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e.g. on 2| X |"*/ tr £. In the third place, it can be shown that the probability
ratio is monotonic. This can be demonstrated either by starting from
the Wishart distribution, or by using (2). However, in this example the latter
way does not seem to be any simpler than the former. The moral seems to be
that in some cases the utilization of the representation (1) or (2) leads to the
results in a fast and elegant way, but in other cases the conventional approach
may be more practical.
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ON DVORETZKY’S STOCHASTIC APPROXIMATION THEOREM

C. DerMAN! AND J. Sacks?

Columbia University

1. Introduction. A very general theorem was proved by Dvoretzky [2] on
the convergence of transformations with superimposed random errors. This
work followed that of Robbins-Monro [5] and others (see [6] for bibliography)
and contains the most comprehensive results on convergence (with probability
one and in mean square) of the stochastic approximation procedures of Robbins-
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602 C. DERMAN AND J. SACKS

Monro [5] and Kiefer-Wolfowitz [3]. Wolfowitz [7] provided another proof of
Dvoretzky’s theorem. In this note we provide a third proof of the probability
one version which is of a simpler nature than the previous two. The method of
proof also permits a direct extension to the multidimensional case. The multi-
dimensional results obtained by Block [1] do not seem to include the result below.
Mean square convergence does not seem to follow readily from our methods.

2. Fundamental lemmas. Here we prove two lemmas which are at the basis
of our method of argument. The first lemma is used to prove Theorem 1 below—
the one-dimensional version of Dvoretzky’s theorem. Lemma 2 is used in the
proof of Theorem 2—the multidimensional version of Theorem 1.

LeMMma 1. Let {a.}, {ba}, {ca}, {6,}, and {£,} be sequences of real numbers satis-
Jying

(1) {an}, {ba}, {ca}, {£a} are non-negative,
(ii) liMouw@n = 0, D b, < ©, D¢, = ®, D 8, converges,
and, for all n larger than some Ny , ‘

(iii) &n41 < max (@n, (1 + ba )& + 6 — €a).

Then, limyx £, = 0.
Proor. Let. N > N, and write

(1) B, = Il (1 + b))

Take n > N and iterate (iii) back to N. This yields

B.
By

B B Y MY
=~ B;

b S max(
(2)

n

B, 8; — Cj
R )
mox Gt 205
Now (i) and (ii) imply that B, increases to B (say) which is finite. It can
then be shown that Y gu; 8;/B; < © and Y 5 ¢;/B; = . Since (Ba./By-1)én
is finite we see that the first term in the right-hand side of (2) must be negative
for large enough n and can therefore be ignored. Thus, for n large enough

B. "5 — e
1 S max (F ar + B, E —]—E;—CI)

NZksn k F=k+1
(3) »
=B (max ar + max | >, 8;/B; )
kSN N<k<n | j=k+1

Since Y. 8;/B; converges and a, — 0 the right member of (3) can be made
arbitrarily small by choosing N large enough. This completes the proof of Lemma
1.

Lemma 2. Let {a.}, {ca}, {£:} be as in Lemma 1. Suppose

(i) {84} are positive, Y 8, < o,

(ii) Y ba converges and Y bh < .
Then, limy—.o &, = O.
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Proor: Let N be large enough so that |b,| < 1 for n > N. Since ) b, con-
verges we have, forn, & > N,

0<B o IT 400 éexp[E b.-]
B, =i iT1

(4)

n

> b,~|]§A<oo.

i=k+1

=< exp [max max
n=N N<ksn

Also, because of (ii) and the fact that

Be 1 =ty = TI (1=,

By iZvt1 i=N+1
we have
. B,
(5) &I’I}o —Ez-v > 0.
With (4) and (5) established the proof goes through as in Lemma 1.
We remark that, if the sequences {a,}, - - - , {£} are random variables which

satisfy the stated conditions with probability one, then the results of the lemmas
hold with probability 1.

3. Stochastic approximation theorems.
TaeoreMm 1. (Dvoretzky). Let {X.}, {Ta(X1, -+, Xa)}, {Ya(Xa, -+, Xa)}
be sequences of real random variables with X, arbitrary and

(6) Xny1 = Ta(Xy1, oy, Xa) + YVu(Xy, ---, Xa).
Assume

(7) E{Y,| Xy, ---,X,} =0 wpl,

(8) 2 EY. < =,

and

(9) |Ts| < max (an, (1 + Bn)|Xal — vn)
where an , Bn , Yn are positive numbers such that

(10) =0, 8 < ®, D yn= .

Then X, — 0 w.p.1.
Proor. We may assume that {«,} is'such that

2
(11) <o

n

For, if this is not the case, there is always a sequence a which satisfies (10) and
(11). Taking A, = max (a, , ax) we obtain a sequence which satisfies (9), (10),
and (11).

Define Z, = Y, sgn T, . Then (7), (8), and (11) hold with Y, replaced by
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Z,.Now (7) and (8) imply that D Z, converges w.p.1. From (11), the Cheby-
shev inequality, and the Borel-Cantelli lemma we conclude that

(12) |Za] £ an

w.p.1 for n large enough. Now, from (6) and (12) we can write w.p.1 that for n
large enough

Xt = 2 o, if |Th] £ an,
= |T.| + Za, if [Th| > o .
Hence
[Xnua| € max (2an, |Ta| + Z.) £ max (2a., (1 + Ba)|Xa| + Zn — va)

for large enough n w.p.1. Lemma 1 with &, = |X.|, @n = 204, bn = Br, 60 = Zn,
¢. = 74 yields the desired conclusion. )

Remark: The above proof also goes through for the extended case considered
by Dvoretzky where the a’s, 8’s, v’s are allowed to be random with a, — 0
uniformly w.p.1 and 8, , v satisfying (9) and (10) w.p.1.

We now turn to the obvious multidimensional generalization of Theorem 1.
The symbol [¢| will be used below to denote the length of a vector ¢.

TareoreM 2. The conditions are the same as itn Theorem 1 with these modifica-
tions: {X..}, {T.}, {Y.} are p-dimensional random vectors; (8) should be interpreted
as Y E|Y,|" < «; the absolute value in (9) should be read as length. The con-
clusion is that | X,| — 0 w.p.1.

Proor: As in Theorem 1 we can assume

2
(13) ZEl}:"l < o,

a

For similar reasons we may also assume

(14) > anyn = .

If we define, for random orthogonal transformations P, = P, x,,xs,-.-.xp 3 Zn =
P.Y,, then {Z,} satisfies (7), (8), and (13) and, as a consequence of (13),

(15) |Zn] < an
w.p.1 for n large enough. Choose P, so that P,T» = (|Ta|, 0, - -+, 0) and notice
that
P
(186) [Xnal = |Po Xasd|” = (ITu| + Zm)* + Zzzi,

where Z,, is the rth component of Z, .
Fix w (a point in the sample space) and choose N(w) so that, for n = N(w)
(15) holds. If |T.| > 2a. we have as consequences of (9) and (15)

(17) 0 < 2&,, + an < 'Tn‘ + an < (1 + Bn)'an - Yn + an ]
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2a, + Yn

(17) | Xl > T8,

= p, (say).
Thus (16) and (17) yield
P
X' £ (1 + Ba)|Xal — ¥a + Zu)* + 2 23,

r=2

(]- + Bn)lenlz + ,Zn|2 + 2an(1 + ﬂn)anI
- 271; an - 27"(1 + ﬁn)lXﬂl + ‘be ¢

Let —c, be the sum of the last three terms. Then (15) and (17’) show that
—¢, £ —2anv. and, therefore, from (14), D¢, = o. Thus, whenever
|Th| > 20,

(18)  |Xaul* £ (1 4 8.)" |X.) +

I

2Zul(1 +Bn) lX l2+ Z2 —c..
Pn .

If |T.| £ 2a,, then | X, 1> £ 9% . Thus, letting

1 + bn — (1 + Bn)2+ 2Zn1(1 + ﬁn) ,

we have
(19) | Xo” £ max (9ah, (1 4 b2)|Xal* + |Za" = ca).

We wish to apply Lemma 2 at this point and to do so weput a, = 9a5 ,8, = |Z.J%,
£, = |X.)* and c., b, as they are defined between (17’) and (19). Since
> Z% < o w.p.l isa consequence of (8) we have only to verify that Z b, and
> b2 converge. Since Y 8, < « and, consequently, > 85 < o we have to
show that Zu( + 6n)

n

and since, by (13),

2 (1 + B)Z0 _ . ElzZ,)
nz=:l E 3, é nznl (1 + Bn) (2an + 'Yn)2

converges. Since E{Z, | X1, ---,X.} = 0 wp.l

E\Z.I*
2

n

< o

< max (14 8,)* >
n n=1

we can apply Theorem D, p. 387, [4] to draw the desired conclusion. In similar
fashion we can show b2 < o and this completes the proof of the theorem.

Remark: Theorem 2 and its extension permitting random an, 8., and v,
enable us to prove convergence properties of the multidimensional analogues
of the Kiefer-Wolfowitz procedure. In particular it fills a gap in [6], Section 5
where convergence w.p.1 is assumed. The author of [6] expresses his thanks to
H. Kesten for bringing this to his attention.

REFERENCES

[1] H. D. Brock, “On stochastic approximation,”” ONR Report, Department of Mathe-
matics, Cornell University, Ithaca, New York.



606 J. R. ISBELL

[2] ArYEH DVORETZKY, ‘“‘On stochastic approximation,” Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 39-56, Uni-
versity of California Press, 1956.

[3] J. KierER and J. WoLrowiTz, ‘‘Stochastic estimation of the maximum of a regression
function,” Ann. Math. Stat., Vol. 23 (1952), pp. 462-466.

[4] MicaEL LoEyEe, Probability Theory, D. Van Nostrand Company, New York, 1955.

[5] HErBERT RoBBINS and SurToN MONRO, “A stochastic approximation method,” Ann.
Math. Stat., Vol. 22 (1951), pp. 400-407.

[6] JEROME SAcks, ‘‘Asymptotic Distribution of Stochastic Approximation Procedures,”
“Ann. Math. Stat., Vol. 29 (1958), pp. 373-405.

[7]1 J. WoLrowiTz, “On Stochastic Approximation Methods,”” Ann. Math. Stat., Vol. 27
(1956), pp. 1151-1155.

e —
ON A PROBLEM OF ROBBINS

By J. R. IsBELL
University of Washington

1. Introduction. This note concerns a sequential decision problem raised by
Herbert Robbins [2]. The problem is not solved; in fact, it is not known if there
is a uniformly best procedure. A procedure is given here which is uniformly
better than the one proposed in [2] and is best at least in a special case.

The nature of the problem is this: given two coins with unknown probabilities
P1, P2, of coming up heads, to prescribe a rule for making an infinite sequence
of tosses, choosing the coin for the nth toss as a function of the history of the
sequence since the (n — r)-th toss (inclusive). The memory length r is fixed.
The aim is to maximize the frequency of heads.

The rule proposed here is best in case p; or p. is 0. We cannot say the best,
since many rules have the same effects in this case. The rule may be briefly
stated: ‘“Change coins when one cotn shows tails r successive times, or when r — 1
tails with one coin are followed by a single toss with the other coin, which s tails”.
Robbins’ rule [2] calls for changing in these cases and further whenever the
first toss with a new coin is tails. For r < 2, the rules coincide. Otherwise the
present rule is better except in two trivial cases, p1 = p; and max (p,, ps) = 1.

2. Formulation. The description of the memory requires some amplification
for the case n < r. (None is given in [2].) Here we shall regard the sequence of
tosses as a Markov process with 4" states, namely the states of the memory.
We consider that the process may begin in any state, and we propose to evaluate
any procedure according to the results it yields starting from the worst possible
state.

This is an artificial description which one might prefer to avoid. On the other
hand, any decision procedure which might be optimal according to some other
version of the problem but disqualified by our artificial start could be described
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