ON SOME STATISTICAL TESTS FOR MTH ORDER MARKOV CHAINS!

By Leo A. GoopMAN

Universtity of Chicago

1. Introduction and summary. Certain y? statistics were defined by Good in.

[8] and he stated that there is a “‘strong analogy” between certain functions of
these statistics and some given likelihood ratio (LR) statistics appropriate for
testing hypotheses concerning the order of a Markov chain. He also indicated
that the analogy held when the hypothesis of “perfect randomness” is true.
The present author has indicated in [12] that, for the y’ statistics in [8], this

analogy (i.e., the asymptotic equivalence of the corresponding statistics) does-

not hold under some more general conditions when the “perfect randomness”
hypothesis is not true. It will be seen herein that certain functions of a modified
form of the y* statistics are asymptotically equivalent to certain LR statistics
in the more general case when the hypothesis H(P,,) that the positively regular
Markov chain (see [2]) is governed by a completely specified system P,, of mth
order transition probabilities is true. Also, certain functions of a different modi-
fied form of the ¢ statistics will be seen to be asymptotically equivalent to
certain LR statistics in the case when the hypothesis H,, that the positively
regular Markov chain is of order m is true. These results are helpful in determin-
ing the asymptotic distributions of various statistics and the null hypotheses
that can be tested with a given statistic. For example, if a given statistic @ is
asymptotically equivalent, under H(P;), to the LR statistic L for testing the
null hypothesis H(P;) within the alternate hypothesis H, , then the asymptotic
distribution, under H(P,), of G will be x* with a known number of degrees of
freedom (i.e., with a known expectation); G can be used directly to test H(P;)
within H, (if G is sensitive to these hypotheses), although the asymptotic dis-
tribution, under H; , of G may differ, in a certain sense, from that of L (see Sec-
tion 6 in [1]). However, if a given statistic AG is asymptotically equivalent, under
H(P,), to the LR statistic AL for testing the null hypothesis H; within the alter-
nate hypothesis H, (i.e., if there is an “ostensible analogy’” between AG and
AL), but this asymptotic equivalence does not hold under some more general
conditions (e.g., under H,), then AG can not be used to test H, within H, ; the
asymptotic distribution, under H(Py), of AG will be x°, but the asymptotic dis-
bution, under the null hypothesis H;, will not be x’, and furthermore the ex-
pectation, under Hy, of G can approach infinity (see [15]).

The present author has indicated in [15] that certain functions of a modified
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form of the ¥ statistics, which were investigated by Stepanow in [18] and which
are computed for a specified Py , are asymptotically equivalent, under H(Py), to
certain LR statistics, but that they will not be equivalent under H; . Although
it is stated in [18] that the results presented there can be applied to the solution
of the problem of testing the null hypothesis H, , it is shown in [15] that none
of the statistics in [18] can be used directly to test this composite hypothesis.
In the present paper, it will be seen that a statistic based on a different modified
form of ¢, as well as certain other statistics described herein, will be asymp-
totically equivalent, under Hj, to a certain LR statistic and can be used to test
the null hypothesis H; .

The ¢’ statistics defined by Good in [10] are more general than those given in
(3], [8], [18]. Besides studying the relation between these statistics and the LR
statistics, we shall also discuss certain conjectures proposed in [10] concerning
the asymptotic distributions of these statistics, which were investigated by
Billingsley [4] for the cases Ho and H; (the author mentions that a more general
result for H,» (m = 0) can be obtained using similar methods) and independently,
using different methods, by the present author [14] for the case Hn (m = 0) when
the transition probabilities are all positive (this author also mentions that a more
general result can be obtained by similar methods). The ¢’ and LR statistics de-
fined in [10] and [8], as well as some related statistics developed in the present
paper, will be generalized further herein, and the asymptotic distributions of
these generalized statistics will be investigated. This investigation leads to
generalizations of the asymptotic distributions obtained by Good (8], Billingsley
[3] [4], and the present author [13] [14], and it helps to clarify the relation between
the various statistics.

The different asymptotically equivalent forms of various statistics presented
here make it possible for the statistician to choose whichever form he finds pref-
erable both from the computational point of view and also from some other
viewpoints (see [1], [5], [11]).

2. The first order chain. Let {X;, Xa, ---, X.} be an observed sequence
from a stochastic process. It will be convenient to deal herein with a circularized
sequence of observations obtained by regarding the first observation X; as im-
mediately following the nth observations X, (see [8], [12]). In this case, the
frequency f(u,) of the s consecutive observations (i.e., the s-tuple) u. = (w,
Us, ++* ,U) in the circularized sequence will besuch that D u, f(4e) = D u, f(ws) =
f(w'—l):Wherew' = (w1, we, - , We), (w1, wa, -+ yWe1) = (Up, Uz, - ) Us) =
We_1 , and f(w,_1) is the frequency of the (s — 1)-tuple W, in the circularized
sequence. A method of modifying results obtained for circularized sequences
so that they can be applied to noncircularized sequences has been given in [12];
results for circularized sequences can not in general be applied directly to non-
circularized sequences (see [12] and Corrigenda to [8]).

The following result has been presented in [18]: Consider an observed sequence
{X1,Xs, -+, X} from a positively regular Markov chain with constant transi-
tion probability matrix P; = (p:;), where the possible states are 1, 2, ---, a.
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Let p; denote the stationary probabilities, and let k, be the number of s-tuples
that are possiblegiven P; ; e.g., if all p;; > 0, then k, = a’. Let ¢i,, = Z,, [f(u.) —
fi(w)l’/fi(ws), where fi(us) = npu,[Li=1 Pusu;,. is the expected value (asymptot-
ically) of f(u.) in the new sequence of length n given H(P;), and where the sum-
mation i8 taken over the k, values of u, where fi(u,) > 0. (The fi(u,) given above
is not the exact expected value, but is an asymptotic approximation; similar
asymptotic approximations for expected values will be used throughout). Then
(a) the statistics Ay, = ¥i, — ¥i.. (s = 2) are asymptotically distributed
(n— «) as x* with Ak, = k, — k,_, degrees of freedom (d.f.), and (b) the A%}, =
Vi, — 2¥1.1 + ¥i..2 for s = 3 are asymptotically independent and distributed
as x° with A%, = k, — 2k + ko d.f.

We shall now introduce ¢ statistics, which are related to, but different from,
the ¢ statistics. Let ¢1.. = 2 Y.y, (%) log [f(%.)/f1(t)]. Then, for s = 2,

A¢“1,,. = ¢i.t - ¢21’.'~1

= Ll,a ’

where u,.1 = (w1, Uz, * -+, %), and _f{(u.) = f(%s-1)Pu,_,u, 18 the expected
value (asymptotically) of f(u,) in a new sequence of length n given f(y,—.) and
H(P,). For s = 3,

A2¢§.c = A¢21". - A¢f,l—-l = AL],.
=22 f(u,) log [f()/Fas(us)
Ys
= Mt—z,l
where W,—s = (wy, Wy, **+ , We—s), Ps_s is the maximum likelihood estimate of

the (s — 2)th order transition probability matrix when H,_, is true (see [14]),
and foo(ts) = f(Us1)f(We—1)/f(w.—2) is the expected value (asymptotically) of
f(u,) in a new sequence of length n given f(u,—1) and H(P, ;). Let

K, =2 ; f('l_l,,) IOg f(y.),

Kiz2 = 22 f(us) log p(ua),

and
Kiy=2 Z f(w,) log np’(uy),
%1

where p(42) = Puyu, and p’(w1) = pu, . Then ¢, = K, — (s — DK1, — Kia,
A¢s . = AK, — K12, and A%, = A’K, . It can be seen that, given H(P;), the
statistics ¢}, are asymptotically equivalent to the ¢ ., , and that (a) the A¢; ., =
AK, — K15 = Ly, (s = 2) are asymptotically x* with Ak, d.f., and (b) the
A, = AL, = A’K, = M,_,, are asymptotically independent and distributed
as x* with A%, df. (e.g., see methods in [1], [4], [14]).
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Let
Gl,a = ; [f("_‘t) - f;(ya)lz/f{(yu))

and

Fa—z,c = uz {f(lh) - fa-z(ya)lz/fa—z(y’a)'

Then it can be seen (with methods in [1], [4]) that, given H(P;), the G;, are
asymptotically equivalent to L,, = A¢;,, and thus to Ayi, . Hence, the AG;, =
G, — Gy, are asymptotically equivalent, given H(P,), to A%i,. Also, the
F._z,z. ?re asymptotically equivalent, given H(P)), to M,_s, = A’;.. and thus
to A1, .

The statistics L, , are the LR statistics for testing the null hypothesis H(P;)
within the alternate hypothesis H,_; (see [2]). Although G, and Ay}, are asymp-
totically equivalent, given H(P,), to L, , it can be seen that, in the case where
H(P,) is not true, Gy, and Ay;,, are asymptotically equivalent to L, , only in the
special sense that the usual »* goodness of fit statistic for the standard test of
a simple null hypothesis concerning a multinomial distribution is considered to
be asymptotically equivalent (even when this null hypothesis is not true) to the
usual LR statistic for this hypothesis (see Section 6 of [1]); i.e., if the null hy-
pothesis H(P;) is not true, these statisties will be asymptotically equivalent only
if the true hypothesis approaches, in a certain sense, H(P;) at a sufficiently fast
rate as n — o . The relative advantages and disadvantages of L,,, Ay}, , and
G\, as tests of H(P;) will not be discussed here, since such discussions for some-
what related problems appear in [1], [56], and [11].

The statistics M,_;,, are the LR statistics for testing the null hypothesis H,_,
within H,, , and their asymptotic distribution, under H,_,, is x* with A%, d.f.
(see [8], [16]). Although A%:, and AG;, are asymptotically equivalent, given
H(P.), to M,_2,, it can be seen that the former statistics are not asymptotically
equivalent, given H, 2, to M,_2, , and their asymptotic distribution will depend
on P; (which is used in the computation of A%} , and AG,,) and on the particular
system P._, of transition probabilities that is true when H,_, is true (P:_:z can
be viewed as a particular a*~* X @' matrix of transition probabilities describing
a given Markov chain of order s — 2); e.g., for some P, that differ from P,_,,
the statistics A%;,, will converge in probability, given H(P,_,), to infinity even
though the null hypothesis H,_, is true (see [15]). Thus, the asymptotic distribu-
tion, given H,_, , of the statistics A%} , and AG, ., will depend on unknown values
of the parameters; these statistics can not be used to test the null hypothesis
H,_; in the same simple manner as when the LR statistic M,_, is used. How-
ever, it can be seen that F,_. , is equivalent, given H,_; , to M,_2, ; and thus can
be used to test H, , within H, ; (see [12], [13]).

3. The general case. Stepanow [18] mentions that, given H(P;), theasymptotic
independence of the A%}, statistics leads to the fact that the statistics AYE, —



158 LEO A. GOODMAN

AYi: (s> t = 2)are asymptotically x* with Ak, — Ak, d.f. It can also be seen,
given H, ;, that the A’K; statistics (for j = s) are asymptotically independent
(see [4], [14]); thus the AK, — AK, statistics, given H,, are asymptotically
x* with Ak, — Ak, d.f. (see [8]). To test H,, within H,_, , the AK, — AK, are
the LR statistics (see [8]). The Ayi., — AY} ,, given H,, , are not asymptotically
equivalent to the LR statistics, and can not serve as a test of H,; (see [15]).

We have that AK, — AK, = 2)_,, f(u.) log (f(we)/fe1(us)) = M.y, , where
We= (Wi, wa, W) = (Uoms1, Utz =, Us), Wem1 = (w1, We, =*° y We),
and fo1(u) = f(u)f(we)/f(wem) is the expected value (asymptotically) of
f(u.) in a new sequence of length n given f(y,1) and H(P.,). Let F,,, =
Do [f) — Fea(wa))’/Fir(ws). Then, it can be seen that, given H,_,, the statis-
tics Fi1,, are asymptotically equivalent to M, ., = AK, — AK, = A¢;,. —
At

Let

‘i’%—l,n = uE [f(l_t-) - ft—l(y'c)]z/fl—l(ym)y

where (for s > t = 1)
- U = (ul)u‘ly M )ut)7ut.i = (u‘)u‘i+1) e ,u,-+,,_1),
Ut1,s = (ui y Uigr,y =0, ui+t—2),

and
s—t+1

ft—l(%) = f(’&tt—l) ;[;Il f(yn)/f (y't-—l.i)

is the expected value (asymptotically) of f(u,) in a new sequence of length n
given f(u.) and H(P,). Then, given H,,, the statistics ¥i-1. are asymptot-
ically equivalent to

43%_1'. =2 ,,E f('y,.) log [f(y.)/fz_l(y.)] =K, — K¢y — (s — ¢+ 1)(AK1)~

Since Adi—i,, = AK, — AK,, the Ad}_y, or the AJ?_,,, as well as the F,_,.
can be used to test H, ; within H,_, .

Consider now the hypothesis H(P,) that the positively regular Markov chain
is of the tth order and governed by the system of transition probabilities P,
(see [2]). Let Priwey | wr, us, - -+, us} = Dujug--uepy = P(Ueq1) denote the transi-
tion probability that the j-th observation in the sequence will be Ueq1 , given that
the (j — 1)-th, (j — 2)-th, -- -, (j — £)-th observations were u, y Ul y U, = * ,
uy respectively, and let p’(y.) denote the stationary (absolute) probability for
w . Let ¢, = 25, f(u.) loglf(u.)/f.(ws)], where (for s > ¢ = 1) fu(us) = np’(us)
1T p. ¢ui41---ug 4. 1S the expected value (asymptotically) of f(u,) ina new sequence
of length n given H(P,). Then

A¢f,, = ¢3.- - ¢%.o—1 =2 “E FCus) log (f(%)/f:('l_lw)) = L.,
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where ﬂ(u.) = f(Ua—1)Pu,— sy ¢41---u, iS the expected value (asymptotically) of
f(u,) in a new sequence of length n given f(u,_;) and H(P,); and

A2¢?,s = Ad’%,c - A¢%.c—l = ALt,t
2 Y f(us) log [f(w)/fuo(s)] = Moo, = A1, = A%:.
Ys

Since
$te = Ki — (s — )Kue01 — Ko,
where
K1 =2 uz‘;l F(usr) log p(uesr)
Koo =22 f(u) log np'(u),
we see that

A¢t, = AK, — Ky ipa -

Let ¥i.e = 2u, [f(ws) — felw)l/fe(ws), and Gro = X0, [f(w) — fi(u)/fe(us).
Then it can be seen that, given H(P,), the Ay}, , A¢:,, = L., and G,,, are all
asymptotically equivalent, and each is asymptotically distributed as x* with
Ak, d f.

The reader will note that k, and the statistics mentioned in the preceding
paragraph depend on P,. In the case where the null hypothesis tested is H,,
the particular statistics mentioned earlier herein appropriate for such a test do
not depend on P, , but their distribution does since %, does. If the null hypothesis
to be tested is H, (and P, is not specified), then the value of k, to be used can
be estimated consistently from the observed number of ¥, where f(u,) > 0. (In
the general case where the chain may contain some transient states, but where
only the recurrent states are of interest and the transient states are not, the con-
dition f(u,) > 0 should be applied to the sequence obtained by omitting all ob-
servations before the first one that is in a recurrent state (see [4]); the recurrent
states can also be estimated consistently from the observed sequence.)

4. The distribution of the ¥? and y+? statistics. Conjectures concernjng the
asymptotic distribution of ¥% . and ¥}, were proposed in [10] and modified forms
of these conjectures were proved in [4] and [14]. We now present the following
generalization of these results:

(A) The asymptotic distribution of § ,, given H,, is w7 K,o0(x/N), where
+ denotes convolution, g(\) = A’kq41-n , and K,(x) is the x* distribution with
g degrees of freedom.

(B) Let yi2 = >, [f(us) — fF(us)l’/fF(us), where
ft*(@c) = f(yt)H::: Pujugpr-eruips

is the expected value (asymptotically) of f(u,) in a new sequence of length n
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given H(P;) and f(u:). Then the asymptotic distribution (n — o) of i3,
given H(P,), is =1 K,o)(x/\) * Kuwlz/(s — t)], where h(t) = Ak .

Statement (A) can be seen to follow from the fact that ¥}, is asymptotically
equivalent, given H,, to

8—t—1

(4:1) (ﬁf,: =K, — Kz - (S - t)AKt+l = Zl jAzK(l+l—i):
=

where the statistics A’K, (for s > ¢ + 1) are asymptotically independent (see
(4], [14]). Statement (B) can be seen to follow from the fact that ¢7 is asymptot-
ically equivalent, under H(P,), to

ofr =2 ; F(w) log [f(ws)/f# (un)]

=K, —K,— (s — K41 = bt + (s — t)A¢f.z+1

where ¢;, and A¢: .4y are asymptotically independent (see [4], [14]). We also
note that the asymptotic distribution of ¥i? (or ¢7F2) is different from that of
¥i.. ; but the asymptotic distributions, given H(P,), of Ay:, and AY7; are identi-
cal since A¢;, = ApF:.

The results presented here were for ¢ = 1. The case where ¢t = 0 can be treated
in a similar fashion (see [3], [9], [10], [14]).

b. Some generalized statlstxcs and their distributions. From (4 1) we see
that, for s = ¢t + 2, 47, and §}, are asymptotically equivalent, given H,, to

A’K, = M,,, the LR statistic for testing the null hypothesis H, within the
alternat,e hypothesis H,_; (i.e., M, = —2 log \;,,_1, where \;,_; is the ratio of
the maximum 11ke11hood given H, to that given H, ;). This relationship between
M, . and ¥t ., (and ¢} ,) does not hold for s > ¢ + 2. Also, fors = t + 1, ¢¥2 and
yi: are asymptotically equivalent, under H(P,), to A’ , = L,,,theLR statistic
for testing the null hypothes1s H(P,) within H,_,. This relationship between
L., and ¢f: (and ¢73) does not hold fors > t + l We shall now present, for
s = t + 2, a generalized statistic ¢:,., that will include both éi, and M,, as
special cases, and a statistic ¢},;, that will be asymptotically equivalent, glven
H,, to i, . Also, we shall present, for s = ¢ + 1, a generalized statlstlc of,
that will include both ¢7; and L., as special cases and a statistic 7, that will
be asymptotically equivalent, given H(P.), to ¢7>., . Finally, a generalized statis-
tic M,.,;, (different from ¢; ..,) will be presented that will include M ¢,s 48 a special
case, and the asymptotic distribution of each of these generalized statistics will
be investigated.

Let

(4.2)

Bt wir = 2 20 f(wa) log [f(ua) /fur(wa)],
‘z?.s;r = ; [f(@_ts) - ft;r(@s)]z/ft;r(ya)a
Stair = 2 22 f(wa) log [f(w) /f7,.(un)],
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and
¢t3;r = Z [f(t_t-) - ?:r(yo)]z/f:f:r(ys)’
Ys
where
8—ti—r
ft:r(yo) = f(uesr) III f(y¢+1,c+r)/f(y¢,.-+r),
fom
+ s—t—r
ft;r(ys) = f(yt+r) .;I_Il Puifrviprir Uigrqs
Uspr = (Ur, Up, *+ , Ugyr), Utt,itr = (Uitr ) Uigrp1, ** ) Uitrss),
and
Ut,igr = (ui+r y Uigr41, *°° u.~+r+¢_1) for0 £ r < s — {.

Then for r = 0,
2 12 72 _ 72 +2 +2 +2 +2
Pt air = Pt,s \"t.c;r = 'l/t.c ) ¢t,a;r = ¢t.¢ ) ta;r — Vi
forr=s—¢t—-1,
2 A9 +2 +2
¢¢1l;f = Mt.t ) 'I’t.l;r = Ft.c ) ¢t.o;r = Lt.a ’ ‘I’t.a:r = Gt.: .

Let
Miwr =2 ; Fwa) log [f () /Fecr (ua)]
and
Frur = .;V_‘, Fw) — Furwdl/Fir(ua),
where
Fee@s) = fUea)f(Wesr40)/f(we),
Wetrer = (W1, Wa, **+ , Wetr4r) = (Uamtr , Ustrpr, =+ * 5 Us),
and

we = (W, W, , W) for0<r<s—t—2.

Then forr =0, M, = M;,and Fyp;p = Fip jforr =s—t — 2, My 0sr = My,
and F;,, = F,,, where F,, is F,, computed for the sequence {X,, Xp_1, +-,
X,} circularized rather than for the sequence {X;, X, , --- , X,}. The statistic
M, (or Fy,.,) can be seen to be the sum of the LR statistics (or the goodness
of fit statistics) for testing “independence’ in each of k. ‘“‘contingency tables”
(i.e., M., is the product of the ratios of the maximum likelihood given in-
dependence to that given ‘“nonindependence” in each ‘“‘contingency table”
when normed In the usual way; viz., —2 times the log of this product) obtained
by “splitting” each s-tuple y, intoa (s — t — 1 — r)-tuple (w1, Uz, - - - , Us—t—1-r),
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a t-tuple (We—t—r , Uo—t—r41, "+ , Us—r—1), and a (1 + 7)-tuple (Ue—r , Usrp1, =+ - ,
u,); for each t-tuple a ‘““contingency table” can be formed where the “expected
value” of the observed cell entry f(u,) is f:.,(4,) under the assumption of in-
dependence in the table (see [13], [14]).

We shall now present simple derivations for the asymptotic distributions of
the generalized statistics using a similar approach to that described in Section
4. We have that

s—t—1

‘ﬁf.t;r =K, — Kipr— (s =t = 1)AK ;41 = Z; d(j)AzK(c+l—:D
=

where
_ for0<j=<s—t—r
@) {(s—t—r) fors——t—rfyfs—t—l
Therefore, the asymptotic distribution (n — ) of ¢} ..., given H,, is

s—t—1 s—t—r—1

x:I K,nlz/dN)] = 7:1 Kooy (@/N) * Knan—awlz/(s — t — ).

Thls will also be the asymptotic distribution of §; .., , under H, , since ¥, s and
@t .;r arTE asymptotically equivalent under H, .
By a similar approach, we see that

8—t—1

Mt,a;f = Kc - Ka-—l—r - (Kt+l+r - Kt) = Zl C(j)AzK(,.H_,) y
=
where
J for 0 = 7 =
c(j) = <o forv =j<s—t—1
(s—t—13 fors—t—v=<j<s—t—1,

and » = min[r 4+ 1, s — ¢ — r — 1]. Therefore, the asymptotic distribution
(n — «) of My, (and F,,,), given H,, is

8—t—1

K,o[z/c(V)]

(see [14]).
We also see that

¢:f.f;r = Kc - KH-r - (3 -t — T)Kt,t+1 = $f,a;r + (S -t — T)Ad’f,t-}-l .
Therefore the asymptotic distribution of ¢rs;» (and ¥i=,), given H(P,), is

s—t—1

K,olz/dN)] * Kuylz/(s —t — 7))

8—t—r—1

= 7\:1 Kﬂ()\)(x/X) * K}.(H_,.)[x/(s -t - 1’)].
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If P, is not completely specified but is a function P:(«) of a vector parameter
a= (a;,as, * -, a,) that ranges over an open subset of v-dimensional Euclidean
space, and if this function satisﬁes certain regularity conditions (see [4]), then
it can be seen that the statistic ¢72..(&) (or ¥ix-()), obtained by replacmg P,
by its maximum likelihood estimate P.(&) in the computatlon of ¢r.a:r (OF Y7 a:r),
will have the same asymptotic distribution as ¢z, except that the degrees of
freedom A(¢ + r) should be replaced by hA(t + r) — v. If P, is the transition
probability matrix for a completely unspecified positively regular {th order
Markov chain, thenv = Ak,yy = h(t), ¢rair(d) = ¢t.ur , Yiosr(@) = Pt.0r, and
the asymptotic distribution, under H,, of these statistics was given earlier
herein. This result is closely related to and generalizes the asymptotic distribu-
tions in [4} forr = 0and s — ¢ — 1 when ¢t = O or 1.

This investigation of the asymptotic distributions of various generalized
statistics, under particular null hypotheses, indicates that each of these statistics
is asymptotically equivalent (under a particular hypothesis) to a Weighted sum
of the LR statistics A2K. y AKo 1y ooy A’Keyey Adtea (OF Adti41(d), where
é:.041(6) is defined as ¢, t+1 wlth P, replaced by P:(&)). The particular generalized
statistic that will be appropriate for a given problem will depend in part on the
appropriate weighting of the LR statistics, which will in turn depend on the
specific null and alternate hypotheses considered (see [4], [14]).

In closing, we point out that the asymptotic mean values of ., and
My under H, , and of éi2., under H(P,), can be computed directly by reference
to the decomposition of the various statistics in terms of the K’s. When all transi-
tion probabilities are positive, these mean values are a‘*'(a®™*" — 1) — (s —
t — r)a (@ —1),a" (@ — 1)@ — 1), and @'V (@™ — 1) for drair, Miair
and ¢rs:s , respectively, and they can be given some interpretation in terms of
the asymptotic mean values of certain corresponding LR statistics computed from
a set of @' (and a**") independent “contingency tables” (see [13], [14]).
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