THE NON-EXISTENCE OF CERTAIN PBIB DESIGNS

By MaNoHAR NARHAR VARTAK

University of Bombay
1. Introduction. Let N be a Partially Balanced Incomplete Block (PBIB)
design, (cf. Bose and Shimamoto, [1]), with three associate classes and with
parameters ‘

(1'1) v, b1, k, ni,)\i;p;:u > (i’j7u =1,2 3)'
These parameters are not all independent but they are connected by the equa-
tions

1=1

3 3
bk = vr; dYni=v—1; don = r(k — 1);
1=l

(1.2) Diu = Puj;  MiPju = NjPlu = Ml ;
3

2 Piu = i — 8 Gy d,w = 1,2,3);

where §;; = 0 or 1 according as ¢ # j or ¢ = j respectively. Additional relations
among the parameters (1.1) can be derived if the association scheme of the »
treatments of N is completely known. Suppose, for example, that the association
scheme of the given design N is of the rectangular type; that is, let us suppose
that

(1.3) v = Uity (01,02 2 2),

and that the treatments 6;;(¢ = 1,2, -+ ,v1;5 = 1,2, --+ , v2) of the design N
can be arranged in the form of a »; X v, rectangle

011;012, e ,01‘02

(1.4) 02] ) 022 y "y 0272

ooooooooo

0711 ) 0712 y Ty ovwz

so that the first associates of any treatment 6;; are the other v, — 1 treatments
in the ¢th row; its second associates are the other »;, — 1 treatments in the jth
column and the remaining (v; — 1)(v2 — 1) treatments are its third associates.
For the design N with the association scheme (1.4) it then follows that the
matrices (p}.) are given by
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(v, — 2 0 0
(Ph) =| 0 0 n—1 ;
L 0 w—1 (n—1)( —2) ]
0 0 v — 1 ]
(15) (Ph) =| 0w —2 0 ;
L vy — 1 0 (o — 2)(v, — 1) |
[0 1 m—2
(Ph) =| 1 0 v — 2
e —2 v —2 (n— 2)(v, — 2) |

The relevant additional relations among the parameters (1.1) are, in this case,
(1.6) pn=m—1=0—2; pha=n—1=v—2; ng=nm,.
The parameters 7, k, M1 , N2 and A; are related to »; and v, through the equation
(1.7) rk—1) = (o — DM+ (1 — DA+ (01 — 1) (01 — 1)N;

which, in fact, is one of the equations in (1.2) rewritten in the light of (1.6).

In this paper we shall be concerned with PBIB designs with three associate
classes whose parameters satisfy the conditions (1.3), (1.5), (1.6) and (1.7) in
addition to (1.2). We shall call the series of these designs the series A. A design
belonging to the series A will be said to be symmetric if

(1.8) v = b, and consequently, r = k.

It may be noted that the series A includes all PBIB designs with three associate
classes which are the Kronecker product of two BIB designs (cf. Vartak [2]).

In the next section we shall show that the conditions (1.2) and (1.6) uniquely
characterise the association scheme (1.4). We shall then obtain an expression
for the matrix NN’ for any design belonging to the series A where N is the inci-
dence matrix of the given design and N’ is the transpose of N. In Section 3 we
shall calculate the characteristic roots and the determinant | NN’ | of the matrix
NN’. We shall also calculate there the Hasse-Minkowski invariants, c¢,(NN’),
for the matrix NN’ of any design belonging to the series A.

Some nor-existence thearcus togedlier with rifustrations are given in Section 4.
These theorems are direct consequences of the results obtained in Sections 2
and 3, and consist of extensions of the results of Schiitzenberger [3] and
Shrikhande [4] for symmetrical BIB designs, applicable to the designs of series A.

2. The uniqueness of the rectangular association scheme. We shall first prove
the following theorem on the uniqueness:

THEOREM 2.1: If the parameters of a PBIB design N with three associate classes
satisfy the conditions (1.2) and (1.6), i.e., if the design belongs to the series A,
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then the association scheme for its treatments is uniquely determined and s of the

rectangular type (1.4).
Proor: From (1.2) and (1.6) we have, first of all,

U=n1+’n2+n3+1=(1)2—1)+(1)1—1)+(7)1— 1)(1)2—1)+1 = N2,

which is the same as (1.3). Also from (1.2) and (1.6) it follows that the matrices
(pj«) are as given in (1.5).

Let ¢ and 6 be any two treatments of N which are first associates.
Let ¢, - -+, 14, be the n; first associates of ¢ and 6y, - - -, 61, be the n, first
associates of 6. Then ¢ is one of the 6;’s and #is one of the ¢1’s (¢ = 1,2, - - - , n1).
Let us say, for the sake of definiteness, that ¢11 = 6 and 6;; = ¢. Now, since by
(1.6), pi1 = my — 1 = v, — 2, it follows that the sets ¢;; and 6;; have exactly
v2 — 2 = m; — 1 treatments in common. From this and the earlier identifica-
tions ¢1; = 6 and 0y = ¢, it follows that the sets ¢;;and 6;; ( = 2,3, -+, ny)
are identical, i.e., consist of the same treatments. This means that any two
treatments in the set {¢, 0, 612, - -+ , 61} (m1 = v2 — 1), of v, treatments, are
first associates and that the remaining v, — 2 treatments are first associates
of each of them. This implies that the relation of being first associates is sym-
metric as well as transitive for all treatments of the design N. From this it follows
that the » = v, treatments of the design N fall into »; groups of v, treatments
each, such that the relation of being first associates is symmetric as well as
transitive for the treatments of any of the v; groups. It is, therefore, convenient
to designate these groups by

(011; 012, ct 0y 011!2)

@2.1) (61, B2, -+, 0x,)

(0v11 ) 0@'12 y T 001172)'

The property satisfied by any of these groups is that the first associates of
any treatment in the group are the remaining treatments in the same group.

Next, suppose that the second group in (2.1) contains two treatments 6.;
and 6y which are second associates of 6y . This will mean that p3; = 1, which
contradicts the result ps; = O obtained earlier and referred to in (1.5). This
implies that the second, and in general any of the v; — 1 groups after the first,
cannot contain more than one second associate of 6;; . But 6; has exactly
ns = v, — 1 second associates so that the 2nd, 3rd, - -- , vith group in (2.1)
must each contain one and only one second associate of 6y . The same holds for
each of 61, ---, 6, . In general, therefore, the ¢th group contains one and
only one second associate of 6;; when j = 7. Without any loss of generality, we
can assume that 6s;, 63;, - - - , 6,,; are the n, = v; — 1 second associates of 6y; .

Further, we have p3s = ns — 1 = v, — 2, which, by the same type of argument
as before, implies that the treatments 6y;, 62;, - - - , 64,; are such that the relation
of being second associates is symmetric as well as transitive for them. The v = v,
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treatments of N, therefore, can be conveniently divided into v, groups of
treatments each, such that the relation of being second associates is symmetric
as well as transitive for the treatment of any group.

The two modes of classification of the treatments of N for the relation of
first and second association can be superimposed by writing the treatments in
the form of a rectangular array (1.4).

The third associates of any treatment 6;; are, then, by exclusion, the n; =
(v2 — 1)(»1 — 1) = myn, treatments 6;; in the array, where k 5% ¢ and I = j.

The relation of association for the treatments of the design N can thus be
described with the help of the association scheme (1.4), where the treatments
occurring in the same row as 6;; are its first associates, those occurring in the
same column as 6;; are its second associates, and the others are its third associates.
In other words the association scheme is uniquely determined and is of the
rectangular type.

This proves the theorem.

With the help of the association scheme (1.4), we can write down the matrix
NN’ of the design N belonging to the series A in a very convenient form. Let

the rows of N correspond to the treatments 6, 6o, *+ -, Oy, Oo1, <+ Ouy ,
coey Oo1, v v+, 04,0, respectively, in this order. Then the matrix NN’ is seen to
have the following structure: :

A B B
(22) e B

B B A
where 4 is a v; X v, square matrix given by
(2.3) A= (T o )\1)172 + >\1Ev2

and B is a v, X v; square matrix given by
(2.4) B = ()\2 - )\S)I‘vz + X3E’1’1z ’

I,, being the identity matrix of order v, and E,, a square matrix of order v, with
all elements equal to 1. Also the matrix NN’, as written in (2.2), has v; rows and
v; columns. The same result can be summarized in the form of the following

theorem:
TrEOREM 2.2: The matriz NN’ for a design N belonging to the series A is given by

(2.5) NN’ =I,, X (A — B) + E,, X B

where ‘X’ denotes the Kronecker product of matrices and A and B are as defined
in (2.3) and (2.4).

3. Characteristic roots, determinant and the Hasse-Minkowski invariants
of NN'. Let D,, be the v, X v, square matrix given by
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1 1 1 1

1 -1 o 0
(3.1) D,=|1 1 =2 0

1 1 1 — (v — 1)

It should be observed that the matrix D,, is a modified Helmertz matrix.
Moreover, the determinant | D,, | of D,, is clearly

(3.2) | Doy | = (=) {uel),

so that D,, is non-singular. In fact D,, is a semi-orthogonal matrix in the sense
that

(3.3) D,,D,, = diag{v:, 1.2, 2.3, - -+, (v2 — 1)v}

where diag{a:, az, -+, an} is a diagonal matrix of order m whose diagonal
elements are a; , @z, -+ , @, and off-diagonal elements are all zero. It is easy to
verify that the matrix D,, reduces both A and B to diagonal forms. Thus

(3.4) D,,AD,, = diag{vs[r + (v — DN}, 1.2 (r = M), 2.3 (r =M\, -+,
(v — Dve(r — M)}
and
(35) Dy,BD,, = diag{esla + (22 — 1) Mi], 120 — Na), =+ -,
(2 — Dva(N2 — Na)}.

It may be noted that, since the elements of D,, are all integral, the equations
(3.4) and (3.5) can be interpreted to mean that A and B are both rationally
equivalent to the diagonal forms exhibited on the right sides of (3.4) and (3.5).

Now consider the matrix

Dy, Dy, Dy, --- D,
D, -D, 0 .- 0
(36) H=|D,, D, —2D, 0

sz sz D’vz et - (vl - I)Dvg

where D,, is the matrix given by (3.1) and H, as written above, has »; rows and
v columns, every 0 in (3.6) being a square null matrix of order v, X vy . It may
be noted that the matrix H is the Kronecker product D,, X D,, and hence the
determinant | H | of H is given by
(3~7) ’HI = IDvl X sz I = I'D"l lvz'l sz lvl = (_)vl+v2(vll)v2(v2!)vl‘

The characteristic roots of NN’ of (2.2) are the roots of the determinantal
equation in 4:

(3.8) | NN’ — 6I,| = 0
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where I,(v = vw,) is the identity matrix of order v.
From (2.5), we can write this in the form
(3.9) | I,, X {(A — 6I,,) — B} + E,, XB| =0
However, it is easy to verify that
(3.10) H{NN'— 6L} H' = H{I,, X [(A — 6I,,) — Bl + E,, X B} H’
= diag{ouDy,[(A — 6I,,) + (. — 1)BID,, , 1.2 Dy,[(A — 6lI,,) — B]
Dl -+, (n — DouDy[(A — 6I,,) — BID,}

and since D,,AD,, , D,, BD,, and D,,D,, are themselves diagonal ma}trices, )
are D,,{(A — 6I,,) — B} D,, and D,,{(A — 6I,,) + (v — 1)B}D,, . Hence
(3.10) reduces completely to a diagonal matrix. Writing

6 =1k =7+ (va— DM+ (11 — DN+ (01 — 1) (v — 1)As,
b=71r—N+ (1 —1)A2 — Ng),
O =7 — N+ (12— 1)\ — Ng),
03 =1 — N — N+ Ag,
we find that (3.10) reduces to
H{NN' — 6L}H’
= diag{vw.(60 — 0),v:11.2(6, — 8), - - - ,v1(ve — 1)v2(61 — ),
1.20,(0, — 6),1.2-1.2(0; — 8), - -+ , 1.2(v2 — 1)02(65 — 0),

(3.11)

(3.12)

(v1 — Dows (02 — 6), (11 — 101 1.2(65—6), - - -,
(v — Doi(va — Doa(0; — ).
Hence, taking the determinants of both sides, we get
(3.13) | NN’ —6I,|= (60— 0)(6; — 6)"* (6 — )" (65 — g)Cr el

Also the determinant | NN’ | of the matrix NN’ is the product of its char-
acteristic roots. Hence from (3.13) and (3.11) we get the following theorem:
Tueorem 3.1:
(a) The characteristic roots of the mairiz NN’ of the design N of the series A
are 0y, 01, 0y, 05 given by (3.11) and their respective multiplicities are
Oto=1, a1=v2—1=n1, a2=v1-—1=n2,

(314) ag = (01 b 1)(1)2 - 1) = Ng3.

(b) The determinant | NN’ | of the matriz NN’ of the design N s given by
|NN'| = 000;2—10;1—10§v1—1)(v,—l)
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(3.15) = rk{r =M+ (01— 1) Qe = N} Hr = Ne+ (02 — 1) (M — M)}
Ar — N = N NV,
To derive an expression for the Hasse-Minkowski invariant ¢,(NN') of the
matrix NN’, we note that, from (3.10),
HNN'H' = diag{vD,,[4 + (» — 1)BID,, , 1.2 D,,(A — B)D,, ,
2.3 D,,(A — B)D,,, -, (1. — 1)oD,,(A — B)D,,}.
This can be further written as the direct sum of the matrix
uDy[4 + (un — 1)BID,,
and the Kronecker product
diag{1.2, 2.3, - - -, vi(v; — 1)} X {Dy,(4 — B)D,,}.
That is, we can write
HNN'H' = v,D,,{A + (v, — 1)B}D,, + diag{1.2,2.3, - - - , 01 (v — 1)}

(3.16) ,
X {Dwy(4 — B)D.y},

where |+ denotes the direct sum.
We now make use of the following results for the ¢, invariants of the direct

sum and the Kronecker product of matrices:
If P and @ are symmetric matrices with rational elements whose c, invariants

are defined and if
U=P+QandV =P X Q

then
(3.17) e(U) = (—1, —1)p6(P)ep(@)(| P, | Q)5
and
n(n-—1)
(V) = (=1, =1)77" 7 {eo(P)} " {ep(Q)}"(| P |, = 1), 2
(318) m(m—1)

(Ql, -1, = (Pl 1D

where m and n are the orders of P and @ respectively, (cf. [5] and [6] respec-

tively).
Further we know that if N is a non-zero rational number and Bisann X n
matrix whose Hasse-Minkowski invariants are defined, then

n(n+1)
(3.19) es(AB) = ¢,(BY(\, —=1); * (N, | B]);™
where | B | is the determinant of B.
It should be noted that HNN’H’ of (3.16) is rationally equivalent to NN’ and
is a diagonal matrix.
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We are now in a position to prove the following theorem:
TreorEM 3.2: The Hasse-Minkowsks tnvariant c,(NN') of the matriz NN’ for
the destgn N of the series A is given by

eo(NN") = (=1, =1)5(80, = ) p(v160,00) 5 (02 00, 02) 5 (B, 65) 5" 2 "7

X { (81, 82) (02, 05) (65, 1) } 0270
(3.20) va(v2—1) v1(v1—1) (91=1) (93—1) (v1+v3—2)
X (01, _l)p 2 (02, _l)p 2 (03, —l)p 2

X (81, v2) (82, 1) (s, v4);2 7 (05, 02) 377,

if the characteristic roots 6y, 01, 02, 05 of the matriz NN, given by (3.11), are all
non-zero.
Proor: Observe, in the first place, that

(321) D,{A + (»n — 1)B)D,, = diag{vs60,1.20,,2.36, --- , va(v2 — 1)},
and that
(3.22) D,,(A — B)D,, = diag{vs6s, 1.2 05,2.3 6, - -+ , va(vs — 1)065}.

Hence, when the characteristic roots 6o, 6: , 62, 6; are all non-zero, from (3.16)
we find that all the leading principal minor determinants of the rationally equiva-
lent diagonal form of NN’ are different from zero; so that the Hasse-Minkowski
invariants of this diagonal form and consequently that of the matrix NN’ are
defined.

A little algebra shows that

(323) cp{diag(1.2,2.3, - ,v0(vn — 1))} = (=1, —1),,

ep{Dy, [(4 + (5 —1)BI Dy} = (=1, —1),(60, — 1),
(3.24:) vg(ve—1)
(60,607 (61,02) (61, — 1)y = >

¢o{Dyy(A — B)D,,} = (=1, —1),(62, — 1),
(3.25) . vg (ve—1)
(02, 05) % (03,02) (05, — 1) 2

Making use of (3.23), (3.24), (3.25) and (3.17), (3.18) and (3.19), it is
possible to obtain (3.20) after a little calculation.
This completes the proof of the theorem.

4. The non-existence theorems with illustrations. Let N be a design of the
series A characterised by (1.3), (1.5) through (1.7). Let x be any characteristic
root of NN’ for this design. Then there exists a vector x such that

(4.1) XNN'x = x

which shows that x is non-negative. This gives the following theorem:
TueorEM 4.1: For a design tn the series A to exist it is necessary that
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91=7'—)\1+(01—1)(>\2—)\3) 20,
02=T—)2+(02—1)(>\1—)\3) 20,
03=7‘—)\1—>\2+)\3§0.

The following examples illustrate the use of this theorem:
Example 4.1: Consider the symmetric (v = b and hence r = k) PBIB design
of the series A given by

v=>b=24 r=k=3, m =5, ny = 3, ng = 15,
)\1=4, )\2=7, )\3=1;

|_4 0 0 0 0 5 01 4
(pl) =10 0 3|, (Ph)=]0 2 0], (Ph)=]|1 0 2].
0 3 12 5 0 10 4 2 8

The characteristic roots of NN’ for this design are
00 = 64, 01 = 22, 02 = 16, 03 = —2;
and since 6; < 0, Theorem 4.1 is contradicted. Hence the above PBIB is im-

possible.
Example 4.2: Consider the PBIB design of the series given by

v = 30, b = 20, r = 10, k=15, n =4, ng = 5, ng = 20,
)\1 = 10, kz = 8, ks = 3;

30 0 0 0 4 01 3
(Pi) =10 0 5|, (Pl)=]0 4 0], (P)=|1 0 4].
0 5 15 4 0 16 3 4 12

The characteristic roots of NN’ for this design are
0 = 150, 6, = 25, 0y = 30, 0; = —5;

and since f; < 0, Theorem 4.1 is contradicted. Hence the above PBIB design
is impossible.
Example 4.3: Consider the PBIB design of the series A given by

v = 30, b = 50, r = 10, k=6, n = 4, ne = 5, ng = 20,
)\1=5, )\2=6, )\3=0;

30 0 00 4 01 3
(ph) =10 0 5|, (Ph)={0 4 0|, (Pl)=|1 0 4.
05 15 4 0 16 3 4 12

The characteristic roots of NN’ for this design are
00 = 60, 01 = 35, 02 = 24’ 03 = —-1;

and since 6; < 0, Theorem 4.1 is contradicted. Hence the above PBIB design
is impossible.
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In the case of a symmetric PBIB design of the series A we have » = b so that
the matrix N is a square matrix of order v = vw, . The determinant | NN’ | of
the matrix NN’ must therefore be a perfect square when | N | ¢ 0. This con-
dition can be formulated in the form of the theorem:

THEOREM 4.2: A necessary condition for the existence of a symmetric PBIB
design of the series A when | N | ¥ 0 is that

(a) #f v11s even and v, is odd then 0, = 1 — Ne + (v — 1)(A\ — N3) 1s a perfect
square,

(b) if v ts even and vy s odd, then 6; = r — Ny + (v — 1) (A2 — N3) 45 a perfect
square, and

(¢) #f v1 and vy are both even then 616505, (63 = 7 — Ay — N2 + N3), 15 a perfect
square.

The following examples illustrate the application of this theorem:

Example 4.4: Consider the design given by

v =>b = 66, r=FL =14, n =2, ne = 21, ng = 42,
)\1=7, )\2=4:, )\3=2

1 0 0 0 0 2 0 1 1
(ph)=[0 0 21, (P.)=]0 20 O, (P)=|1 0 20].
0 21 21 2 0 40 1 20 20

Clearly this design is a symmetric design (v = b) from the series A. Since v; = n,
+ 1 = 22 is an even integer and v, = n; + 1 = 3 is an odd integer and since
0, =7 — X+ (12— 1)(M — N;) = 20 is not a perfect square, it follows from
Theorem 4.2 that the above PBIB design is impossible. It is easy to verify that

IN| = 0.
It may be observed that the parameters of the above PBIB design are ob-
tained by taking the Kronecker product (cf. [2]) of the BIB designs

Niivy = b = 22, rn=1k= 7, AN=2
and
Nyivy = by = 3, re = ko = 2, )\2 = 1,

of which N, is already known to be non-existent (cf. Shrikhande [4]).
Ezxzample 4.5: Consider the PBIB design given by

v =b = 48, r =k = 10, no=1, ne = 5, ng; = 35

6 0 O 0o 0 7 01 6
(ph) =|0 0 5|, (plu)=|0 4 0], (pju)=|1 0 4|,
0 5 30 7 0 28 6 4 24

which is a symmetric (b = v) design from the series A. Here both v, and v, are
even and the characteristic roots of NN’ for this design are 6, = 100, 6, = 20,
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6y = 34, 6; = 2. This implies that | N | ## 0. Moreover, 6,0:0; = 1360 is not a
perfect square. It follows therefore from Theorem 4.2 that the above design
is impossible.

The Hasse-Minkowski invariant ¢,(NN’) obtained in (3.19) gives us another
non-existence theorem for the symmetric designs of the series A.

Let N be a symmetric design of the series A with | N | # 0. Then the matrix
NN’ = B for this design is obviously rationally equivalent to I, , the identity
matrix of order » = v, . Hence ¢,(NN’) must be +1 for all odd primes p. If,
for any design, ¢,(NN’) = —1 for some odd prime p, then that design will be
impossible.

We state this result as the following theorem:

TarorEM 4.3: If N is a symmetrical design of the series A with | N | 5 0, then
a necessary condition for the design N to exist is that ¢,(NN’) = +1 for all odd
primes p.

The following examples illustrate the use of this theorem.

Example 4.6: Consider the PBIB design given by

v=1>0= 87, r =k =16, n = 28, ng = 2, ng = 56,
)\1=4, >\2=8, )\3=2.

27 0 O 0 0 28 0 1 27
(ph)=[0 0 2|, Pi)=[0 1 0|, Ph)=|1 0 1|.
0 2 54 28 0 28 27 1 27

This is evidently a symmetric design from the series A with | N | % 0. Further
it is easy to verify that c,(NN’) given by (3.19) reduces in this case to (24, 29), ;
further, for p = 3 this becomes ¢;(NN’) = (2, 3); = (2/3) = —1 where (a/p)
is the Legendre symbol of a with respect to the prime p. Thus Theorem 4.3 is
contradicted and therefore the above design is impossible.

It may be observed that the above design has a set of parameters which could
be obtained by taking the Kronecker product of the BIB designs

Niivy = b = 3, == 2, M= 1,
and
Nyiv, = b, = 29, re = ke = 8, N = 2,

of which, N, is proved to be impossible (cf. Shrikhande [4]).
Example 4.7: Consider the PBIB design given by

v =b = 63, r=1F =11, ny = 8, ny = 6, ng = 48,
)\1=4, )\2=5, )\3=1,

™M 0 0 0 0 8 01 7
(pt)=10 0 6|, (Ph)=|0 5 0], (P)=|1 0 5.
0 6 42 8 0 40 7 5 35
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This is obviously a symmetric design from the series A with | N' | # 0. Further
it is easy to verify that the Hasse-Minkowski invariant ¢,(NN’) given by (3.19)
reduces in this case to (30, 7), (30, —1), . For p = 3 this becomes c3(NN') =
(2, 3); = (2/3) = —1, where (a/p) is the Legendre symbol of a with respect
to the prime p. Thus Theorem 4.3 is contradicted and therefore the above PBIB
design is impossible.

5. Summary and acknowledgement. Three non-existence theorems are ob-
tained for the PBIB designs with three associate classes and belonging to a
certain series called the Series A. The first theorem makes use of the fact that the
characteristic roots of the matrix NN’ are always non-negative; the second is an
extension of Schiitzenberger’s result [3] and the third is an extension of Shrik-
hande’s result [4] for symmetrical BIB designs.

I wish to express my sincere thanks to Professor M. C. Chakrabarti for his
kind interest in this work. Also I am indebted to the referee for useful suggestions
especially in connection with Theorem 3.2.
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