AN ELEMENTARY PROOF OF THE AEP OF INFORMATION
THEORY'

By A. J. THOMASIAN
Unaversity of California, Berkeley

1. Summary. Properties of the sequence of random variables —(1/n) log p
are obtained for an arbitrary, not necessarily ergodic or stationary, information
source. These permit an elementary combinatorial proof of the AEP (asymptotic
equipartition property).

2. Definitions and introduction. Let A be a set of r = 2 symbols and let 4™
be the set of n-tuples from A. We call A an alphabet, and an element of 4™ a
message of length n. Let A’ be the set of infinite sequences (y1, ¥z, - - - ) where
each y; € A, and let P be a probability distribution on the o-field of subsets of A’
determined by the cylinder sets. We call (A, P) an information source and de-
fine a sequence of nonnegative random variables X, by

Xﬂ(ylyyzﬁ'”)
= —nlog PlYi=a1, -, Ya=y fPYi=y, ,Va=1y]>0
=0 fPYi=y, -, Ya=uy]=0

where all our logarithms are to the base 2. In extending Shannon’s work [5], Me-
Millan [4] introduced the definition that a source has the AEP if X, converges
in probability to a constant. For a stationary ergodic process, McMillan [4]
proved that X, converged to the constant given in Section 4 in L' mean and in
probability; while Breiman [1] obtained convergence with probability one. Both
proofs use an ergodic theorem and martingales. The proofs of Feinstein [2] and
Khinchin [3] follow McMillan.

For any integer n and any number B3, define D,(8) to be the largest probability
of any subset of A which has at most 2°" elements. In Section 3 we obtain rela-
tions between P[X, < Bl, D.(B), and EX, for an arbitrary source. In Section 4
we restrict ourselves to stationary ergodic sources and use D,(8) and Theorem 3
to prove the AEP. Except for two simple properties of entropy, Shannon [5] or
Khinchin [3], p. 4 and p. 6, the paper is self-contained.

Henceforth we will consider a fixed source (A’, P) and its associated r, X, ,

D.(B).

3. Relations between P(X, < 8), D.(8), and EX,.
Lemma 1. For all ¢ > 0, 83

PIX. < 8] < Du(8) < PIX, S 8+ ¢ + 27"
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Proo¥. Let B be the subset of elements of 4™ which have positive probability
and which belong to [X. = g], and let M be the number of elements in B. Any
point in B has probability = 27" so that 1 = P[X,, < 8] = M2™". Thus M < 2°"
so that D,(8) = P(B) and the left-hand inequality is proved.

Let F C A™ have at most 2°" elements and satisfy P(F) = D.(8). Then
D.(8) = P(F) = P(FN[X, =8+ ¢€) + PFN[X.> B+ ¢€)

= PIX, = 8+ ¢ + 27277,
and the right-hand inequality is proved.

LeMMa 2. Let B, be any sequence of numbers. Then

(a) Du(Bn + €) = 1 for all ¢ > 0 if and only if P[X, < B. + €] = 1 for all
e > 0.

(b) D.(B. — €) => 0 for all € > 0 if and only if P[X, < B» — € =0 for all
e > 0.

Proor. Immediate from Lemma 1.

We pause for a moment to ask an incidental question. If there is a number 3
such that X, £ B8 (X. converges in probability to 8) and if for each n we select
Bx so that D,(8,) is approximately .8, then, must 8, = 82 The answer is yes by
Theorem 1, which generalizes similar theorems proved by Shannon [5], Theorem
4, and Khinchin [3], Theorem 3, p. 20.

TaeorREM 1. If a, B, B, are numbers such that X, £ B0 <a<landa<
D.(8:) < 1 — o for all n, then 8, = B.

Proor. If 8. does not converge to 8, then there is an ¢ > 0 and a subsequence
B.r such that either 8,» = B8 + e for all n’, or B, £ B — ¢ for all n’. In either
case the assumption o < D,(8,) < 1 — « is contradicted by Lemma 2 with
8. replaced by 8, so that Theorem 1 is proved.

Theorem 2 and Lemma 4 show that to some extent the random variables X,
enjoy some of the properties of a sequence of uniformly bounded random vari-
ables. The proofs are based on

Lemma 3. For any numbers e > 0,8 > 0,8 = 0

(a) 0P[X, < B — 8] = (B— EX,) + ¢

+ (log ")P[X, > B + ¢ — n'P[X, > B + ¢ log P[X, > 8 + ¢

(b) P[X, > 6+ d < (EX, — 6) + b + (8 — 9)PIXa< 8 — 3.

Proor. We first prove (a) EX, = J.[x,.<p_,;] X.dP + I[ﬂ_sgx"§ﬂ+e] X,.dP +
J-[Xn>ﬂ+‘] X, dP. Thus

EX, = (B—98PX, <B—08+ B+ el —PX, <B—3])
+ X.dP = B+ € — (8 4+ e)P[X. < B — 9

[Xp>B+e]
+ [ X, dP,
[Xn>B+¢]
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so that we need only show that [(x,>s+q X2 dP < (logr)p — 1/n p log p where
= P[X, > 8 + €. Now we recall, Khinchin [3], p. 4, that if p. > 0 and
lec p: = p, then

- nglog%i = log k,
so that
k
—Z;,lpilogpi < plogk — plogp.

Since A‘™ has r™ points we see that [ix,>s+q XadP < 1/n[p log r* — p log p]
and the proof of part (a) is completed.

To prove part (b) we start from the same initial decompos1t10n of EX, as in
part (a) and obtain

EX,2 (B—8)(1—PX,<B8—8—PX,>B+¢)+ B+ e)P[Xo.>B8+ ¢

2 (B—98) —(B—08)PX.<B—38l+ (3+ e)P[Xu> B+,

so that part (b) is proved.
TueoreM 2. If for some B we have X, £ B then EX, — B.

Proor. Immediate from Lemma 3.
The next result in a sense permits us to eliminate half of our task whenever we

try to prove that X, — EX, £l 0.
Lemma 4. P[X, £ EX, + ¢ — 1 for all € > 0 if and only if

PX, S EX,— ¢—0
for all € > 0.
Proor. Immediate from Lemma 3 when 8 is replaced by EX, .
TureoreM 3. If EX, converges to some number B and any one of
P[Xn§B+e]_)la P[Xﬂéﬁ—"e]'_)oa
D.(B+ € —1, Du(B— ¢ —0

18 true for all € > 0, then X, £ B.
Proor. Immediate from Lemmas 2 and 4.

4. Proof of the AEP. Henceforth we will consider only stationary sources. Thus
we assume, for all k = 1 and for all (g1, -+, yx) € A® | that

PlYjiu =y, Yige = il

is independent of j = 0. For any m = 2, I e A™™ je A we mean by (I, j)
that element of A™ whose first m — 1 coordinates agree with I and whose last
coordinate is j; and we define q; = P(I) and q,;; = P(1,5)/P(I) for P(I) > 0.
Let Hn = —2_ qiq1;log qr;, where the sum is over all (I, j) with ¢ > 0.
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Clearly H,, = 0 and it is well known, Khinchin {3], p. 6, that H,, < log r is non-
increasing so that

EX, = 3 H, - H = lim H,.
n j=1
If X, converges in probability to some constant, then we know from Theorem
2 that this constant must be H.

‘For a given m = 2, and I e A, je A, n we define the random variable
NI = Nij(y1, y2, -+ ) as the number of integers t with1 <71 <n—m + 1
such that (yi, ¥ss1, *** , Yizma) = (I, 7). We will call a stationary source
ergodic if for all m, I, j

Nii/n —I;.‘IIQH .

This definition of ergodic is intuitively appealing and it is precisely this property
which we will use in our proof of the AEP. It is easy to show, Khinchin (3], p. 49,
that our definition of ergodic is equivalent to the usual one.

Taeorem 4. X, RNy for any stationary ergodic source.

Proor. It is clear from Theorem 3 that it is sufficient to prove that for all
m, € > 0 we have D,(H, + ¢) — 1. We will do this by exhibiting, for every m,
e > 0, a sequence of sets B, © A™ with P(B,) — 1 and

M(B,) £ 2¥n*on for all large n

where M (B,) is the number of elements in B, .
Let m, ¢ > 0 be given, and for arbitrary § > 0 define B, as the set of
(1, Y2, -+ ) such that

N7j(y1,y2, )

" — qgr;| =6 forall I,j with ¢.q;; > 0

and
Nii(y1, %2, -+ ) =0 forallI,j withg; = 0orgq;; = 0.

Clearly B, € A and P(B,) — 1, so that we need only bound M(B,) appro-
priately, to complete the proof. We now use the ¢r;, ¢r to define a new stochastic
process, with probability distribution @ on A’, which is to be a multiple Markov
chain. Thus we start our @ process off with ¢; as the initial distribution and use
q1; for our transition probabilities. For the @ process, for any n = m and any

(Y1, 0+, yn) e A",
we have

QY =y | Yi =9y, , Yoy = ynl
= Q[Yn = ynl Yn—-m+l = Yn—m41,y " Yn—l = yn-I];
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that is, the conditional probabilities of future states depend only on the m — 1
past states. Now for any (y1, ---, y») € B, we have

Qys, -+, yn) = qr I (gy)Mti0rww
where g+ > 0 and the product is over all (I, j) with q:q;; > 0. Since

(Y1, +** , Yn) € By
we have

N;.J'(yl R yn) = (QIQI]' + B)n,
so that

Qyr, -+, yn) = Wam)"" (T ¢2i)° I (@) @¥]" = 27Fmton,

where the last inequality is obtained for & small enough and n large enough so
that (¢r)""(I] ¢;)® = 27°. Under these conditions -

1= Q(B,) = 27""""M (B,),
and the proof is completed.
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