A GENERALIZATION OF THE BETA-DISTRIBUTION

By J. G. MauLboN

Corpus Christi College, Oxford

0. Summary. A class of distributions is defined and studied which includes
as particular cases (cf. Section 13) the ordinary g-distribution, the (univariate)
triangular distribution, the uniform distribution over any nondegenerate simplex,
and a continuous range of other distributions over such a simplex, called basic
B-distributions (Section 6) and immediately analogous to the ordinary g-distribu-
tion. Our class also includes (Section 13 (vi)) various (univariate and other)
distributions which arise in connection with the random division of an interval.

The main results are given in Section 2 and further results for the univariate
case are given in Section 8.

This paper is exclusively concerned with the mathematical theory. One ap-
plication may, however, be mentioned, which will be considered in more detail
elsewhere. Suppose we wish to test the hypothesis Hy that » — 1 numbers
Y1, **, Yo (all lying between 0 and 1) were drawn independently from a rec-
tangular distribution over (0, 1). Let u;, - -+, u, be the lengths of the n in-
tervals into which the y; divide the interval (0, 1). Then H, is equivalent to the
hypothesis that the point with vector-coordinate u is distributed uniformly over
a certain non-degenerate simplex S, and a useful set of alternative hypotheses
is the set of basic n-dimensional g-distributions. Hence (using Section 4) this
theory can be used to find the power-functions of certain tests of the hypothe-
sis H .

1. Definitions. Let 2!, - - - , x* be n random variables with the joint distribu-
tion function F = F(&', ---, z"). We shall be particularly concerned with a
certain integral transform ¢, of this distribution, defined by the equation

(1) ¢p(t;al) "'van) = E{<t—iaixj)—-p} (p>0)

=1

or, more formally, by the equation

(2) ¢p(t; 01, -+ -, @n) =[:[:---[:(t—jz;ajxj)—pdﬁ'(:cl,---,x")

(p>0,imt 5 0)

where E{ -} denotes, as usual, an expectation. Here p is the exponent of the trans-
formation and tand a; (j = 1, - -+ , ») are the n 4+ 1 (homogeneous) parameters
of the transformation.

If p is not an integer, it is necessary to specify which branch of the integrand
is intended. In order to avoid ambiguity in this case we shall restrict the param-
eters a; to real values and the parameter ¢ to non-real values and then take the
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510 J. G. MAULDON

principal value of the logarithm in the formula (¢ — A)™" = exp (—plog (¢ — A)).
It is easily seen that the integral (2) converges for all such values of tand a;.

Now suppose that there is a set of » + rn real constants p; (>0) and ¢}
(¢=1,---,7r;7 =1, ---,n) such that

r n \—Pi
(3) ss(tias, -, a) = 11 (t -3 a,-cz-) ,
j=

1=1

where, taking a; = 0 (j = 1, ---, ), it is clear that

(4) ' P = ;Z-alp"
DeriniTIioN. Any joint distribution of 21, - - -, z» which satisfies (3) (where

¢, is defined in (2)) will be called an n-dimensional g-distribution with indices
P1, -+, pr. The n X r matrix C = [¢}] will be called the coordinate matriz and
the columns ¢; (¢ = 1, --- , ) of C will be called the vertices' of the g-distribu-
tion. Lastly, the sum (4) of the indices will be called the exponent of the §-dis-
tribution.

2. Main results.

THEOREM 1. For any given set of r + rn real constants p; (>0) and ¢} (i =
1,---,r;5 =1, ---, n), there is exactly one joint distribution of the variates
z', -+, x" which satisfies equation (3) (subject to (2) and (4)).

THEOREM 2. Let D be the convex hull of the r points whose vector coordinates are
ci, suppose that D is of dimensiond (1 < d < min (r — 1, n)), and let G be the
d-dimensional hyperplane containing ©. Then any B-distribution with vertices c;
s a continuous distribution over € with positive d-dimensional density at all in-
terior points of D and zero density elsewhere.

Further if p; = 1 (all ©) the density of the distribution vs bounded, and if p; > 1
(all ©) the density is continuous over §.

The proof (Section 7) of Theorem 2 will show that if d = 0 the distribution is
concentrated at a single point. Conversely, it is clear that any distribution which
is concentrated at a single point is a 8-distribution all of whose vertices have the
same coordinates as the point, and whose exponent is arbitrary. On the other
hand (Section 12) we shall prove

THEOREM 3. Any B-distribution which is not concentrated at a single point admits
only one possible value for its exponent,
which, from (2) and (3), has the immediate

COROLLARY. Any B-distribution which is not concentrated at a single point has
a unique set of distinct vertices, and its corresponding indices are also uniquely
determined.

3. The univariate case. A preliminary lemma. If » = 1 we may drop the

1 Thus (e.g.) two identical columns of C will be regarded as defining two coincident ver-
tices of the distribution, each with its appropriate index.
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superseript j. Then, writing ¢ for ¢/a, , we find that (3) may be written

(5) E{(t—2)7) =] (¢t — ¢)™™ (im ¢ 5 0).
7=1
Applying Theorem 1 of [3], we deduce that, if F(x) is the distribution function
of a unidimensional B-distribution, then, for almost all values of x and y,
1 1

(6) Fy) = FG) = - [ k@ a,

where

(7) K@) =t {I}l (g—;ﬁ)p - I_I, (H-—xi“—_c_)p}

and the integral in (6), taken along the imaginary axis, converges (in particular
att = 0).

Now if y > £ > max ¢;, the integrand K (t) is a regular function of ¢ in the
region re ¢t > 0, and so the path of integration in (6) may be deformed into the
infinite semicircle =7 in this region. Hence, since |K(t)| = 0 (|t|™), it follows
that in this case (i.e. for almost all  and y such that y > = > max¢;) F(z) =
F(y) = limy,« F(y) = 1. Using the monotonicity of F(z), it follows that
F(z) = 1 for all x > max ¢;, and similarly we may prove that F(z) = 0 for
all £ < min ¢; . This yields immediately

LemMA 1. Any unidimensional B-distribution is bounded.

4. The invariance properties of the class of 3-distributions. Suppose that the

n-dimensional vector-variate x is a 8-variate with vertices ¢;, - - - , ¢, and indices

D1, -+, pr. Regard x = {2’} as a column-vector and a = {a;} as a row-vector.

Then (3) may be written

(8) E{(t —ax)™} =] (¢t — ac)™ (im ¢ 5 0).
=1

Let M be any m X n matrix with real coefficients and v any real m-dimensional
column-vector, and define the m-dimensional column-vectors £ and vy; by means
of the equations

(9) = Mx + v, vi=Mc; + v (t=1,---,r).

Next, let a be an arbitrary real m-dimensional row-vector and r an arbitrary
non-real scalar parameter, and write a = eM, ¢ = 7 — av. Then it follows that
r—a =717— aMx +v) =¢— ax,

(10) .
r—ay;=717—a(Mc;+v)=t—ac; (1t =1,---,r)
Comparing (110) with (8), it follows that ¥, defined in (9), is an m-dimensional
B-variate with vertices v1, -+, v- and indices p;, -+, p..
In particular, taking v = 0, we deduce
LemMa 2. If there exists a B-distribution with indices py, - - - , pr and coordinate
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matrix C, then there exists a B-distribution with indices py, - -+, p, and coordinate
matrix MC, where M s any real matriz such that the product MC s defined,
which has the immediate

'‘COROLLARY. If there exists a B-distribution with indices py, « -+ , p- and coordi-
nate matrix I = 1,y = the unit matriz of order r, then there exists a B-distribution
with indices py, - -+, pr and coordinate matrix M, where M s any real matrix

with r columns.

It has been proved that the class of 8-distributions is invariant under the trans-
formation (9), for any real m X n matrix M and any real m-dimensional column-
vector v. This transformation includes the following particular cases:

(i) M non-singular. This, the general non-singular linear transformation,
amounts to making an arbitrary choice of cartesian coordinate axes (not neces-
sarily rectangular). It may also be regarded as a translation, dilation and gen-
eralized ‘“rotation’” of the distribution, the axes being kept fixed.

(ii) M = [(I)] , v = 0. This is the process of embedding the 8-distribution in a
space of higher dimension, giving, of course, a singular distribution in the new
space.

(iii) M = [I 0], v = 0. This takes the marginal distribution of a given set of
the original joint variates, and is a particular case of

(iv) a parallel projection, for which M* = M, v = 0. (In order to include (iii)
in this case, we must regard the marginal distribution as a singular distribution
in the whole space, which is done by adding n — m rows of zeros to the matrix
M = [10]).

6. Boundedness and uniqueness. Case (iii) of Section 4 shows that the marginal
distribution of any single component z’ of an n-dimensional B-variate x is itself
a unidimensional g-distribution and hence (by Lemma 1, Section 3) it is a
bounded distribution. But this implies that the distribution of x is itself bounded,
and hence we have

LeMmMmA 3. Any B-distribution s bounded.

Write (3) in the form

(11) E{(l - ]Z; b,-x")ﬂp} = I=I1 (1 - ]2; bjcf)—p‘,

where b; = a;/t. Then, for sufficiently small values of max |b;|, each side of (11)
can be expanded as an absolutely convergent series in powers and products of
the b, . Equating coefficients determines all the moments’ of the joint distribu-
tion of z', - - - , ". Applying Lemma 3 and using the fact [5] that a distribution
known to be bounded is uniquely determined by its moments, we have

Lemma 4. If there exists any B-distribution with a given set of indices and vertices
(i.e. any distribution satisfying (3)), then there is only one such distribution.

2 e.g. the mean of a g-distribution is the centroid of masses p; at the vertices c; .
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6. Basic g-distributions. Consider the (singular) joint distribution of 2%, -7+,
2" which is distributed over all positive values of the variates such that z +
22 + .-+ 4+ 2" = 1, with density proportional to J[j=: (2)*", where p1, - - -,
p, are given positive constants. Formally we have

(12) dF = C(xH)P (@) ... (@) N dalde - - de
over the range
(13) ©>0@G=1---,7r), =1,

j=1

where ¢ = C(p1, -+, p) = T(p)/I] I'(p;) (writing, as usual, p = 3_ p;).
For this distribution, choosing p = > p; as the exponent of the fundamental
transformation, it follows from (2) that

¢ = ¢s(t; a1, ,0)
o =C ff f(t > a,-x)—zp H (@) da' da’ - - - da’

Jj=1

where (13) defines z” in terms of z, - - -, g and the 1ntegration is extended
over all positive values of the variables such that d+L4+ - F27 <1

Hence, if ¢ (mi, ms, - -+, m, ; 0) denotes the result of dlﬁerentiating o m;
times with respect to a; (j = 1, - -+, r) and then puttinge; =0( =1, ---,7),
we have, on writing m for D> _m;,

a¢(m1) "'7mr;0)

(15) CI‘(p + m) —pm T i\pi+tmi~1 3 1 r—1
TG [f ft JIJ;(x) dr --- dx
taken over the same range as the integral (14). This yields at once
(16) a¢(ml)m2) cte )mf;o) Hr(p] + m]) t—p—m
i=1 T'(p;)

On comparing these partial derivatives (for all values of the m;) with the cor-
responding derivatives of the function on the right-hand side of (17) below,
and using the principle of analytic continuation, we reach the conclusion that

(17) éo(t; a1, -+, ) “,H,(t_a) ?i
and hence® we have proved

LemMA 5. The distribution defined in (12) and (13) is an r-dimensional B-distri-
bution with indices py , - , pr and coordinate matriz I = 1) = the unit matrix
of order r.

It is convenient also to adopt the

3 This proof, suggested by a referee, is much shorter than my original proof. This ac-
counts for the absence of equations numbered (18) to (25).
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DeriNiTION. Any B-distribution whose coordinate matrix is a unit matrix will
be called a basic B-distribution. By Lemma, 4 of Section 5 it is clear that any basic
B-distribution is defined by (12) and (13) for some set of indices py, -+, pr .

7. Proof of Theorems 1 and 2. By Lemma 5 and the Corollary to Lemma 2
(Section 4), there exists a B-distribution with any specified set of vertices and
indices. By Lemma 4 (Section 5) this distribution is unique, and so we have
completed the proof of Theorem 1.

The truth of Theorem 2 for basic -distributions follows from (12) and (13).
Using the Corollary to Lemma 2 (Section 4) we see that any B-distribution is
obtained from a basic 8-distribution by a transformation of the type (9)—indeed,
we may take v = 0. Hence it only remains to prove that the properties of a 8-dis-
tribution asserted in Theorem 2 remain invariant under any transformation of
type (9) with v = 0.

Now the ordinary theory of canonical matrices shows that any matrix M may
be expressed as a product PABQ, where the matrices P, A, B, Q correspond to
the particular cases of (9) described in (i), (ii), (iii), (i) of Section 4, and it is
easily seen that the properties in question remain invariant under the transforma-
tions (i), (ii) and (iii) of Section 4. Hence it is true that the relevant properties
remain invariant under the transformation (9) (with v = 0), and so the proof
of Theorem 2 is complete.

8. The univariate case. Analytic continuation. In Sections 9-11, I shall prove
the three theorems enunciated in this paragraph, with their corollaries.

THEOREM 4. Let F(x) be the distribution function of a unidimensional B-distribu-
tion with vertices ¢, - - , ¢, , tndices 1, - - - , Pr, and exponent p = _p; , and
supposethat r = 2and ¢; < ¢a < +-- < ¢ . Then, for eachvalue of k(1 < k <
r — 1) there exists a unique function Gi(z) such that

(1) Ge(z) = F(z) forex < z < €ry1, and

(i1) Gk(2) s a regular function of z throughout the complex plane, cut along the
real axis from — © to ¢ and from cryy to + .

Further properties of the derivative Gx(z) of Gi(z), and of its pth derivative
G{”’(2) when p is an integer, are given in

THEOREM 5.
G) If r = 2,

'y = _ L(p) ((z—cl)(Cz—Z) T Nmi(n s,
(20) Gi(a) = ;B (=l DY, gy — oy

(ii) If p is an integer (e.g. p = 1),
k r
27) GP@R) = (=D p—=Dirtsinar [[ (z—¢)" I (¢, — 2)7™,
j=1 F=k+1

where a = El;'ﬂl Dj .
The asymptotic properties of the function Gi(z) are described in
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TuEOREM 6. If the z-plane is cut along the real axis from — » to ¢ and from
Ciy1l0 + o, then, as |z| — o,

(28) Gr(z) ~ Ax(z — 1) Hewa — 2)77

where Ay > 0, P = D 1P, Q = D j=i+1D;, and we use that branch of the
Sfunction which is positive for ¢ < 2z < Ciy1.

COROLLARY 1. Gr(2) ~ By 2" as |¢| — «, where B, = 0.

COROLLARY 2. Theorem 3 is true in the univariate case.

COROLLARY 3. If Fi(x), Fo(x) are the distribution functions of two umdzmen—
stonal B-distributions and if, at an infinity of distinct points xz, either Fl(:c)
AF5(z) %= 0 or Fy(z) = AFy(z) + B 5 0 or 1, then the two B-distributions have
the same exponent.

I have been unable to prove an analogue of Corollary 3 in the multivariate
case, and I therefore confine myself to offering the

CoNJECTURE. If two n-dimensional B-distributions have the same mon-zero
d-dimensional density throughout some d-dimensional region, then the two B-dis-
tributions have the same exponent.

9. Proof of Theorem 4. Let F(x) satisfy the conditions of Theorem 4, and
select an integer k such that 1 < k < r — 1.

We shall have occasion to consider two complex variables, z and ¢. The z-plane
will be cut along the real axis from — « to ¢; and from ¢4, to + =, and (for any
given value of z) the ¢-plane will have straight cuts from the origin ¢ = 0 to each
of thepointst =c; —2z(j=1,---,7r).

Let T be a contour in the cut {-plane which starts and finishes at ¢ = 0 and
encloses (positively) all the points ¢; — 2z (1 < j < k) and none of the points
c;i—2(k+1=j=<r). Wenow define

(20) ) = o [ T+ 2= ey a

Ly j=1
using that branch of the integrand (in the cut ¢-plane) which ~t" as [f] = .
Clearly Gi(2) is a regular function of z in the cut z-plane.

Now the distribution F(z), being a 8-distribution, is bounded, and so we may
apply equation (4) of [3] and indeed, if ¢x < 2 < ck41, the path of integration
may be deformed into T';. Comparing with (29) we find F(x) = Gi(x) for
almost all values of = such that ¢, < £ < ¢x41 . Using the fact that Gi(x) is con-
tinuous and F(z) is monotonic, this result may be extended to all values of z
in the range (cx, cr41), and so Gx(2) is the required analytic continuation of
F(x)—it is certainly unique, by the elementary theory of analytic continuation.

10. Proof of Theorem b.

(i) The case r = 2. Starting from the basic 8-distribution defined in (12) and
(13), we make the substitution z — ¢; = (¢; — ¢z’ sothates — z = (¢ — ¢
This yields (26), which therefore gives the density over (¢, , ¢;) of the unidimen-
sional 8-distribution with vertices ¢; , ¢, and indices p; , P .
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(ii) The case p = 1. It is convenient to write

=t 2) = [T (¢t +2— ¢)7™.
=1
Then we have, from (29),

1 Il 1 ou 1
3 = dt = —
(30) Gk(z) 2w Jr, 9z t 27 Jry, Ot 2w (Tr,
which is the difference between two branches at ¢ = 0 of the function I(t, 2).
On evaluating this difference we reach (27).

(iii) p an dnteger > 1. Integrating by parts, we find

1 oIl -1
21 I 62

(31) Gl(z) = d =122 [ e

2wt Jr,
Repeating the process p times and using (30) at the last step, we again reach
(27) in this more general case.

11. Proof of Theorem 6 and its corollaries.
(1) The case p > 1. Consider the transformation ¢ = w defined by

(32) t = —z2/(w + 2).

The points ¢ = ¢; — z are transformed into points w = ¢; + O ( |¢|™) and
the point ¢ = 0 goes to infinity. Notice also that T'; leaves the first & singularities
of the integrand on the left, and the remainder on the right—hence the same is
true of the path of integration for w. It follows that the substitution of (32) in
(31) (which still holds) yields the result, valid for all sufficiently large values
of [z,

p —2

(33) Gi(2) = III (; — w + ¢we )™ du,
|10 j=

where there are cuts in the w-plane approximating to the segments of the real
axis from — « to ¢; and from ¢;4; to 4+, and we use that branch of the inte-
grand which has the value 2™ when w = —z.

By splitting the range of integration into three parts, defined by |w| > 2|},
it may be seen that the correct asymptotic value, as [2| — o, for the 1ntegral in
(33) is given® by substituting 2™ = 0. Making this substltutlon and paying due
regard to the appropriate branch of the many-valued functions involved, we
find that, if p > 1, (33) yields (28), provided that

(34) ”“f H<w—c>”fII<cJ-—w>"'dw

27!'?: 700 j=1

where the w-plane is cut along the real axis from — % to ¢; and from ¢;41 to + .

* More generally, an asymptotic series for (33) is given by expanding the integrand as a
power series in 27! and integrating term by term.
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It is convenient to write (34) in the form
(35) Ay = Q—;lfe""("’) dw,
27

where the contour extends to == 7« in the cut w-plane, and

h(w) = D5 pilog (w — ¢;) + D jmrss s log (¢c; — w),

taking real values if ¢x < w < €41 -
The integral (35) possesses a unique saddle-point w = wy in the cut plane,
defined by A'(w;) = 0, i.e.

r

(36) E P 0, Cr < Wi < Cryp.
j=1Wr — Cj

Taking the integral along the curve of steepest descent from this saddle-point
we have, on the path of integration, im(h(w)) = 0. Hence the integrand is posi-
tive and decreasing away from the saddle-point, and this immediately yields the
required result 4, > 0.

By differentiating (33) and substituting from (34) we reach the further result,
itp>1,p2and |z| > ».

(37) GI:I(Z) ~ P~ 2 Ak(z - Ck)o—l(ck+1 - Z)P-—1 (Ak > 0)
(ii) The case p < 1. We first establish
Lemma 6. If Ay = Ai(cr, -+, ¢ 5m, -+, Pr) 18 defined by

(38) A = limppew (2 — )" (e — 2)77Gh(2),

where P and @ are defined in (28), then, if 0 < p < 1,

a.Ak<0(s=l,...’k-—1)’ 6_4£>0(s=k+2,...’r)’
668 aca

the notation implying existence, reality and finiteness.

Proov. Consider the case 1 < s < k — 1. Let F*(x) be the g-distribution with
vertices and indices c;, p}, where ¢f = ¢; (all §), p¥ = p; (G = 8),Pr = po + 1,
sothat P* =P+ 1,Q*=Q,p*=p+ 1,1 < p* < 2.

Then, using (31) and (29),

1

GF(2) = ‘Z?’*fr (2= e) T (42— o) = 2%
k J=.

2w
Differentiating with respect to z, multiplying by (z — ¢)' " *(ctqs — 2)*7,
letting |z2| — « and substituting from (38) and (37) yields (—p/p,) (04:/dc.) =
—(p* — 2)AF = (1 — p)AF > 0, as required. The corresponding result when
k + 2 < s < ris proved in a precisely similar manner.
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From Lemma 6 we deduce immediately
(39) Ak(ck,"',ck,Ck-H,”',ck+1;
P, - ’pf) <Ak(cly s Cr 3P, )pf) < ®©,
where, on identifying coincident vertices, we have
(40) Ar(cr, "= yCkyCrgry *** y Chyr 3P,y * " ,pr) = A(cr, ces 5 P, Q),

dropping the subscript & from Ay in the case r = 2.
Now Theorem 5 (i), in conjunction with (38), shows that

A(er, eesr; P, Q) = (eera — &) "T'(p)/(T(P)T(Q)) > 0,

which, with (39) and (40), proves that A:(ci, ---, ¢ ; 1, ---, pr) > 0 if
0 < p < 1. Since the other cases have been dealt with in Section 11 (i) and
Theorem 5 (ii), this completes the proof of Theorem 8.

(ii1) Proof of the corollaries. Corollary 1 is immediate. To prove Corollary 2
we remark that if G(z) is any nontrivial analytic continuation of F(x), then, by
Corollary 1, the limit lim;;.» (log G’(z)/log z) exists and is equal to p — 2.
Hence this limit uniquely determines the value of p.

Corollary 3. Since a g-distribution has only a finite number of vertices, an
infinity of the given points £ must occur in an interval lying between two con-
secutive vertices of each g-distribution. The corresponding analytic continuations
bear a simple relation to each other, and determine the same value for p. This
proves Corollary 3.

12. Proof of Theorem 3. If F(z!, -- - , ") is a B-distribution which is not con-
centrated at a single point, then (by Section 4 (iii) ) the same is true of the margi-
nal distribution of at least one of the individual component variates z, - - - , z",
and furthermore the resulting unidimensional g-distribution has the same ex-
ponent as the original. Theorem 3 now follows immediately from Corollary 2
to Theorem 6 (Section 8).

13. Examples of 3-distributions. In addition to the basic 8-distributions defined
in section 6 the following examples may be mentioned.

(i) Starting with the 2-dimensional basic 8-distribution, and using the trans-
formation (iii) of Section 4, we take the marginal distribution of z'. Writing z,
p, q for z*, p1, p., we find that this yields the familiar g-distribution

dF = C2" (1 — 2)" ' da (0 <z <1).

The case p = ¢ = } is known [7] as the “Arc Sine Law”.

(ii) Taking a fixed non-degenerate n-dimensional simplex in n-dimensional
space as the simplex of reference, and an arbitrary interior point as the unit-
point, we may establish a system of n + 1 homogeneous coordinates &, - - - |
£, Writing 2z’ = £/ ¢, we bave a generalization of 2-dimensional “areal”
coordinates, subject to the identical relation Y x’ = 1. Then a distribution ex-
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tended over the interior of the simplex of reference with density proportional
to [T (z")*"™ (p; > 0) is a B-distribution, since it is obtained from the (n + 1)-
dimensional basic g-distribution by the transformations (iii) and (i) of section 4.

(iii) A particular case of (ii), given by taking p; = 1 for all 7 and using the
transformation (ii) of Section 4, is a uniform distribution over any non-degenerate
simplex in space of any dimension.

(iv) An explicit expression for the unidimensional 8-distribution with indices
P, ¢, r and vertices a, b, c(a < b < ¢) is most easily obtained as the marginal
distribution of the corresponding 2-dimensional distribution over the non-
degenerate triangle with vertices (a, 0), (b, &), (¢, 0). Using a result given on
p- 293 of [6] we find that, in the range a < 2 < b, the density of the distribution
is given by

dF _T(p+q+r)(z—a)" " (c—2)"
dx T(p)T(g +r) (b — a)ic — a)>+?

where u = [(¢ — b)/(b — a)][(z — a)/(¢ — z)] and F(a, B;v; ) is the ordinary
hypergeometric function. There is; of course, a similar formula applicable in
therangeb < z < c.

The symmetry of the original definition is restored by observing that in any
range the density can be expressed in terms of a solution of Riemann’s P-equation
as follows:

F(1 —p,q;q+r;u)

a b ¢
dF « (z—a) (2 —=—0b)(z—c)P<a B v =z
dx ’ ’ ’
a B v
providedthato’ + 8+ v =p,a+ 8 +v=¢a+B8+y =ra+8+vy=
p+qg+r—1

It should be noticed that, if p = ¢ + r = 1, this distribution is uniform over
the interval (a, b), but not over the interval (b, ¢). Hence this gives a nontrivial
example of Corollary 3 to Theorem 6 (Section 8). We may also specifically men-
tion the case p = ¢ = r = 1, which gives

(v) the ordinary (univariate) triangular distribution.

(vi) Certain distributions arising in connection with the random division of an
interval, such as that studied by Fisher [2] in 1929, are g-distributions—indeed,
several investigations of this problem ([4], [1], [3]) take (3) as their starting-point
(with integer values for the p;). Another approach, adumbrated in the summary
(Section 0) is to apply the transformation (iv) of Section 4 to the case (iii) of
this paragraph, the transforming matrix M being of unit rank.
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