that

(a7 B, 1) =~(0,1,1) + (1 —7)(6,1 — 6, 1))

where 0 < v =< 1 belongs to 4, . We shall now show that if we are given a test
(a, B, 1) of the above type such that ¥y < 1 — 6,/2 then there exists a mixed
single sample test (a*, 8, 1) such that

. Y1 —a—8)

«  A-naA+B8-27)"

The expression (@« — «*)/a is interpreted as the fractional saving in a achieved
by randomization.
To prove this, consider the test

(4)

(o* B w) =2_Za_l(o, 1,0) + 57~ 5 6,1 6,2

2
+ (1 - 2—__-—"’01) (6,1 — 6:,1).
Sincey < 1 — 6,/2, the above test is a bonafide mixture. It is easily verified that
B8 = B, n = 1and that (@ — a*)/a has the value given in (4).

To illustrate the fractional saving in & which can be achieved, consider the
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test Ho:0 = .10 against H;:6 = .95. Then, there exists a test (a, 8, 1) in 4; where
(o, B, 1) = .5(0 1, 1) + .5(.10, .05, 1) = (.05, .525, 1). Consider the test

(«*8,1) = (0 1,0) +5 "5 (01 0975, 2)

1 1
+ <1 - 2_—_95> (.10, .05, 1) = <—155,.525, l).

a=ot_17
@ 21°
6. Tests on the range of a rectangular distribution when one endpoint is
known. Let

Then

f(x,0)=% ’ f0< 2=,

=0 elsewhere.

We wish to test the hypothesis Hy:0 = 6, against the alternative Hy:0 = 6,
6; > 6. It can be shown that

{(a,ﬂ,n)a— Lol ,B_i os¢<oo}
(5)
={(a,ﬁ,n):0§a§ 1,8 = (i) ¢! —-a)}.

It should be noted that Theorem 2 does not hold since f(z, 6,) and f(z, 8;) do
not vanish simultaneously for values of x such that 6, < 2 < 6, . Hence, we shall
alter our approach to generating @ by proving a theorem which will yield as a
consequence a technique for constructing G.

TueoreMm 3. If (a, B, n) € A, where a > 0 and n > 0, then (o, 8, n)2 G.

Proor. If (a, B, n) € A, , then it follows from (5) that 8 = (60/6,)"(1 — «).

Consider the test
«(1,0,0) + (1 — a) (o, (gi’) n>
1

(o, B, n")
(a, 1 - ) (gj_") a- a)n)

= (o, 8, (1 — a)n).

Clearly (e, 8, (1 — a)n) is preferred to (e, 8, 7). Theorem 3 states that all single
sample tests (@, 8, n) such that 0 < @ < 1 and n > 0 are inadmissible in the
class of mixed single-sample tests. Consequently, the class 2 can be generated
by the test (1, 0, 0) and the sequence of tests {(0, (6,/6,)", k)}, k = 0,1, 2, - -

Since (#0/6,)" is a convex function of n, it can be shown that (a, 8, n) € @ if
and only if (e, 8, n) = 7(1,0, 0) + 72(0, 00/01)k’ k) + (0, (00/01)k+1; kE+1
for some non-negative numbers v, 72, v; and some non-negative integer k£ where

Il
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n
/N
O
(0,(892)
&
1,00)
>
(0,1,0)
B
Fi16. 7

>y = 1.In fact it iseasily verified that k= [n/1 — al, n= a, v =
A—a)(n/l —a]l+ 1) —nandy; =n — (1 — a) [#/1 — ao]. See Fig. 7.
CoROLLARY 1. If (e, B, n) € An, there exists a test (o, B, n') &€ @ where n' =
1 — a)n.
Proor. From the preceding discussion, the test (e, 8, n') = «a(1, 0, 0) +
(1 — a)(0, (6o/61)", ) € @. Since n’ = (1 — a)n, the desired conclusion follows.
We note that the fractional saving in the expected number of observations ob-
tained by randomization is equal to «, ‘.e.,

n—n’_n—(l—a)n_a
n n

6. Tests on the mean of a rectangular distribution when the range is known.

Let
flz,0) =1 foe<zx<o+41,

=0 elsewhere.

We wish to test the hypothesis Hy:0 = 0 against the alternative H;:0 = 6; where
0 < 6; < 1. A simple calculation shows that

An = {(,8,n)ia=(1—08", B=0A~-6)"-10-1"
6=t=21} ={(Bn)0=2a=(1—-6)"a+8=(1—-06)"}.

See Fig. 8. Let R.(n) = minpmea, [ra + (1 — 7)8] = min [#(1 — 67,
1= —6)"1 =1 — 6;)" min (w, 1 — ). Obviously E.(n) is a convex func-
tion of n. It follows that A, C @. In other words, all fixed sample size tests are
admissible in the class of mixed single sample tests.
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n
A

“-6)92)
(00-6)22)
06,00
(016,

(1,0,0)
» o

1

0,0 Ao

‘B
F16. 8

7. Confidence interval estimation. We next wish to extend the notion of mixed
single sample procedures to confidence interval estimation. Perhaps this purpose
can best be served by an illustrative example.

Ezxample. Let X denote a normally distributed random variable with unknown
mean x and known variance ¢°. (There is no loss in generality if we assume that
o® = 1, and we shall do so for the remainder of this section.) We wish to con-
sider the problem of obtaining a confidence interval for u. The standard pro-
cedure consists of

(a) choosing a number a between 0 and 1, called the confidence coefficient.
(b) calculating a number ¢ using the equation & = 1 — 2&(— ¢).
(c) drawing a sample of n independent observations on X and calculating
X, the sample mean.
(d) making the statement tha the interval (X — t/+/n, X + t/A/n) covers
u with confidence a.
A confidence interval procedure is evaluated in terms of a triple (1 — «, L, n)
where 1 — « denotes the probability that the confidence interval will not cover
u, L denotes the length of the confidence interval and » denotes the sample size.

We will now exploit the notion of randomizing over the sample size in con-
fidence interval estimation using an approach similar to the one used in Section
2. For integral values of n = 1, we let

v

2t
A,.={(1 —o,L,n)a=1 ——2<I>(t),L=-\‘/;,0§t< 00}

e = 1~ 2w (= Vi)
We define 4o = {(1, 0, 0)}.

I
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As an analogue of the Bayes risk R.(n), we consider
R,(n) = ( min  [p(1 — ) + (1 — p)L].

1—a,L,n) e Ay,
A routine calculation shows that
R,(n) = p if0<ng2e(l — )%

= — np? 2(1 — p) np?
= 2® ( 1/ log 5o — p)2> A log 5@ =y

ifn>2r(1 — p)’p7%,

See Fig. 9.
If we treat R,(n) as a function of a continuous variable n, we find that

Ri(n) = 0 ifn<%,

rey — _ (L —p) 1 — 3(logen) . 1
R,,(n) = - 5 \/775 \/m ifn > E‘,
where ¢ = p°/[2r(1 — p)’]. As in Section 3, there exists a non-negative number
n; = ni(p) such that R,(n) is concave on the interval (0, »;) and convex on the
interval (n;, »). In fact, n; = [2r(1 — p)’]/p’¢’. Using an argument similar
to the one used in Section 3, it becomes clear that “improved’’ mixed confidence
interval procedures exist and are of the form

(Ol, L, n) = 7(07 0, 0) + (1 - 7)(0‘,; L,7 n,)y

where 0 < v 1 and (o/, L/, n’) is a fixed sample size confidence interval pro-
cedure.
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TABLE 3
Confidence Expected Length of fixed sample size |Expected length of ra i Percent d
coefficient @ | sample size » | Procedure ah::glﬁ the given c°§£“}f;g“ﬂ:2tg°£$ gr::ﬁd:re the expected length
.044 1 .110 .037 66
.392 9 .334 .329 1
.174 4 .220 .146 34

Table 3 gives some examples of admissible mixed single sample procedures and
improvements which can be obtained in the expected length of a confidence
interval if a mixing scheme is used.

Improved randomized confidence intervals are of such a nature that certain
questions are brought to mind. First, how much “confidence’” can we place in
randomized confidence intervals? It is true that a confidence interval of the form
(e, L,n) = %(0,0,0) + (1 — y)(«, L', n’) will cover u 100 a% of the time, will
have average length L and will have expected sample size n. However, if we are
given confidence interval (0, 0, 0), we no longer have confidence a that we are
covering u. On the other hand, if we are given the confidence interval
(X — L’/2, X + L'/2), we have confidence o’ > a that we are covering u.
Furthermore, if a statistician uses a mixed procedure and does not tell this to his
customers, then his customers can have confidence a—unless, of course, they are
given the procedure (0, 0, 0). (However, if we restrict ourselves to procedures
where the sample size n is at least 1, then they could still have confidence «.)
In other words, by withholding information from his customers, the statistician
gives them confidence a. By giving them information, he either reduces their
confidence to 0, or increases their confidence to o’.

This is not the only example of such a situation in statistical techmques Take,
for example, the Stein two sample procedure for finding a confidence interval
(of fixed length 1 and confidence coefficient «) for the mean of a normal dis-
tribution with unknown variance. A sample of no observations is taken and the
sample variance S} is calculated. Then, an additional n, observations are taken

where
= max<{ N, T + 17 — ny,

where d depends on « and 1. The two samples are then combined, the mean X
of the combined samples is calculated and the confidence interval <X' — %, X+ %)

is given. Now, if it turns out that the variance S* of the combined samples is
much larger than S}, one is led to believe that the second sample size was not
large enough. Thus, one’s confidence of a might be reduced, given this informa-
tion. However, if one did not have this information about S?, then one’s con-
fidence would still be . This situation is indeed similar to the preceding one.

Another peculiarity of mixed single sample confidence interval procedures is
that we get short length only when we do not cover u. This immediately brings to
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mind the question of average length as a criterion for a confidence interval
procedure. It is clear that small length is desirable if u is being covered. What
one wants when u is not covered is open to question. Clearly, we can agree that
procedures which give small length when 4 is not covered and large length when
w is covered are not desirable ones. Randomized procedures are of this nature.

8. The k decision problem. Let X denote a random variable with distribution
function F(z, 6). Instead of considering only two possible values of 6, 6, and
6, as we did in the previous section, we now consider % possible values of .
Let 6, 6, - - -, 6, denote the & possible values of 6. We assume that 6; < 6; <

- < 0. For any fixed sample size decision rule §, , based on samples of size n,
let ;(8,) denote the probability that 6; will not be selected as the true value of 9
when 6; is the true value of 6 if the decision rule §, is used. Every fixed sample
size decision rule is then identified with an operating characteristic
(1, a2, -+ ar, n) where a; = ai(6,) forz = 1,2, --- | k and where n denotes
the sample size. The classes S, , 4., 4, A* and @ are defined in an obvious way
and the functions R,,(n) and r.(n) are defined as in Section 2 where
w = (m, me, +m), 7 = 0 and Z’f_l m; = 1. We can then extend all the
results obtained in Section 2 to the k deCISIOIl problem

In the particular case

= 1 1/t -6\
F(:c,B) = f_w maexp{—é(—?) dt,
where ¢ > 0 is known, we shall show that it is possible to obtain improvements

by randomization. For each positive integral value of n, an essentially complete
class of decision rules, C,, can be generated in the following way: Let

(21, %2, ** - &) denote a sample of n independent observations on X and let
let ({,%, -+ ,t) denote a partition of the real line such that ¢ = ¢4,
t=20,1,---k — 1. In particular, {, = — e« and & = «. Then any procedure

which selects 8; as the true value of 6 whenever £,y < X < ¢; is called a mono-
tone procedure. Let C, denote the class of all monotone procedures. The class
C. is known to be essentially complete.
By definition,
k k
R,,(n) = min Z Tl = min Z i o

(ag,og, - ap)ed, i=1 (ag,ag,+,ap)eCy i=1

in St =8 (VA €79 4 o (v e = )]

(t1,89,0 0 tg—y) =1
k
E‘ \/n& Ez—l ’\/’;),5,,-_1
; [1—@(\/ d: >+¢’<\/n5z-1+ 2 ’
£ = logm*l 51.:@____%}, i=1,2 - k—1,

\/ n&o B _ —
\/n5o T3 — and /1 2

where
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Considering R,(n) as a function of a continuous variable n, we find

=2 n

” k -1 e
(b Ritn) = X 85/2 bia ( jnﬁl . + \/n5¢-1> ((iin® + 4871 n — 4£7y).

=2
For each value of ¢ = 2, 3, - - - k, the function fi(n) = 8i_n’ + 48i_n — 4£, is
a quadratic function of n. Since the only non-negative root of the equation

fin) = 0is

s s A4 Y
' 8
it follows that ,
filn) =0 if0 =n = n,
fin) >0 ifn>n;.
Then, since 8;_; < 0 for¢ = 2,3, -+, k, it follows that
Ri(n) <0 if » < min (n.)
and ‘
Re(n) > 0 ifn > max (ns)

Hence, if we let ¢ = min; (n;) and b = max; (ns), it follows that R.(n) is concave
on the interval (0, @) and convex on the interval (b, «). Clearly, a < b.

Thus, for certain values of 7y, ma, +++ 7 and 6, 6z, - -+ , O, it is possible to
achieve improvements by randomization.

9. Testing a composite hypothesis against a composite alternative. We next
wish to extend the notion of mixed single sample tests to the problem of testing a
composite hypothesis againxt a composite alternative. To fix ideas, let

(z,6) = \/;—Nexp{—-%(x: )2},

where ¢ > 0 is known. We wish to test the hypothesis Hy:0 < 6, against the
alternative Hy:0 > 6;, 6, > 6, . If we are given « and n, the “best” fixed sample
size test of level a and size n is obtained by using the best fixed sample size test of
Hq:0 = 6, against Hi:0 = 6, corresponding to the given & and n. The resultant
fixed sample size test has the desirable property that its power function P( | o, n)
tends to 1 as 6 tends to infinity.

Can we construct, for given a and 7, a “good’’ mixed single sample test of level
a and expected sample size n in an analogous way? Clearly, if the best mixed
single sample test of Hg against Hj is a bona fide mixture, it is not even true that
its power function, P(6), approaches 1 as 6 approaches infinity. For, in this case,




EXPERIMENTS 969

the fixed sample size test (0, 1, 0) will be chosen with probability A, say, where
0 < A < 1,s0 that P(6) < 1 — Aforall 6.

However, it should be noted that the fact that P(8) does not tend to 1 as 6
tends to infinity is not always undesirable for we know, in certain cases, that the
set of possible values of 0 is bounded, e.g., in testing the mean height 6 of Amer-
ican soldiers, we know that 6 < 6 feet 2 inches. Consequently, a test procedure
which does not have high power at § = 7 feet is not necessarily undesirable.

Finally, we note that if we restrict ourselves to randomizing over fixed sample
size tests of sample size n > 1, then P() — 1 as § — .

10. Comparison with the Wald Sequential Probability Ratio Test. In general,
it is difficult to compare the improvements attainable by using the Wald Se-
quential Probability Ratio Test with improvements attainable by randomizing
over fixed sample size procedures. For, every test will now be identified with a
quadruple («, 8, Es, (n), Es, (n)). Es, (n) and E,, (n) are usually difficult to
calculate. However, in the case of mixed single sample tests, Eo(n) = Eq,(n)
and do not depend on the unknown value of 6. In some special cases it is easy to
make a comparison and this we shall do.

Example.

f(x,0)=;— ' o< z<6,

=0 elsewhere.

It can be shown that if we use Wald’s test, only two types of tests are attainable.
They are the test (1, 0, 0, 0) or tests of the form

R
0’ (0_0> ’ k; _—‘0‘1_ ’
6 1— Q(_))
61
where k is a non-negative integer. However, using mixed single sample tests, we

can attain the test (1, 0, 0, 0) and tests of the form (0, (6:/6,)", k&, k) where k is a
non-negative integer, and mixtures of such tests. Since

k
lim T G 1,
o——q—»l |_1 —_ (.‘.’)
01 01
6o
Ll (01>
it is clear that if 6o/6; is close to 1, then mixed single sample procedures are

almost as good as Wald procedures.

11. Estimation. Can mixing fixed sample estimation procedures yield im-
provements in estimation techniques? If we evaluate a fixed sample size estimator
{, in terms of a pair of numbers {E[L(t., 0)], n}, where E[L(t, , )] denotes the
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expected loss if the estimator ¢, is used when 6 is the true parameter and where n
denotes the sample size, then mixing over fixed sample size procedures will not
yield improvements since in all problems of practical interest E[L(t,, 8)] is a
convex function of n. For example, if we wish to estimate the mean 6 of a dis-
tribution with finite variance o°, then, if t, = X and if L(t. , 0) = k(X — 6), we
find that E[L(t, , 6)] = k o’/n. Thus, it will not pay to randomize.

12. Conclusion. In what situations is a mixed single sample procedure justifi-
able? In order to answer this question, we must first realize that throughout this
paper, we have been judging a test 6 by its operating characteristic (o, 8, n). If
this triple is our only means of evaluating a test procedure, then it is true that
single sample procedures would not be justifiable since a sequential probability
ratio test achieving the given « and 8 would be better. However, practical con-
siderations might limit one to a single stage of sampling, e.g., in agricultural
experiments, one might not wish to use more than one stage of sampling; or, if
one is testing electric light bulbs, one might not wish to test the bulbs sequen-
tially. Other examples could be given.

One could reasonably ask why fixed sample size procedures should not always
be used in these situations. Presumably, if the experiment were a so called ‘““one
shot affair”, i.e., if the experiment were never to be repeated, then one might
reasonably insist on a non-randomized fixed sample size procedure (although, of
course, this position is not universally held). However, if one repeats the
experiment often, it would be reasonable to use a mixed sample size procedure.
To illustrate this point, consider Example II in Section 4. In this example, sup-
pose 6 represents the probability that a person who has been contaminated with
a certain disease will respond positively to a certain test and 6; represents the
probability that a person who has not been contaminated will respond positively
to this same test. Then, if several thousand people are to be classified as either
contaminated or non-contaminated according to this test, then the mixed test
(1/101, .525, 1) would be preferred to the test (.05, .525, 1) since the mixed test
will falsely classify less than 1 percent of the contaminated people whereas the
fixed sample size procedure will misclassify 5 percent of the contaminated
people. On the other hand, both tests will misclassify the same percentage of non-
contaminated people, and both procedures will use on the average of one test per
person.

At this point, one could raise strenuous objections to mixed single sample tests
on grounds similar to those raised in Section 7, i.e., if one is told which single
sample test is actually used, the conditional probabilities of misclassification are
no longer « and B. For example, consider a mixed test of the form

(e, B, n) = 7(07 L0)+ (1 -, 6,n).

Now, suppose that a person is told that he has been classified according to the
test (0, 1, 0). Such a person would of course be most unhappy. On the other
hand, if he is not told which of the tests was used, he would maintain his con-
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fidence in the procedure used. In other words, by withholding information, one can
influence a person’s willingness to accept a result. Some feel that axiomatically this
is an untenable policy.
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