ON A CHARACTERIZATION OF COVARIANCES
By A. V. BALAKRISHNAN
University of California at Los Angeles

1. Introduction. Let F(s, f), — o < s, t < «, be a covariance function, that
is to say F(s,t) = F(t, s) and F(s, t) is non-negative definite. Let m(s) be any
complex valued function on — e« < s < . It is trivial that then

F(s, t) + m(s)m(t)

is also a covariance. However, this is no longer true if we consider instead
(1) F(s,t) — m(s)m(?).
In this paper we obtain a set of necessary and sufficient conditions on m(s) in
order that (1) be a covariance under the restriction that F(s, t) is a stationary

covariance; i.e., F'(s, t) = F(s — t). We also indicate an application of the re-
sult to the problem of estimating the mean value of a stochastic process.

2. Main results.
THEOREM 1. Let R(t) be a continuous stationary covariance function with R(0)

Jinite. Let m(s) be any function on — © < s < . Theri a necessary and sufficient
condition that

(2) R(s,t) = R(s — t) — m(s)m(t)

be a covariance function is that m(t) have the representation

(3) m() = [ exp (ita) ds

where u(-) 18 a function of bounded variation, and that, further,
(4) [ \awaar aes 1,

G(-) being the spectral distribution corresponding to R(t), so that
(5) R = [ exp (i) dG.

Proor. Necessity: Let R(s, t) given by (2) be a covariance. Then we can
(see [1], p. 72) construct a Gaussian process y(t), —o < t < o, with zero
mean so that E[y(s)y(#)] = R(s, t). Now, since R(¢, t) must be non-negative
if (2) is to yield a covariance, m(t) is necessarily bounded. Letting

z(t) = y(t) + m(¢),
we have E[z(s)z(t)] = R(s — t), so that the x(t) process has finite first and

second moments and is stationary in the wide sense. Moreover, R(¢) is con-
tinuous. Using the spectral representation theorem ([1], p. 527), we have

Received November 10, 1958; revised February 24, 1959.
670 .

[ fv{
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to o2z

.%v

The Annals of Mathematical Statistics. KON

WWWw.jstor.org



CHARACTERIZATION OF COVARIANCES 671

o) = [ : exp (it\) dZ(\),

where Z(\) has orthogonal increments with E[| dZ(\) |Y] = dG(\). Now let
w(N\) = E[Z(\) — Z(M\)] for some fixed Ao . Then, for any finite sequence of
non-overlapping intervals {a;, bJ, we have

b;
| 22 (ub) = w(a)) [ = B[ 2 (200 ~ 209) [1=3 f 4G,

so that x(A) is of bounded variation, and also absolutely continuous with respect
to the measure dG on the Borel field of the real line. Moreover

Elz(t)] = m(t) = [: exp (i) du(n).

To prove (4), let f(-) be any function in L,(dG), the L, space with respect to
the measure dG. Then

B[ [0 az00] = [T 100 aun
defines a linear functional on Ly(dG). Denoting this functional by L(f), we have
ILE s [ 1500 aet) = 1117,

|| /|| being the Ly(d@) norm. Hence the norm, || L || , of the functional satisfies
Il L|| = 1. Moreover, there is a g(+) in L:(d@) so that for every f(-) in Ly(dG),

[0 du= [ 700900 ac.
This implies that ¢ = du/dG and since
[ lg0yrae = L) <1

necessity follows.
Sufficiency. If R(t, s) is defined by (2), and if the conditions (3) and (4) are
satisfied, we have, for any finite sequence of numbers {a;} and any {t},

> > ai R(ti, t)a;,
= [ |2 a; exp (it;\) |* dG —
where the second term, by the Schwartz inequality, is

<[ 1T asexp (M) [ dG [ |du/aG P ag
© 7 — o0

) 2
f 3 a; du/dG exp (it)) dG |,

<[ 1% asexp (it [ a6,
L]
using (4). Hence D > a:R(t:, ¢;,)d; = 0 as required.
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If R(s, t) given by (2) is also required to be stationary, a stronger result is
the following corollary:

CoroLLARY 1. If R(¢) s a slationary continuous covariance, @ necessary and
sufficient condition that

R(s,t) = R(s — t) — m(s)m(t)
be also a stationary covariance is that
(6) m(t) = a exp (t\ot), Ao real,

where the spectral distribution, G(-), corresponding to R(t) has a jump (atomic
part) at No not less than | a |
Proor. We first note that the required stationarity implies that

m(s)m(t) = f(s — ),

which in turn necessarily implies that m(s) be of the form m(s) = a exp (?\es)
since, by Theorem 1, m(s) is continuous. The rest of the corollary is immediate
from Theorem 1.

We have so far assumed R(¢) to be continuous, so that (5) holds. In the
absence of (5), m(t) may not have the representation (3). To see this, we have
only to take a non-Lebesgue measurable character of the real line x(¢), and set
R(t) = 2x(t), m(t) = x(t), in (2). Then m(¢) cannot have the form (3) or
(6), since this would imply continuity, which is false.

Theorem 1 has, as may be expected, an immediate paraphrase for stochastic
processes. In the terminology of Doob ([1], p. 95) a stochastic process

z(t), —0 <t < o,
is stationary in the wide sense if E[| z(¢) |"] is finite and
(8) Elze(t)a(s)] = R(t — s),

without any additional assumption on the mean value Efz(t)]. As Doob has
pointed out, the usual assumption that E[z(t)] be a constant, is unnatural. On
the other hand, (8) does impose a restriction on the character of E[xz(¢)], and
this may be read from Theorem 1. Thus the following result may be stated.

TaEOREM 2. Let z(t) be a stochastic process stationary in the wide sense, and
continuous in the mean of order two. Let R(t) be its covariance function (given by
(8)) with spectral distribution G(N\). Then a necessary and sufficient condition
that a function m(t), —o < t < o, be the mean value of such a process is that
it satisfy (3) and (4).

3. Application and extensions. As an application of this result we shall con-
sider a problem that arises in the estimation of the mean value of a stochastic
process. It has been treated by Grenander [2], [3] using the special concept of
the Hellinger integral. We shall, for simplicity, use the discrete parameter ver-
sion, since this has no essential bearing on the problem. Moreover, since the
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discrete parameter versions of Theorems 1 and 2 are obvious, we shall not state
them separately. Thus let

(9) Yn = Zn 'I' muy

be a time series, — o < n < «, where z, is a stationary time series with (finite)
covariance R(n) and zero mean, and where E[y,] = mu, . Further, let u, have
the form

1/2
un = [ exp 2min\ du.
1/2

It is desired to estimate the constant m from the {y.} series and the question is:
under what conditions do we have consistent (in the mean square sense) linear
unbiassed estimates for m? By this we mean that we wish to know whether it
is possible to construct a sequence {, of random variables of the form

g-n = ;CZZM,

where the coefficients c’% are to be so chosen that E[¢,] = m, and where further,
the sequence {, converges in the mean of order two to m. An answer to this
question is given by Theorem 3.

THEOREM 3. A necessary and sufficient condition that consistent (in the mean
square sense) linear unbiassed estimates for m in (9) exist is that {mu,} not be a
member of the class of sequences which can serve as the mean value of a wide sense
stattonary time series with covariance R(n), for any non-zero value of m.

Proor. Necessity. Suppose, contrariwise, that, for some mo not equal to zero,
the sequence {mou,} can be the mean value of a series with covariance RB(n).
Then paraphrasing Theorem 2 to the discrete parameter case, we must have

1/2
Mopn = My [ exp 2min\ du,
1/2

where
1/

2
L/ |du/dG[* dG < 1/ms < <,
1/2
with
1/2
R(n) = [ ) exp (2min)) dG.
1/2
Next, let my = D ".cy: be any linear unbiassed estimate for m. Then we must
have m = Y _.ciEly] = mY_ uchm , S0 that, if
P.(\) = X c% exp (26km\),

then [1/5 P.(\)du = 1. However,

1/2 2 1/2 1/2
P.(\) dp| = [ |P.OV) [ dG f | du/dG | dG.
1/2 1/2 -1/2
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Hence

1/2 1/2 -
[ 1P ae 2 1/[[ | du/dG " dG].
L1/2 L1/2

* 2
var m, = my > 0,

Or,

Thus no consistent linear unbiassed estimate is possible.

Sufliciency. Suppose mu, cannot be the mean value of a time series with co-
variance R(n). This can happen only in one of two following ways:

(i) du is absolutely continuous with respect to d@, but

1/2

[ |du/dG|? dG = + .
1/2

(ii) du is not absolutely continuous with respect to dG. First, suppose (ii) is
true. Then we can find a Borel set B on which

deG=O and j;dn#().

Under these conditions, it is possible to construct a sequerce of polynomials
P,(\) in exp (2wiN) such that

1/2

Lﬂ [P,V ! dG — fB g = 0,

and
1/2

[ P.(\) du =1.
1/2

But with each such polynomial, P,(A\) = D_.cr exp (2wik\), we can associate
the linear unbiassed estimate m» = D ciys, whose variance tends to zero,
proving the existence of consistent linear unbiassed estimates, as required.
Next, suppose alternative (i) holds. Then g(A) = du/dG is Borel measurable,
and
1/2

(10) [m [g\) | dG < @

1/2

(11) Lﬁ g P dG = +o.

In view of (10), for any polynomial P(\) in exp (2m2\), we have

1/2

[P0 101 d6 < «,
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so that
1/2 1/

(12) f_m PO) du = f

defines a linear functional on the polynomials P(A) which form a dense sub-
space of Ly(d@). Now to show the existence of consistent linear unbiassed esti-
mates for m, it is enough to show that we can find a sequence of polynomials
P,(\) in exp (2mA) such that

1/2

f Po(d) du—c % 0
_1/2

2
” P(\)g(\) d@

and
1/2

fm | P(\) [ dG — 0.

However, if this is not true, (12) would define a bounded linear functional on
L;(d@) (because of continuity on a dense sub-space) thus contradicting (11).

It would appear that the basic result (Theorem 1) is capable of extension to
the harmonizable covariances of Log¢ve [4]. In this connection, it may be noted
that R(s, t) in Theorem 1 is easily verified to be harmonizable.
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