BALANCED FACTORIAL EXPERIMENTS'

By B. V. Smar’
Unaversity of Bombay

1. Introduction and summary. Usually, in a factorial experiment, the block
size of the experiment is not large enough to permit all possible treatment com-
binations to be included in a block. Hence we resort to the theory of confounding.
With respect to symmetric factorial designs, the theory of confounding has been
highly developed by Bose [1], Bose and Kishen [2] and Fisher [4], [5]. An excel-
lent summary of the results of this research appears in Kempthorne [6]. Some
examples of asymmetric factorial designs can be found in Yates [14], Cochran and
Cox [3], Li [8], Kempthorne [6] and Nair and Rao [9], [10]. Nair and Rao [11]
have given the statistical analysis of a class of asymmetrical two-factor designs
in considerable detail. The author [13] has considered the problem of achieving
“complete balance” over various interactions in factorial experiments. In the
present paper a class of factorial experiments, balanced factorial experiments
(BFE) (Definition 4.2) is considered. The theorems proved in Section 5 outline
a detailed analysis of BFE’s, including estimates of various interactions at differ-
ent levels. Finally, a method of constructing BFE’s is given in Section 6.

It should be noted that Theorems 5.2 to 5.5 are generalisations of the cor-
responding theorems by Zelen [15], and the method of construction in Section 6
is a general form of the one indicated by Yates [14], Nair and Rao [9], [10] and
Kempthorne [6] (Section 18.7).

2. Notation. Let, there be v treatments, each replicated r times in b blocks of
k plots each. Let N = [n;](¢ = 1,2, --+ ,v;5 = 1,2, --+ , b) be the incidence
matrix of the design, whern n;; is equal to the number of times the ¢th treatment
occurs in the jth block. The set up assumed is

(2.1) Yyi; = p + 6+ bj + ey,

where y;; is the yield of the plot in the jth block to which the 7th treatment is
applied, u is the over all effect, ¢; is the effect of the ith treatment, b; is the effect
of the jth block, and e;; is the experimental error. The effects y, £; , b; are assumed
to be fixed constants, while the errors e;;’s are assumed to be independent normal
variates with mean zero and variance o”. Let T'; be the total yield of all the plots
having the ¢th treatment, B; be the total yield of all the plots of the jth block
and {; be a solution for ¢; in the normal equations. Further denote the column
vectors with elements {T1, T2, -+, TW}, {B1, Bz, -+ , Be}, {t1, 8, -+ - , t,} and
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{t,,%,---, %) by T, B, t and t respectively. It is well known that the reduced
normal equations for the intra-block estimates of treatment contrasts are

(2.2) Q = Ci,
where

(2.3) Q=T - %NB
and

(2.4) C=”ﬂw—%nw,

where I(v) is the v x v Identity matrix. The matrix C defined in (2.4) will be
called the C-matrix of the design.

3. Some useful results.

DeriNiTION 3.1. If I'l = 1(lis a » x 1 matrix), the contrast 1't will be called
a normalised contrast.

DEerFiNITION 3.2. A normalised contrast I't will be called a canonical contrast
of the design, if 1 is a canonical vector of the C-matrix of the design.

LemMA 3.1. A necessary and sufficient condition for a normalised contrast 1't to
be a canonical contrast vs

(3.1) rQ = at,
where
(3.2) 0=r—%ONNU

LemMma 3.2. A canonical contrast U't is estimable, if the 6 given by (3.2) s not
equal to zero and then

(3.3) I't = 1'Q/6
and
(3.4) V('t) = J/6.

LemMa 3.3. Let 1 be a normalised contrast and 60 be given by (3.2). Then each of
the following three conditions tmplies the pther two:

i) 6 =r.
(i) N1 = 0.
(iii) I't is estimable with the minimum variance o°/7.
Then
(3.5) 1'Q =I'T.
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Hence 1'%, its variance and the sum of squares due to I't are the same as those in
randomised block design.

LemMma 3.4. If lit, lét, SN 1.t are n linearly independent contrasts, such that
l:f(i = 1,2, .-+, n) 28 uncorrelated with the estimate of any contrast orthogonal to
all of l;t, and % evefry normalised contrast of the form I't = ailit has the same
variance, then any normalised contrast of the form 1't is a canonical contrast. Further
any two contrasts adit and > bt are uncorrelated, if they are orthogonal.

4. Factorial experiments. Let F,, Fo, - -+ , F, be m factors at s1, S2, -+ , 8m
levels respectively. Let v = 818, - - - s treatments be denoted by the levels of
the factors as (2122 - -+ Z»), Where z; is the level of the sth factor and takes
values 0, 1, - -+, s; — 1. Let {(z122 - - - ) be the effect of the treatment com-
bination (z;%; -+ m). The contrast ) Czyzp...omt(2122 -+ Zm) [Where summa-
tion is over all the values of (2122 - -+ )] Will be called a contrast belonging
to the interaction F; F,, --- F, , if and only if ¢;,zy.-.z,, is & function of the g
levels z, , x4, , * -+, 2;, only and

8j
Zlczlzz...xm =0 for j=14,%, " ,i.
zj=
DEeriNiTION 4.1. “Complete balance” is achieved over an interaction, if
and only if all the normalised contrasts belonging to the same interaction are
estimated with the same variance.
Derinrrion 4.2. An experiment will be called a balanced factorial experiment
(BFE), if the following conditions are satisfied:
(a) Each of the treatments is replicated the same number of times.
(b) Each of the blocks has the same number of plots.
(¢) Estimates of contrasts belonging to different interactions are uncorrelated
with each other.
(d) “Complete balance” is achieved over each of the interactions.
THEOREM 4.1. A normalised contrast belonging to an interaction is a canonical
contrast of a BFE.
The proof of Theorem 4.1 follows from Definition 4.2 and Lemma 3.4.
In a factorial experiment, it is well known that each treatment effect can be
expressed in terms of main effects and interactions as given by

(4.1) =2 i=

m m j—1
t(xlx‘l M xm) = ; t(Fi)z; + 22 Zl t(FiFj)zlz,' + ct

4+ t(FiF2 -+ Fp)maZe -+ T

The {(F;)., is a constant associated with the main effect of the factor F; at the
level z;, the t(FF;)..; is a constant associated with the interaction between
the factors F; and F'; at the levels z; and z; respectively, etc.

In further discussion that follows in Sections 4 and 5, we shall state and prove
results for the first ¢ factors F1 , Fa, - - - , F, only, for the convenience of notation.

However, the results are true for any ¢ factors Fi, , Fi,, -+, Fu, .
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The parameters defined in (4.1) are not all linearly independent and satisfy
the following relations:

8;—1
(4.2) Z t(F\Fz -+ Fo)ayagen, = 0 forj=1,2 ---,q.

zj=0

The estimate of t(FiFz - -+ Fg)z125...2, Will be denoted by ¢(FiFs -+« Fg)ajzy...a, -
Following the notation used by Zelen [15] let us define S-functions as follows:

1 q
(4.3) S(t; F’le e Fq [ 1%y - - - xq) = 1_)_ I Il S; Z/ t(yly2 e ym)’
j=

where Y refers to the sum over all treatments which have the same levels

X1, Xz, + -+, &4 for the ¢ factors F1, F2, -« -, F, respectively. Then, it can be
shown that
aq q Jj=1
S(t; FiFy -+ Fyl|mmy -+ 30) = 2 t(F3)a; 4+ 2 2y t(FiF3) s
(4.4) = =% h=1

+ ct + t(FIFZ e Fq)xlzg---zq )
(45) URFs = Fuyong = (=173 (=)"{w(®),

where {w(t)} denotes the sum of the functions S(¢; ---) involving exactly w
factors out of the q factors Fy, Fo, - -+, F,only.

The equations (4.3) and (4.5) give S-functions and factor-interactions in
terms of treatment effects. We define similar functions in terms of the adjusted
treatment totals Q(y1y2- - -ym) as follows:

(46) S(Q, FiF, --- Fqlxlxg xq) = lf:[ 8; Z' Q(yly2 ym)

v j=1

and
(4.7) QFiFs - F)aragozy = (—1)":;: (—=1)*"{w(Q)},

where D’ is as defined in (4.3) and {w(Q)} denotes the sum of S-functions
for @ involving exactly w factors from ¥;, Fs, - -+ , F, only. It can be shown that
the functions defined in (4.6) and (4.7) satisfy the relations exactly similar to
(4.1), (4.2) and (4.4). ,

LEMMA 4.1. If D Corsy...anl(Zaa - -Twm) 18 any contrast belonging to the g-factor
interaction F1Fs- - -Fy , then it can be expressed as a contrast in terms of the factor
interactions t(F1Fz- - - Fg) 4yzy...2, at different levels but belonging to the same g-factor
interaction. A stmalar result holds also for the corresponding Q-functions.

The proof of Lemma 4.1 follows from (4.1) and (4.2) with a little algebra.

5. Analysis of BFE. The following vectors, matrices, and matrix operators will
be useful in later results.
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(i) t(s;) = the column vector {¢(0), t(1), ---, t(s: — 1)}.
(ii) Q(s;) = the column vector {Q(0), Q(1), --- , Q(s; — 1)}.
(iii) t(F;) = the column vector {{(Fi)o, t(F)1, *++ , t(Fi)e;a}.
(iv) Q(F;) = the column vector {Q(F.)o, Q(Fi)1, -+ , Q(Fi).;1}.
(v) (1) = the column vector {Xo, N\i.
(vi) 8(1) = the column vector {6, 64}.
(vii) I(m) = the m x m Identity matrix.

(viii) I*(m) = the m x m matrix obtained by replacing 0 for 1 in the last row
and last column of I(m).

(ix) Emn = the m x n matrix with all the elements equal to unity.
(X) E(S) = s—%Eal .
(xi) L(s) = an s x 8§ — 1 matrix whose columns are mutually orthogonal

normalised vectors also orthogonal to E(s).
(xii) M(s) = [L(s)[E(s)].
(xiii) N(s) = I(s) — E(s)E’(s) = L(s)L'(s).

(xiv) G(s) = [s _ i]

The operator “X” denotes the Kronecker product of matrices defined by

(lnB amB . . . al,,B

anB axB - - - a.B
(5.1) AXB=a;XB=| ‘ ’

a,,.lB asz . . . amnBJ

The operator “®”’ denotes the symbolic Kronecker product of subscripts and
suffixes defined by the following illustrations:

Q(00)
Q(01)
Q(10)
Q(11) |
Q(20)
Q(21).

(F)) il o

(Q(F:)o Q(Fj)o] _ |Q(FiFj)a

(53) o) @ Lo = |amnl
QUFF,) )

(52) Q(3) ® Q2) =
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TueoreM 5.1. A BFE in m factors F1, Fo, «++, Frat 81, 82, * -+, Sm levels
respectively 1s a PBIB with relevant parameters and conversely. The two treatments
are the pipe- - - Pmth associates, where p; = 1, if the ith factor occurs at the same level
in both the treatments and p; = 0 otherwise; Ap,p,...»,, Will denote the number of times
these treatments occur together in a block. Now, if any contrast belonging to the inter-
action Fy F;,- - - F;, is estimated with the variance

(5-4) ”2/0q1qz-~-qm )
where

11 1f.7=7’117’2 "'77:q;
(5.5) gi = ’

0, otherwise,

then the relation between @’s and N’s s

0(1)®0(1) ® -+ ® 8(1) = — 116(s1) X G(s) X -+ X G(sn)]

(5.6)

P eM1) ® - ®A(1)],
where
(57) 00{)...0 =0 and )\11...1 = - T(k -_ 1).

The proof of Theorem 5.1 follows from Theorem 6.1 of [12], on substituting
m=mg= -+ =my=1and h = m.

TareoreM 5.2. In a BFE, if a normalised contrast belonging to the interaction
FiFs- - -F, is estimated with the variance o*/0, then the estimates of the same inter-
action at different levels are given by

n 1
(5-8) t(Fl FZ e Fq)zwz.“zq = 5 Q(F1F2 et Fq)2122"'zq .

Proor. Using Definition 4.2, Theorem 4.1 and Lemma 3.4, it can be shown
that

(5.9) %HIXHzx"'XH"»‘Q(&)@Q(&)@"‘®Q(s,,.)

=HiXHy X XH, (1) ®t(s) ® -+ ® t(sm),
where

Ll(s')y lf] = 17 27 sy Qs
(5.10) H; = { !

E’(s;), ‘otherwise.

By the substitution of treatment effects in terms of main effects and interactions,
the right hand side of the equation (5.9) can be simplified to

q
(5 11) %.IIISJT% L,(Sl) XL/(Sg) X oo XLI(SQ).
. e

t(F) @tF) ® - ®i(F,).
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The left hand side of the equation (5.9) can also be simplified in the same way,
and we obtain

%L’(sl) XL'(8) X -+ XL'(s)Q(F:) ® Q(F2) ® --- ® Q(F,)

=L'(&) XL'(s2) X -+ XL (8)t(F)) @ {(F2) ® - - ® t(F,).

Then, on introducing the marginal relations (4.2),

(5.12) éM'(sl) XM/ () X -+ X M'(s)Q(F1) ® Q(Fy) ® -+ ® Q(F,)

=M (8) X M'(8:) X - X M'(s)t(F1) ® t(F2) ® - -- ® t(Fy).

Hence, on multiplying both sides by the Kronecker product of the correspon-
ding M matrices, (5.12) simplifies to

(513) Q) ®QF) @ - ® QF.) = {F) @ HF) ® -+ ® H(F.).

This proves Theorem 5.2.

Tueorem 5.3. If, in a BFE, two factor interactions t(FiFy- - -Fg)zzy...c, and
t(FiFiy - Fi,)yype-y, do not have all the factors identical, then their estimates are
uncorrelated.

Proor. It can be seen from (5.9) and (5.13) that the estimates of the factor
interactions are obtained from the contrasts belonging to the corresponding inter-
actions. In a BFE contrasts belonging to different interactions are uncorrelated
and hence the estimates of the factor interactions belonging to different inter-
actions are uncorrelated.

TureoreM 5.4. If, in a BFE, the variance of any normalised contrast belonging
to the g-factor interaction FyFy- - - Fqis o*/0, then the variance of {(F\F,- - “Fo)zizgeez,
is [Li3:(s; — 1)d*/v8 and the covariance between {(F\Fs-- “Fo)ryzyozy and
{(F\F,- - “Fo)yys--uy » Provided exactly h of the x; are equal to the corresponding
yi,is (=)' (s; —1)d*/v8, where []’ represents the product for those factors
for which x; = y; .

Proor. The right hand side of equation (5.9) represents a set of normalised
orthogonal contrasts belonging to the interaction FiF;: - -F,. Hence by Lemma
3.4, its variance-covariance matrix is (¢*/6)I. Consequently, the variance-covari-
ance matrix of (5.11) can be written as

(5.14) T Lo = 1) XX = 1) X -+ X Ty = 1),

Hence it can be deduced that the variance-covariance matrix of the right hand
side of (5.12) is

(5.15) E;I*(sl) XI*(s2) X - -+ XT*(s,).
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Now, on applying
(5.16) M(s)I*(s)M'(s) = L(s)L'(s) = N(s),

it follows that the variance-covariance matrix of the right hand side of the
equation (5.13) is

(5.17) % Lo Nis) X N(sn) X -+ X ().

The required expressions for variances and covariances can be obtained from
(5.17).

TuaeorEM 5.5. If, in a BFE, the variance of any normalised contrast belonging to
the interaction FyFy- - - F o is 6°/0, then the sum of squares due to the same interaction
8 given by

q -1 -
<,I=I 31‘) 0D E(F1Fy- - Fo) oy .z
q —lv .
=(H3j> EZQ(FIF2"'Fq)xlzz...zq,

J=1

(5.18)

where the summation is over all possible values of (21xs- - - 4). Its expected value s

q q
(5.19) (H sj)-l 08 X UFFs - Foimn + 11 (55 = 1),
j=1

J=1

and it is distributed as o*x* variate with [[3-1(s; — 1) degrees of freedom under the
null hypothesis that the interaction F1iFs: - -F, is zero at all the levels.

Theorems 5.1 to 5.5 indicate a method of analysis for BFE. This method is
useful only when estimates of interactions at different levels are required. For
obtaining the analysis of variance table, a simple course would be to employ the
method outlined in [13].

6. A method of construction. In this section we shall derive a method of con-
structing a BFE in (m + n) factors from two known BFE’s in (n + 1) factors
and m factors respectively.

The method employs replacement of different levels of a factor in one design,
by the distinct sets of treatment combinations forming the blocks of another
design. By the statement, that the level xy of the first factor in the treatment
(@oxy- - -x,) is replaced by the block (of another design) containing treatments
(yuyre* *Yim), (YnYa2:*Yam), =+, (YaYre' * +Yum) ; We shall mean that the treat-
ment (xor;---,) is replaced by a set of k treatments (yays: : *YinT1Ze: - - Zn),
1 = 1,2, .-+, & respectively; these treatments belong to a new factorial design
in (m + n) factors. As an illustration, if the block A contains treatments (120),
(203), (111) and (112), then the statement that the level 0 of the first factor
(0120) is replaced by the block A will mean that the treatment (0120) is re-
placed by a set of 4 treatments (120210), (203210), (111210) and (112210).

Further, for employing this method, we need a known BFE with some specific
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properties. We shall assume that there exists a BFE in m factors Fy, Fo, -+ ,
F, at s1, 82, -, s» levels respectively with s;s;+ - -s, = v* treatments, each
replicated r* times in b* blocks of k* plots each, with the incidence matrix
(6.1) N* = [nd;] = [A1]Ao|- -] Ayal.

Further assume that b* = pgq, and it is possible to put pq blocks in p groups,
each containing ¢ blocks, in such a way that the design consisting of p blocks
formed by adding together all the blocks of a group is a BFE. Without loss of
generality it can be assumed that the incidence matrix of this BFE is

(62) [Z A; ; ApH+,-] :

It can be seen that for a resolvable design N*, the corresponding design N},
exists with p = r*. Another simple example is that the design N* is a 2° factorial
design in 3 factors 4, B and C, in 4 blocks of two plots each, obtained by con-
founding the interactions AB, BC and AC; and the design N> is the design in 2
blocks of 4 plots each, formed by confounding the interaction AB only.

THEOREM 6.1. Let there be a BFE N in (n + 1) factors Fo, Fpny1, Frps, -+,
Foin @t S0y Smi1, Smi2, ** *5 Smyn levels respectively (so = q),in b blocks of k plots
each (with r replications). Also let there be two BFE’s N* and N,,q as given by
(6.1) and (6.2). Now, if the level j — 1 of the factor F, is replaced by the block
Aigri (G =1,2, -+, q) in each of the treatments of N, then the design obtained
by adjoining the p designs so formed (forti = 0,1, ---,p — 1)isaBFEnm + n
factors with rr* replications in bp blocks of kk* plots each.

Proor: Let the incidence matrix of the BFE in n + 1 factors Fo, Fpny1,

Fm+2y"' 7Fm+nbe
N,
N,

(6.3) N=’ ’ l

a+5

where N; is @ matric of Smi1Smi2* * *Smin = U rOWS corresponding to v treatments in
each of which the factor Fy occurs at the same level j — 1, and further that the order
of these v combinations in each of the sub-matrzces 18 the same. Then the incidence
matriz of the constructed design is

= I::=Zl A; X N; ]; Agi;
Now from Theorem 4.1, it can be shown that
NN; = N,N; = U, say;
N.N; = N\N; = W, say, if i  jand 1 k.

[t
Z Am~q+j X Nj] .

i=1

(6.4)
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This equivalent to the fact that C-matrix of a BFE is invariant under renaming
of the levels of a factor or is symmetric with respect to all levels of any one of
the factors. From the equations (6.3) and (6.4), we have

(6.5) NN =I(q) X (U—-W) + E,, X W.
Let I'(v)t(v) (where t(v) is a column vector representing » combination of the
n factors Fri1, Frmyz, -+, Fuyn and t(v) isa (v x 1) vector) be a normalised

contrast belonging to the interaction F; F,,---F, for a design in n factors.
Similarly let 1'(¢)t(q) be a normalised contrast in g levels of the factor F, only.
In the design N, let the variances of the estimates of the contrasts I'(g) X
I(v)t(q) ® t(v) and E'(¢g) X I'(v)t(q) ® t(v) be ¢°/61a and o*/6oa respectively;
612 and 6oq are canonical roots of the C-matrix of N corresponding the normalised
contrasts belonging to the interactions FoF,F;,---F, and F,F,,-- -F,, re-
spectively. Then from Theroem 4.1 and Lemma 3.1, we have

NN'1(g) X I(v) = k(r — 612)1(q). X 1(v),

(6.6)
NN'E(q) X 1(v) = k(r — 6,)E(g) X 1(v).

Writing k(r — 61a) = s and k(r — 6a) = voa, say, and substituting NN’
from (6.5), we can deduce that

Ul(v) — Wi(v) = y1d(v),

(6.7)
Ul(v) + (¢ — 1)WI(v) = ol (v).

Now let 1'(v*)t(v*) be a normalised contrast belonging to an interaction
F;jF;- - --F; i in an m factor-design in F; , F2 y oty o only Let the variance of
its estimate in the two designs N* and N,,q be ¢ / 6 and ¢”/6, respectively; also
let k*(r* — 6;) = ¢y and gk*(r* — 6.) = ¢, . Then by Theorem 4.1 and Lemma
3.1, 1(v*) is a canonical vector of N*N* and N3, N&. ; and

(Z AiA:) 10%) = gal(o®),

=1

5 (g Aim)(:; Aéqﬂ-) 10%) = gl(o).

1=0

(6.8)

Now, we have

'3
...

HH {i i Atq+] 1q+l X NNI}

= =1 1l=1

o

Hence, from (6.4) and (6.5),

(6.9) HH = I <i AW.)(:; AW)} X W + Z AA! X (U — W).

\z=0 = i=1

i=
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Therefore

HE'L(v*) X 1(0) = {H (2 aes)(E Azm)} 10%) X W)

: = =1

1=

rg
+ (3 am) 10 x @ - W,
=1
Applying the results in (6.7) and (6.8), we obtain

(6.10) HH1(v*) X 1(») = = {¢oa(Yoa — ¥1a) + ¥apua} 1(v*) X1(v).

L]
q
From (6.10), it follows that 1(»*) X 1(v) is a canonical vector of the matrix
HH’, hence I'(v*) X 1(»)t(v*) ® t(v) is a canonical contrast of the design H
and its variance is ¢/, where kk*(rr* — 0) = ¥2/2(Yoa — ¥1a) + ¥a¥ra. Therefore

(611) 7‘7‘* — 0 = (1‘* - 02)(01d bl 004) + (7‘* - 01)(7‘ - old).

If the symbol L with the corresponding suffixes denotes the loss of information
(as compared with a randomised block design) in each case, then

(6.12) L = Ly(Loa — Lya) + LiLya.

The contrasts belonging to an interaction of (m + n) factors can be formed
by the Kronecker product of the contrasts in the m factors and n factors sepa-
rately. Hence, from equations (6.10) and (6.11), it follows that the every
contrast belonging to the same interaction F;F;,---F; F;F;,--F;, is estimated
with the same variance ¢°/0, in the design H ; therefore it is a BFE.

Thus Theorem 6.1 is proved.

The variance of the estimate of the contrast 1'(v*) X E’'(v)t(v*) ® t(v) can
be obtained from 6.11 by putting 6.s = 0 and taking ¢”/6y, as the variance of
the estimate of a normalised contrast belonging to the main effect of Fy in the
design N. Similarly, the variance of the estimate of the contrast E’(v*) X
I'(»)t(v*) ® t(v) can be obtained from 6.11 by putting 6 = 6, = 0.

THEOREM 6.2. Let there be a BFE N, in (n + 1) factors Fo, Fmir, Fmys,

cty Fogn Gt S0y Smi1, Smae,y ** *y Smn levels respectively, in b blocks of k plots each.
Also let there be another BFE Ng in m factors F1, Fo, -+, Frnat 81, 82, ***, Sm
levels respectively, in b* blocks of k* plots each. If k* = sy, then on substituting s
levels of the factor Fo in N, by so = k* distinct treatments of a block of Ng, we
obtain b new blocks corresponding to each of the blocks of Ng . Then the design ob-
tained by taking all the bb* blocks so formed is a BFE in (m + n) factors.

Theorem 6.2 appears to be different from Theorem 6.1. However, on a close
examination, Theorem 6.2 is seen to be a particular case of Theorem 6.1, on
taking N = N, , N* to be a BFE in b*k* blocks of 1 plot each and Nj, = N;
with p = b* and ¢ = k*. (N* is a BFE in the sense that information on every
contrast is zero.) From this analogy, the proof of Theorem 6.2 follows exactly
on the same lines as Theorem 6.1.
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In Theorems 6.1 and 6.2 we have replaced the levels of the first factor F, .
It is known that by permuting factors and correspondingly rewriting each of the
treatments the design remains the same; it only means that the treatments are
given new names. Hence, in practice the replacement as in Theorems 6.1 and
6.2 can be carried out for any intermediate factor. The proper rearrangement of
the factors and the renaming of the treatments can be made where necessary.

There are many BFE’s known for 3™ x 2" type, but no design is available for
3’ x 27 in blocks of 6 plots each. We shall construct two such designs by the
above method.

ExampLE 6.1. If we take N, equal to the 3 x 2° design given in Cochran and
Cox ([3], plan 6.9, p. 240), and Nj as the 3° BFE in 6 blocks of 3 plots each,
obtained by confounding the first order interaction between the two facrors, then,
on applying Theorem 6.2, we obtain a 3 X 2* design in 36 blocks of 6 plots each.

ExaMpLE 6.2. Similarly, if we take N, equal to the 3° x 2 design given in
Cochran and Cox ([3], plan 6.11, p. 241), and N as the 2° BFE in 2 blocks of 2
plots each, obtained by confounding the first order interaction, then, on applying
Theorem 6.2, we obtained a 3 x 2° design in 24 blocks of 6 plots each.

ExampLE 6.3. Take the design N* to be the following design in 2 x 3 in 6
blocks of 2 plots each.

The Plan of the Design.

Block Number 1 2 3 4 5 6
Treatments 00 01 02 00 02 01
11 12 10 12 11 10

The blocks 1, 2, 3 and 4, 5, 6 form two complete replications, so we can take
N33 as the randomised block with two replications. Now, let us take a 5 x 3
design in 20 blocks of 3 plots each, given by Rao ([12], p. 169). Then on applying
Theorem 6.1, we obtain a 2 x 3 x 5 BFE in 40 blocks of 6 plots each (r = 8).

7. Acknowledgment. The author is grateful to Professor M. C. Chakrabarti
for his help and guidance.
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