SOME PROPERTIES OF A CLASS OF BAYES TWO-STAGE TESTS

By MORRIS SKIBINSKY

Purdue Unaversity!

Summary. Let X be a normal random variable with variance one and mean
either =a/2, where a is a given positive constant. Let Cn(m = 0) denote the
class of all two-stage rules with first sample size of m for deciding, after two
successive samples of independent observations on X, which of the two mean
values is correct. This paper investigates the class of Bayes rules in Cn,
parametrized by @ prior: probabilities on the hypotheses, and simple wrong
decision losses. The cost per observation is taken throughout to be unity.

Section 1 gives some general properties of Bayes rules in C,, for decisions be-
tween any two continuous densities for X; Sections 2, 3, and 4 concern the
densities specified above. Section 2 consists of a detailed development of Bayes
second sample size properties in terms of the Bayes parameters and first sample
outcomes. For example, Theorem 2.1 gives non-trivial lower and upper bounds
for positive values of the Bayes second sample size corresponding to any fixed
value for the minimum wrong decision loss. In Section 3, sufficient conditions
are given under which the losses may be chosen so as to obtain Bayes rules with
preassigned invariant error probabilities. (Invariance is taken with respect to
changes in the prior probabilities.) It is shown how this result leads to rules which
minimize the maximum expected sample size among rules in C, with error
probabilities less than or equal to specified values. An illustrative example is

considered for the case when these specified bounds are equal. The selection of an

optimum first sample size for this example is treated in Section 4. The resulting
rule has the above described good property among all two-stage rules (of any
first sample size) subject to these bounds. Tables are included giving optimum
first and second sample sizes and the values of auxiliary functions when this
common bound on the error probabilities is .05 and .01.

1. Introduction. Let f, and f; be two given probability densities, and suppose
that X is a random variable which has a probability density known, a priors, to
be either f or f; . By the decision ¢ we shall mean the decision to accept f; as the
true density of X. Unless otherwise explicitly noted, the index 7 will always take
on the values 0, 1. Our problem is parametrized by four positive numbers, g; , W5,
with
(1.1) go+ g =1

It will be helpful to regard g: as the “a priori probability” of f;, and W, as
the loss incurred when f; is the density of X, and the decision 1 — ¢ is made,
although this interpretation is not essential.
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1 Work on Section 4 was done at the Brookhaven National Laboratory.
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The a priori probabilities, in view of (1.1), are uniquely determined by their
ratio, ¢ = go/g: . The losses are uniquely determined by their ratio and minimum,
W = Wo/Wi, M = min (W,, W;). These three numbers in turn uniquely
determine the a priori probabilities and losses. i.e.

go=9/1+¢9),0=1/(1+g), and We= My(W), W= My(1/W),

where
_iL =1
“n_{a t=1

We shall refer as convenience requires, sometimes to one, (go, g1, Wo, W1),
sometimes to the other, (g, W, M), of these two equivalent sets of parameters.

Let X1, X, -- - denote a sequence of independent random variables identically
distributed with X. We shall refer to the members of this sequence as observa-
tions. Denote by X; the vector of the first j observations. Let E;- denote the
expectation operator under f;; E;(-| Xi), the conditional expectation, under
fi, given the first k observations; and E(-), the operator, goEo(-) + ¢:E:(-).

We shall consider the class, C , of two-stage rules S for deciding between fo
and f; which depend on a non-negative first sample size m; a non-negative second
sample size, vn(Xn), dependent on the outcome of the first sample; and a
randomized terminal decision probability, D,(X,),n = m + vn(Xn), dependent
on the outcome of both samples, where we must accept f; with this probability
or fo with one minus this probability. We suppose, for m > 0, that the second
sample size and terminal decision functions are always measurable with respect
to m and n dimensional Borel sets, respectively, and that the expectations, de-
fined below, exist. It can be shown that no loss in generality derives, in the
present case, from failure to consider procedures which randomize first and
second sample sizes.

The expected overall sample size, under f; , associated with a rule S in Cp, , is
8:(S) = m 4+ Ewn.(Xn). The probability, under f; , that it will lead to decision
1 — ¢, may be written

Q‘L(S) = Eivim(xm ) v,,,(Xm)),
where
Vin(Xm, ») =i + (1 — 20)EDmis(Xmiv)| X

is the conditional probability, under f; , given the first sample observations (and
second sample size equal to »), that the rule will lead to decision, 1 — <.
The average risk associated with a rule, S, in C,, is defined to be

1
(1.2) R(g, W, M| 8) = 2 gd8:(8) + WQu(S)].
We define a Bayes two-stage rule (with respect to g, W, M), for deciding between

foand fi to be a rule S in C,, for which »,, and D, minimize the average risk.
It is easy to show that a terminal decision function which minimizes the average
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risk with respect to any given triplet of parameters, g, W, M, for any overall
sample size n and any overall sample X, is given by

(1.3) Di(Xu, gW) = (1, %,0)

according as [ -1 /1(X;)/fo(X;)(>, =, <)gW, where the choice of % in the
case of equality has been made simply for convenience in later definitions, and
the product is defined to be one, when n = 0.

We may express the average risk (1.2) in the form

R(g, W, M |8) = m + ELn(Xm, vu(Xn), g, W, M),
where

1
(1.4) Ln(Xm,v, 9, W, M) = » + .Z;’W,-g..m(xm)vm(xm, v)

is the conditional average expected loss associated with S, given the first sample
observations, X, , and second sample size equal to », and

tn (%) = 0 JL1(X) / 3 00 LX)

is the “a posterior: probability,” given the first sample observations, that f; is
the density of X.

Since the values of L., are always bounded below by », there must exist a
second sample size which minimizes the average risk with respect to any given
triplet of parameters, g, W, M, and first sample outcome X,, . When the terminal
decision function is given by (1.3), we shall denote the values of such a function
by va(Xm, g, W, M). The form of the terminal decision function (1.3) then
implies that 0 < v(Xm, g, W, M) =< min [Wogon(Xn), Wigin(Xm)] = M. We
shall refer to vy, as a Bayes second sample size function. In an analogous way it
can be shown that a Bayes first sample size exists and must always lie in the
interval [0, 2M].

Let S*(g, W, M) denote the rule in C. with second sample size function,
vy , and terminal decision function (1.3). Clearly, S*(g, W, M) is a Bayes rule.
We state the following immediate consequence of this fact for later reference.

Lemma 1.1. If S is any rule in Cn such that Q:(S) =< Qi:(S*(g, W, M)), then
D0 gi8(S*(g, W, M)) = 2i0g:8:(8).

2. The Bayes second sample size function. In that which follows, we shall be
concerned with the class of two-stage rules S*(g, W, M), defined above, for an
arbitrary value of ¢, as W and M are allowed to vary. The problem will be to
distinguish specifically between the two densities

(2.1) fi(w) = (2m) " exp {—}[z + (3 — 0)a]’}

(where a is some given positive constant). We shall throughout use the notation

s0) = (V)™ [ " exp (=341 d
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The present section contains an outline of basic functional properties associ-
ated with the Bayes second sample size and related functions, arranged as a
sequence of lemmas and theorems in the order of their dependence. Proofs are
mostly omitted due to space requirements. Some of greater interest or importance
are sketched.

In view of the specified densities f;, we may write our terminal decision func-
tion (1.3) as D:(Xn, gW) = (1, %, 0) according as anX,(>, =, <) IngW,
where X, = > 7 X;/n,n > 0, X, = 0.

The Bayes second sample size vm(Xn, g, W, M) associated with the rule
S*(g, W, M) is, for fixed values of its arguments, a value of » = 0, with respect
to which (1.4) is minimum. For convenience in treatment, we may (again in
view of the specified densities) express the function (1.4) in the following form.

Lu(Xm, v, 9, W, M) = a”°&(d’», amX,, — IngW, W, ’M),

where

(22) L@y 46w =y + w(Olaly, ) + daly, =1/ + e,
for0 =y, ¢,pu < o, —o <t < o, and

(2.3) a(y, t) = ¢(:5Vy — t/vy), y > 0,
a(0, t) :,,Ef? a(y, t) = (0,4, 1) ast (<, =, >)0.

Observe that

(24) Ly, =4, 1/5,n) = &y, 4§, u).

Lemma 2.1. For fized, positive ¢, u, the equation £/dy = 0,
(a) has 2 positive roots in y whenever —i(1/¢, u) < t < i(¢, u), t = 0,

(b) 1 t =0,
(C) 1 t = —i(l/g‘) ”’) ort = f(g‘) l"')y
(d) 0 otherwise,

where £(¢, 1) is the unique positive root in ¢ of the equation
(0£/3y)y=ery = 0, G(t) =2(v/E+1—1).

With respect to its argument y the function £ has, in case (a), a unique rela-
tive maximum at the smaller, and a unique relative minimum at the larger of
the two roots; in case (b), it has a unique absolute minimum at the single root;
in case (c¢), £ is strictly increasing in y, except at the single root; in case (d), it
is strictly increasing in y.

We note that the function G(t), which is defined in the above lemma, is for
all ¢, p > 0, and all ¢, the unique root in y of 8°€/d9y* = 0.

Lemma 2.2. (¢, p) is

(1) for fixed u > 0, a positive, bounded function of ¢ > 0, strictly monotonic to
either side of @ minimum at ¢ = 1.
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(2) for fized ¢ > 0, a strictly increasing function of u which tends to 0 as u — 0,
and to ©, as p — o (uniformly for all ¢ > 0).

(3) a continuous function of non-negative ¢ and positive .

LeMmMma 2.3.

(1), For any fixed positive ¢, bounded away from zero, lim, . [£(¢, u)/In p] = 1.

(2) limye, limgao 8(5, 1) /W] = 1/16m.

Let

A ={({tp):—o <t <o, fu> 0,

Ao ={(t, 5, w):t =0,8u >0},

A =t 5w —i1/5, 0) <t < n), 60> 0

Ao ={(t, 5, w)t = —i(1/¢, w) ort = 1(5, 1), &, 0 > O},

A =A4UA4,.
For all (¢, ¢, u) € A, , we define §(¢, ¢, 1) to be either the larger or the unique
root in y of the equation: £/dy = 0. By Lemma 2.1, £ has a unique relative
minimum with respect to y at y = ¢, for all (¢, ¢, u) € A. On the other hand, £

is absolutely minimum at y = 0, for all (¢, {, p) € A — A.
Now for all (¢, ¢, u) € 45, let

(25) U(t) g-) ”’) = £(g(t7 f; p’)) t) g.a l"') - £(07 t: f, l"')'
and define

(t, & w) e Ay and U(L, ¢, p) < 0,

% _ Z?(t, $ ”’))
(26) Yy (ta g" l"’) - {O, elsewhere in A.

Observe that by (2.4),
(27) yA(ty f, l"’) = g(—t’ 1/‘(7 ”’))

and that this symmetry holds also for U and *.
LemMma 2.4.

(1) £ has a unique absolute minimum with respect to y at y = y*, for all
(8, ¢, n) € A with the exception of those points for which U(t, ¢, u) = 0. When
U@, ¢, ) = 0, £ vs absolutely minimum with respect to y at both y = y* = 0
andy = § > 0.

(2) y*(t, ¢, ») is bounded above by £(0, ¢, &, ) = wp()e™ P/ (1 + ge') < p.

(3) U(t, ¢, u) < 0 implies that (t, ¢, u) € A.

(4) U, ¢, u) <O.

It will be convenient for our purpose from this point on to regard any second
sample size v as ranging over the non-negative real numbers rather than re-
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stricting it to 0 and the positive integers. As a consequence of this relaxation, it
follows from (2.1) and part (1) of the above lemma, that except when

(2.8) U(amXn — IngW, W, a’M) = 0,
the Bayes second sample size function is unique and indeed
(2.9) (X, g, W, M) = ¢ y*(amX,, — In gW, W, a’M).

Thus, in effect, the Bayes second sample size is reduced to dependence on only
three arguments. In the exceptional case, which will be shown always to have
probability zero, we may, by part (1) of the above lemma, choose »,. to be either
0 or a ).

Let v(t, ¢) = 2[2(1 — ¢e')™ — 1]. By straightforward calculation, we find
that for ¢ positive but not equal to one, and every positive y, u, d£/dy is mono-
tonic in ¢ to either side of a minimum at the unique value of ¢ for which v(¢, ¢) = .
When ¢ = 1, and y and u are positive, d£/dy is monotonic in ¢ to either side of a
minimum at ¢ = 0.

We are now in a position to describe the behavior of the value of ¢ for which
9 is maximum. Thus, we introduce, below, the function T. (See statement one
of Lemma 2.6).

LeMMA 2.5. Forall ¢, p > 0, ¢ ## 1, the equation,

0L/3Y lymviety = 0,
has a unique root in t. This root, t = T(¢, u), say, has the following properties.

(1) (a) T(¢,w) = —=T/8, p). )
(b) 0 < T(¢, ) < min [— In¢, £(¢, r)], whenever 0 < ¢ < 1.
(¢) limgao T(¢, ) = u’/16m.
(d) limyo T'(§, p) = 0, limyso T'(§, ) = —Ing.

(2) Define T(1, p) = 0, then T(¢, u) s
(a) for fixed p > 0, a strictly decreasing function of ¢ > 0.
(b) for fized ¢, 0 < ¢ < 1, a strictly increasing function of u > 0.
(¢) continuous in ¢, u > 0.

LemMA 2.6. On the set, A, , over which it is defined, §(t, ¢, 1) is posttive and

(1) for fized &, u, stricily monotonic in t to either side of a maxtmum at
t=T(,n). ,

(2) for fixed t, u, bounded in ¢ and strictly decreasing for ¢ < 1.

(8) for fixed t, ¢, unbounded and strictly increasing in u.

(4) continuous in t, ¢, p.

By part 4 of the above lemma, U(t, ¢, u), defined in (2.5), is continuous in
its arguments over its domain of definition, A, . Differentiating U with respect
to ¢, we find that

(2.10) aU/at 2 0, t 2 0.
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By part 3 of Lemma 2.4, U(—(1/¢, 1), &, ») > 0, U(E(¢, u), ¢, ») > 0. Hence,
by part 4 of that lemma and (2.10), the equation, U(¢, ¢, ») = 0, has, for each
positive ¢ and p, a unique negative and a unique positive root in ¢. If we denote
the positive root by ¢ = t*(¢, u), then by the symmetry (2.4), (2.7), the cor-

responding negative root must be ¢ = —t*(1/¢, ). Hence, by (2.6), for each
positive ¢ and u, we may write

* _ fl}(t, & I"'), —t*(l/f; :u) <t < t*(g-, l-‘),
(2.11) vy §m) = {0, otherwise.

It is appé,rent that
(212) 0 < (¢, u) <, m), & u>0.
Also, we may now write the event (2.8) in the form

amXm = [IngW — t¥(1/W, a*M)]  or  [lngW + t*(W, a’M)),

for which it is clear that the probability of this event is always zero. We recall
that the Bayes second sample size, (2.9), is unique with the exception of the
above event. Hence, the Bayes rules, S*(g, W, M) in C.. are unique up to sets of
probability zero.

LemMa 2.7. G@EL, w) < 9@, ¢, u) < u2/8, for all (t, ¢, ) € Ay . (G is de-
fined in Lemma 2.1.)

Proor. The lower bound follows from the first parts of Lemmas 2.6 and 2.2,
the fact that @ is symmetric about ¢ = 0 and strictly increasing in | ¢ |, and the
fact that by the definition of f in Lemma 2.1, 9(¢, ¢, u) = G(¢) for all
(t, ¢, n) € Ay . The upper bound follows from Lemma 2.5 and part one of Lemma
2.6, together with the fact that §(T(1/¢, v), 1/¢, u) = 9(T(&, »), &, 1), is for
fixed u > 0, strictly monotonic to either side of a minimum at ¢ = 1, and

1im§'—>0 g(T(f: l-‘): ' I“) = limf—'ov(T(Q M): g‘) = #2/87"

We note that for any u > 0, the lower bound of the above Lemma is attained
when ¢ = 1 and ¢t = =#(1, u), the upper bound, for ¢ = T(¢, u), in the limit
as ¢ — 0or .

Combining the above lemma with part 2 of Lemma 2.4, and (2.9), we have,
immediately the following.

TuroreM 2.1. aG(#(1, a’M)) < vi(Xm, g, W, M) < min [M, a’M*/8x],
whenever

[ln gW — t*(1/W, &M)] < amZXn < [In gW + t*(W, a’M)],

1.e. whenever the Bayes second sample size ts posttive.

LeMMma 2.8,

(1) For all finite t and for all ¢ > 0, limuo, [§(2, ¢, )/Inp] = 8.

(2) Let & be an arbitrary, fixed, positive mumber less than 1, and define
t:(uw) = (1 — &) In u. Then for all positive ¢ bounded away from zero,

limymses [G(ts(n), &, 1)/ In ] = 2(1 + V/8)™
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Proor. The identity,
0L/9Y ly= imw = 0, (t, t,u) € Ay,
may be written in the form
9@, &l — p(4 & u)] — 8lnp =0,
where
p(t, & u) = 4 Ing(t, ¢, p) + 2In [24/2x(1 + e')/¥(5)]
— b+ £/9(t & /A 5 ).

By part 3 of Lemma 2.6, for all bounded ¢ and all ¢ > 0, p(¢, ¢, u) tends to zero
as u — o, which proves part (1). When ¢ = #(u), the identity may be put in
the form

[L + 4pu(s, w)Ira(s, 1) — 4(1 + )1 — pus(s, u)jra(s“, p) + 4(1 — 8" =0,

where

7'5(;) /") g(t&(#), $ ”’)/ In My
Plﬁ(g-y Il:) = In ?j(tﬁ(/"% g" ”)/g(tﬁ(”); $ Il:),
pus(§y 1) = 2In [2v/2x(¢ + 1) /W(0))/ (1 + 8) Inw.

Now let ¢ be positive and bounded away from zero. By Lemma 2.3, when pu is
sufficiently large, ts(u) < (¢, u). Hence (t5(n), ¢, ») € 4, for u sufficiently large.
We may now use the lower bound of Lemma 2.7 (which tends to o with u)
to show that p1s(¢, 1) tends to zero as u — . pss(¢) obviously tends to zero as
u — . Thus, for u sufficiently large, the quadratic equation in r,

[1 4 4u(8, W' — 4(1 + OIL — pu(S, Wr + 4(1 — 8)* = 0,

has, two real roots in r, one of which, by the identity, must be equal to r;({, u).
Hence, in the limit, as p — , 75({, x) must be equal to one or the other of
2(1 £ 4/8)2. By Lemmas 2.7 and 2.3,

My 75(¢, 1) = limyoe G(E(1, w)/ Inp = 2.

Hence, the conclusion of part 2 follows.
Lemma 2.9. t*(¢, u) is

(1) for fized u > 0, a positive, bounded function of ¢ > 0, strictly monotone to
either side of a mintmum at § = 1.

(2) for fized ¢ > 0, a strictly increasing function of p which tends to 0 as p — 0
and to © as u — « (uniformly, for all ¢ > 0).

(3) a continuous function of positive ¢ and p.

Proovr. That t* is, for fixed u > 0, a positive, bounded function of { > 0, and
tends to zero with u, uniformly for all ¢ > 0, follows from (2.12) and Lemma 2.2.
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By (2.5) and (2.2), U(t, &, 1) = 9(4, &, 0) + wb()H (Y, &, 1)/ (1 + ge'), where
fort =2 0, H(t, ¢, 1) = e'a(d(t, &, v), —8) + a(§(t, ¢, #), t) — 1. H depends
on { and p only through §. By Lemma 2.6, 4, and hence U, is continuous over
A, . Thus, using (2.10) and the lower bound of Lemma 2.7, it may be shown
that for every positive { and u, there exists a positive number %, such that
0<t=t"n) +k=0U/0r 2 0,¢ s 1. It then follows that for any fixed
p > 0, t* is strictly monotone to either side of a minimum at ¢ = 1. For suppose
not, then there exist {’, {” such that either 0 < ¢/ <¢” < lorl ¢ < ¢ < o
such that t*(¢”, u) = t*(¢’, u), and hence we would have that

0 =U@C,w), ¢, u) UG, 1), 8" u) £ UWE", 1), " 1) =0,

a contradiction. In a similar way, it may be shown that for every fixed ¢ > 0,
t*(¢, u) is strictly increasing with u. To complete the proof of part 2, it is sufficient
to prove that for any fixed positive § < 1,

(2.13) *(Lp) >0 —8)Inu = t(u), w sufficiently large.
To show this, we need only show that
U(ts(pn), 1, ) <0, w sufficiently large.

Using Lemma 2.8 and a well known inequality on Mill’s ratio [1], we find that
limy .o H(t:(n), 1, ) = —1. Hence, applying Lemma 2.8 once more, we find that

iy [U(ts(w), 1, 1)/ In p] = 201 + V/5) — limye [0/ (1 + 4'7°)] = — 0.

This completes the proof of part 2. Continuity may be proved using a device
employed by Wald and Wolfowitz in [6]. Let {, x be arbitrary, fixed, positive.
Let K, , K, be any two numbers such that

O<K1<t*(§,,u)<K2, KZ—K1<A,
where A is an arbitrarily small positive number. By (2.10),
U(K],g',[l,) <0< U(K2:§‘7“)-

Let A¢, Ap be non zero increments in ¢ and u, respectively, which tend to zero
with A, and such that ¢ + A¢ > 0, » + Ap > 0, then, since U is 2 continuous
function of its arguments, we have, for A sufficiently small, that

U(K17§‘+A§':“+Ap’) <0< U(K27§‘+A§":U'+AP')

Hence, for A sufficiently small, K; < t*(¢ + Af, u + Ap) < K, . This completes
the proof.

3. Bayes rules with preassigned invariant error probabilities. Below, we con-
sider the error probabilities associated with the Bayes rules, S*(g, W, M), in
C.. in terms of their dependence on the Bayes parameters and the first sample
size m. (a, the distance between the means of f, and f, is always regarded as
arbitrary, fixed, positive.) The properties developed lead to sufficient conditions
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under which the parameters, W and M, may be chosen, for arbitrary, positive
m and g, so that the error probabilities take on preassigned, fixed values. This
leads to a class of rules, parametrized by m and g and the preassigned error
probabilities, each member of which minimizes the average (¢) expected number
of observations among all rules in C,, with error probabilities less than or equal
to those preassigned. It is pointed out how rules, within the same subclass,
which minimize the maximum expected sample size, may be obtained by proper
selection of g.

obtained in the preceding section, and in particular, by (2.9), we may write
the expected overall sample size, under f;, required by the Bayes rule,
S*(g, W, M), in the form

(3.1) 8:(S8*(g, W, M)) = a’&; (a'm, gW, W, &’M),

where
8?(2,)\,{,#) =z 4 / ?/*(t;f'yﬂ)Pz(”zy)\) dt: Z,>\,§‘,#>0,

8:(07>‘y§-7#) = y*(_lnx’g‘:p’): >‘:§‘)/‘>O-
Similarly, the probability, under f;, that S*(g, W, M) will lead to decision
1 — <, may be written in the form
(32) Ql(S*(g7 W7 M)) = Q?(azmy gW) W: a'ZM)7

where

Qt(z) )‘: ' I‘) = f a(y*(tr ¢ I":), (1 - 27')t)pz(t l 2, )‘) dt, 2, A; Su> 07

(33) QT(Oy )‘; g‘: :u') = a(y*(_ In )‘) g.y :u'): (27' - 1) ln)‘): )‘y $u > 0.
Note that the symmetry, (2.7), implies the corresponding symmetries
(34) &5\ 6w =&z IN1/Gw), QN6 w) = Q12 1/, 1/6u)

These imply, as a special case, that the rules, 8*(1, 1, M) are minimax in C,, with
respect to wrong decision losses that are both equal to M. This fact was noted
by Wald ([7], pp. 151-156) for the case, M = 1.
Lemma 3.1. Let 6 be an arbitrary, fixed, positive number less than one, then
lim,_,, Q:(z, N &, p) = 0, uniformly for all z, \, { such that z = 0,¢ > 0, A = 4.
Proor. By (3.3), (2.3), (2.11), whenever z, A, {, u > 0,

Q:(z,x,f,#) = / Po(t|3,)\) dt
t*(5m)
(3.5)

t*($p)
+ s(h(t, ¢, 1)) mo(t | 2)\) dt,

—t*(1/8.p)
where h‘(t) $ I") = .5(@70, ¢ l"))i - t/(g(t’ $ "))*' By (2'13)7 fOI‘/l, suﬁici-ently
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large (uniformly for all z, A, ¢ > 0), the right hand side of (3.5) is bounded
above by
(1—8)1Inp

fn_m polt] 2 M) dt + Skt 5, mDpalt] 2, 0) .

—tr (18,
For p sufficiently large (uniformly for all z, ¢ > 0, N = §, the first of these terms
is bounded above by ¢((2[(1 — 8) In u + In 6])5) which tends to zero as
w —> . On the other hand, by Lemma 2.7, the second term is, for u sufficiently
large (uniformly for all z, A, { > 0), bounded above by

(3.6) ¢(5VEGEA, ) — (1 = 8) In /GG, ).

By Lemma 2.3, lim,_. [G({(1, 1))/ In ] = 2. Thus, the argument of ¢ in (3.6)
is, for large u, asymptotically equivalent to 8(3 In p)¥. Hence (3.6) tends to zero
asu — o,

Finally, for u sufficiently large (uniformly for all { > 0, A = 5), Qs (0, A, &)
is also bounded above by (3.6). This completes the proof of the lemma.

Define QF (z, \, ¢, 0) = lim,0 Qi (2, N\, ¢, 1), 2 = 0, \, ¢ > 0. Note that the
symmetry of (3.4) continues to hold in the limit as 4 — 0. By (3.5) and Lemma
2.9,

(3.7) QT (2, N £ 0) = ¢(.5vz + InA//%), A ¢ > 0.

Observe that the above expression is independent of { > 0 and is a continuous
function of positive z and A\. For z = 0, we have by (3.3) and (2.3), that
Qv (0, \,0) = 1, .5, or 0, according as X <, =, or >1.

LemMma 3.2 Let K be an arbitrary, fixed, positive number, then

lim)\—>0 Q:(z7 )‘7 .(7 #) = 1: lim)\—>°° Q:(Z, )‘) f) l") = 07

uniformly for all 2, ¢, uw such that 0 < 2z, u < K, ¢ > 0.

Proor. When u = 0, it is obvious from the definition of Q5 (2, A, ¢, 0) that
the limits hold uniformly for 0 < z < K, ¢ > 0. When z = 0, it follows from
(3.3), (2.3), (2.11), that the limits hold uniformly for { > 0,0 < u < K. Finally,
for any 2, \, ¢, wsuch that 0 < 2z, p £ K; N\, ¢ > 0, we have by (3.5), that

[ om@lzna<@enom <[ pllan)
t*(Ep) —t*(1/8\m)

For sufficiently small A > 0, the left hand side of the above inequality is bounded
below by ¢(.54/K + [In\ + t*(¢, K)]/A/K). Since, by Lemma 2.9, t*(i, K)
is bounded, this lower bound tends to one, as A — 0, uniformly for all { > 0.
On the other hand, for sufficiently large A, the right hand side of the inequality is
bounded above by ¢([In A — #*(1/¢,K)]/A/K), which tends to zero, as A — o,
uniformly for all { > 0. This completes the proof.

For any positive 7 and 2, the equation,

(3.8) Qi (2 N £, 0) = Q1 (2, A, ¢, 0),
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has, by (3.7), (3.4), a unique positive root in \. We shall denote, by £(r, 2), the
value common to both sides of (3.8), when \ is equal to this root. Recall that
both sides of the above equation are independent of ¢. In the following lemma,
we state, without proof, several properties of the function, &.

Lemma 3.3. £(r, 2) is

(1) for fixed z > 0, a strictly increasing function of r > 0.

(2) for fixed r > 0, a strictly decreasing function of z > 0.

(3) a continuous function of positive r and z.

(4) lim0£(r, 2) = 0, £(1, 2) = ¢(.5V/2), lim,., £(r, 2) = 1.
(5) lim,o £(r, 2) = 7/(1 + 7), lim,.. £(r, 2) = 0.

We shall require, finally, for the proof of our theorem, the use of a lemma
which is proved by T. Rado and P. V. Reichelderfer in [5], Lemma 16, p. 390.
The lemma is paraphrased, below,

LemMma 3.4. Given

(a) A bounded, simply connected Jordan region, J, in the complex plane.

(b) The arbitrarily oriented boundary curve, c, of J.

(e) A continuous, real or complex valued function, s(w) in J which is different
from zero in J.

Then V. Argument s(w) = 0, i.e. the variation in the argument of s(w) on ¢ is
Zero.

THEOREM 3.1. Let 6 be an arbitrary positive number less than 1, and define the
set

L =1{Brzy): 0<B=Erz2),r>02>0,6 <y <1/d,

Then for each point, § = (B, r, 2, v) in As;, there exist numbers ¢*(0) > 0 and
w*(0) = 0 such that

Q5 (2, ¥5*(0), £(0), w*(0)) = QY (2, v¢*(6), £*(0), w*(0)) = B.

Proor. For any point in A; such that 8 = £(r, ), the conclusion is obvious.

Let (8, , 2, v) be an arbitrary, but fixed point in A; such that 8 < &(r, 2).
For this proof only, the letter < will be used to denote the imaginary unit. We
define the complex variable, ® = ¢ + 4y, and the complex function of this com-
plex variable, s(w) = so(w) + 7s1(w), where

30("") = Q(’;(z, 7§, & ’:U') - TQT(Z, 75 & ,U,),

and s;(w) = Qs (2, 7¢, &, r) — B. Since Lemma 3.1 is obviously true with its &
replaced by the square of the § of the present theorem, we have by that lemma
and by the symmetry (3.4), that there exists a positive value of u, us , say, such
that

81(0-’) < Oy

0=¢
(3.9) B = {sl(w) <s(w), 0<7¢
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By Lemma 3.2, taking K = u; , and by the symmetry (3.4) there exists a positive
value of ¢, {5, say, which is less than one, such that
0<¢==sw) >0,

(3.10) forall p, 0 < u < ps.
1/¢s S ¢ < o0 = s(w) <0,

Let ¢;, j = 1, 2, 3, 4, denote the line segments with complex endpoints, as
follows.

et s+ tus, & c2 i85, 1/Cs
e 1/¢s, 1/6s + tws et 1/8s 4 dus, &5+ tus .

The rectangle ¢ composed of these four line segments is the boundary of a simply
connected Jordan region in the complex w plane. By (3.10), so(w), which is the
real part of s(w), is positive everywhere on ¢;, including the endpoints of this
line segment. Thus, the image of ¢; under s lies entirely to the right of the imagi-
nary axis. Similarly, by (3.10), the image of ¢; under s lies entirely to the left
of the imaginary axis. As w moves on ¢, , from {5 to 1/¢s, by (3.7) and the sym-
metry (3.4), so(w) decreases monotonically from its positive value at w = &
to its negative value at w = 1/{;, taking on the value zero precisely once at the
value of ¢ for which v¢ is equal to the unique root in A of the equation (3.8).
Since s;(w), which is the imaginary part of s(w) is equal to £(r, 2) — @8, at this
point, and since 8 < £(r, 2), the image of ¢, crosses the imaginary axis precisely
once, at a point above the real axis. On the other hand, by (3.5), the symmetry
(3.4), and the lemmas of section 2, so(w) is a continuous function of ¢ every-
where on ¢, . Hence, it follows that as w moves from 1/¢5 + 4us to ¢ + s, on
cs , so(w), starting negative and ending positive, must take on the value zero at
least once. By (3.9), however, each time that it does, s;(w) must be negative.
Thus, the image of ¢s under s, must cross the imaginary axis an odd number of
times and each time it does so, the crossing must be made below the real axis.
It is evident, that as » describes a path about ¢ in either direction and returns
to the initial point, that the argument of s(w) must increase or decrease by 2.
But this contradicts the conclusion of Lemma 3.4. Hence s(w) must have at
least one zero inside of ¢. This proves the theorem.
We remark that by (3.3), (2.3), (2.11),

(3.11) Q¥(0, 1,1, n) = 6(334(0, 1, ).

Hence, by Lemmas 2.6, 2.7, the conclusion of the above theorem holds also for
the points § = (8, 1,0, 1), with0 < 8 = 3.

CoRroLLARY 3.1. Let 0% = (Bo, Bo/B1, a’m, g), where a and g are arbitrary, but
fized, positive numbers, m is a positive first sample size, and Bo and By are any two
preassigned numbers such that

0 < Bo < £(Bo/Br, a'm), 0<g <1
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Let W* = ¢*(6%), M* = a u*(6*%), then

(3.12) Q:i(S*(g, W*, M*)) = s, i=0,1,
and if S is any rule in C, such that

(3.13) Qi(S) = Bi, i=0,1,
then

1 1
2 08:(8%(g, W%, M) < X g6(5).

Proor. The first conclusion follows immediately from the theorem and (3.2).
The second conclusion follows from Lemma 1.1.

By the remark concerning (3.11), the corollary may be extended to a zero
first sample size when 8,/8; = g = 1. )

If we can now choose g so that &(S*(g, W*, M*)) = &(S*(g, W*, M*)), the
resulting rule will minimize the maximum expected overall sample size among
all rules in C. with error probabilities less than or equal to the ones which it

possesses.
For example, if we take 8y = 8, = B, say, where
(3.14) 0 <8 = (1, a'm) = ¢(3avm) < 4,

and we choose ¢ = 1, then by (3.4), we may take {*(8, 1, a’m, 1) = 1, and
Lemma 3.1, (3.7), and (3.11) will ensure the existence of the corresponding
value p*(8, 1, a’m, 1). Thus, if we let

(3.15) S(a, B, m) = S*(1, 1, a*u*(8, 1, a’m, 1)),

we have, subject to (3.14), that Qo(S(a, 8, m)) = Qi(S(a, B, m)) = B. But
in addition, by (3.1), (3.4),

(3.16) 8(S(a, 8, m)) = &(8(a, B, m)) = a *4(8, a’m), say.

Hence, by the corollary and the remark which follows Theorem 3.1, S(a, 8, m)
has, for any non-negative first sample size m, the property that

(317) max;=o,1 81'( S(a, ﬁ, ’I’I’L)) é max;=o,1 gi(S),
for all S in C,, such that
(3.18) Qi(S) =8, ¢=0,1.

The selection of an optimum first sample size for this example is considered
in Section 4.

If it were possible to choose W* and M* so as to satisfy (3.12) and in addition
also to satisfy the requirement that §;(S*(g, W*, M*)), be independent of g, the
resulting rules would minimize the expected overall sample size simultaneously
under both densities (2.1), among all rules in C,, which satisfy (3.13). It is con-
iectured that in the present case, this requirement is impossible to fulfill. As
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shown by Wald and Wolfowitz in [6], the analogous result in the sequential case
is actually achieved by the sequential probability ratio test.

In conclusion, we mark that the above results do not overlap with those of [2].
In [2], a Bayes rule in C,, is found for testing the composite hypothesis that the
mean of a normal distribution with known variance is positive against the com-
posite hypothesis that it is less than or equal to zero. The prior distribution of the
mean is taken to be its fiducial distribution based on the outcome of the first
sample. The loss is taken negatively proportional to the mean when a correct
choice is made, and zero otherwise. Cost is proportional to the number of observa-
tions. The solution is shown to be admissible with respect to the loss function
chosen.

4. Two-stage rules which minimize total expected sample size. Continuing
our example of the preceding section, we have by (3.16), (3.1) that

(4.1) (8, 2) = &1(2,1, 1, u%(8, 1, 2, 1)).
Using the expressions which follow (3.1), we find that

t*(Lp)

(4.2) 8¥(z,1,1,u) = 2+ \/2_«/2[ I(t, ¢, u) di, 5, u >0,
0
where I(¢, 2, u) = §(t, 1, u) cosh (¢/2) exp [ (2/8) — (£/22)];
(4.3) 87(0,1,1, 1) = 9(0, 1, ), u > 0;
(4.4) €¥(2,1,1,0) = lim8¥(z, 1, 1, ) = 2, 2> 0.
p>0

In a similar way we may find simplified expressions for Q¥ (z, 1, 1, u).

To motivate the lemma which follows and with reference to (3.14) we note
that by part 4 of Lemma 3.3, the inequalities 0 < 8 < £(1, 2) < % are equiva-
lent to the inequalities

(4.5) 0<z=<4j, 0<B=4,

where g is the unique root of the equation ¢(\) = 8.
Lemma 4.1. &(8,0) = &(8, 4\3) = 4A3.
Proor. By (3.7)

Q5 (2 1,1,0) = ¢(3v/2).
Hence we may take u*(8, 1, 4\5, 1) = Q. Thus, by (4.1), (4.4),
£(8, 4N8) = 4Nj.
On the other hand, by (3.3), (2.3),
Q0. 1, 1, 8) = 6(3vV/5(0, 1, 1)).
Hence, by (4.1), (4.3),
&(8,0) = 9(0, 1, w*(8, 1,0, 1)) = 4\.
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THEOREM 4.1.
1. For each a > 0 and each 8,0 < B =< 3, there exists a zero or positive integral
value of m < 4a™°\j, call it i (a, B), such that the rule

(4.6) S(a, B, M(a, B)) = S*(1, 1, a *u*(B, 1, d"h(a, B), 1))

minimizes the maximum expected total sample size among oll two-stage rules S,
with integral first sample size, which satisfy (3.18).

2. Whenever a = 2)\5 , we may take Mm(a, B) = 0.

Proor. Clearly, if a’m = 4\}, then any two-stage rule in C,, will have, under
either hypothesis, an expected total sample size =4a°\; . By (3.16), (3.17), and
Lemma 4.1, we may thus restrict our consideration to the rules S(a, 8, m), with
a®m < 4\; . Since only finitely many multiples of a’ are bounded above by 0,
part 1 of the theorem follows. Part 2 is immediate.

It is of interest to note that by (2.9), (3.1) and Lemma 4.1, the second sample
size specified by (4.6) when i(a, 8) = 0 is 4a A} , which (rounded to the follow-
ing integer) is the sample size of the corresponding optimum one-stage procedure.
Thus, the optimum one and two-stage rules are identical whenever a = 2\g,
0<B=3

For fixed B, &(B, ) appears to be continuous in z over the interval [0, 4\j] and
monotonic to either side of a unique minimizing z(= £(8), say. See Tables I
and II.

TABLE I
B = .05

z u £(0.5, 2) t*(1, u*) 1, u*)

0. 127.588 10.8222
0.5 128.067 10.7742 2.2106 2.4618
1. 130.937 10.5598 2.2285 2.4809
1.5 132.888 10.1762 2.2405 2.4936
2. 132.086 9.7148 2.2356 2.4884
3. 122.987 8.8159 2.1778 2.4271
4. 107.516 8.1567 2.0694 2.3120
5. 89.428 7.8222 1.9221 2.1552
5.4854 80.494 7.7774 1.8386 2.0662
5.5293 79.691 7.7770 1.8307 2.0577
2(.05) = 5.5393 79.510 ° 7.7769 1.8289 2.0558
5.5504 79.307 7.7770 1.8269 2.0537
6. 71.216 7.8081 1.7423 1.9632
7. 54.297 8.0742 1.5322 1.7377
8. 39.298 8.5698 1.2902 -1.4757
9. 26.252 9.2458 1.0070 1.1649
10. 14.504 10.0617 0.6497 0.7632
10.5 8.205 10.5138 0.3962 0.4701

Ml = 10.8222 0. 10.8222 0. 0.
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TABLE II
B = .01
z w &1, 2) (1, p i, p%
0. 698.285 21.6476
6. 657.699 16.2500 3.5699 3.8041
8. 526.323 14.5568 3.3815 3.6963
10. 385.531 13.8947 3.1198 3.4214
£(01) = - 10.3781 360.422 13.8787 3.0634 3.3621
10.4479 355.874 13.8793 3.0528 3.3509
12. 262.659 14.1471 2.7999 3.0846
14, 167.700 15.0849 2.4302 2.6043
0y = 21.6476 0. 21.6476 0. 0.

Let us assume the existence of this minimum and the monotonicity and con-
tinuity of & to either side of it. It then follows that 7.(a, 8) must be the integer
either immediately preceding or immediately following a *2(8), when this latter
is non-integral; otherwise, m(a, 8) = a"2(8). Also it follows that

(4.7) lilf)l a'm(a, B)/3(B) = 1.

The computations seem also to indicate that u*(8, 1, 2, 1) is continuous in z
over the above interval and assuming this is true it follows that

hnol I-"*(B; 17 azm(a,, B)) 1) = M*(,B, 17 2(:3)7 1)

It should be noted that the existence of an optimum integral first sample size
m(a, B) rests entirely upon Theorem 4.1 and does not depend upon the above
assumptions which are of computational origin. These assumptions, by virtue
of the implications which proceed from them, allow us as indicated below to
approximate the rule (4.6) by the rule (4.8) when a is small, and otherwise
enable us to locate 7 (a, 8) with reference to a *2(8) by only two computations
of & Without these assumptions, a finite number of computations of & would be
required to make certain that the desired minimum had been attained.

In Tables I and II, for 8 = .05 and .01, respectively, we have given values of
the functions p*, &, ¢*, and { associated with the rules S*(1, 1, a*u*(8, 1, 2, 1))
for selected z in the interval [0, 4\j]. All entries are rounded in the last place
given. More extensive calculations not tabulated here ensure that despite the
relative insensitivity of & in a neighborhood of the minimizing argument 2(8),
the values of £(.05) and 2(.01) are accurate to the first three decimal places with
perhaps a slight error in the fourth. The abbreviation u* = p*(8, 1, 2, 1) is em-
ployed in the table headings.

In Table III, we have given values of 7(a, 8) for some values of ¢ =% and
for 8 = .05 and .01.
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TABLE III
a m(a, .05) a m(a, .01)

=4.6527 0

=3.2897 0 4. 1
3. 1 3. 1
2. 1 2. 3
1. 6 1. 10
0.5 22 0.5 41

If we admit any non-negative real number as a first sample size (We have
already done this for second sample sizes), then clearly

(4.8) S*(1, 1, a7°u*(B, 1, £(8), 1))

with first sample size ¢ *4(B) possesses the property attributed to (4.6) in the
wider class of rules where non-integral first sample sizes are allowed. The ratio
of the expected total sample size of (4.8) to the sample size of the corresponding
optimum one-stage procedure is £(8, 2(8))/4\s = .7186, .6411, for 8 = .05 and
.01 respectively. The first of these figures is a clear improvement upon .7569,
the corresponding ratio for an intuitive two-stage rule proposed by Owen [4].

TABLE 1V
B = .05
t $(t, 1, pu**) t J(t, 1, **) t J(t, 1, u**)

0. 8.1655 0.6573 7.7345 1.3145 6.4300
0.0286 8.1647 0.6858 7.6963 1.3431 6.3516
0.0572 8.1622 0.7144 7.6564 1.3717 6.2710
0.0857 8.1581 0.7430 7.6149 1.4003 6.1883
0.1143 8.1524 0.7716 7.5718 1.4288 6.1034"
0.1429 8.1451 0.8002 7.5270 1.4574 6.0161
0.1715 8.1361 0.8287 7.4806 1.4860 5.9264
0.2000 8.1255 0.8573 7.4326 1.5146 5.8342
0.2286 8.1132 0.8859 7.3829 1.5431 5.7393
0.2572 8.0994 0.9145 7.3315 1.5717 5.6416
0.2858 8.0839 0.9430 7.2785 1.6003 5.5409
0.3143 8.0667 0.9716 7.2238 1.6289 5.4370
0.3429 8.0480 1.0002 7.1674 1.6575 5.3297
0.3715 8.0276 1.0288 7.1093 1.6860 5.2187
0.4001 8.0056 1.0573 7.0495 1.7146 5.1036
0.4287 7.9820 1.0859 6.9879 1.7432 4.9840
0.4572 7.9567 1.1145 6.9246 1.7718 4.8594
0.4858 7.9298 1.1431 6.8595 1.8003 4.7291
0.5144 7.9013 1.1716 6.7927 t*(1,u**) = 1.8289 4.5922
0.5430 7.8712 1.2002 6.7239

0.5715 7.8395 1.2288 6.6533

0.6001 7.8061 1.2574 6.5809

0.6287 7.7711 1.2860 6.5064 t(1,p**) = 2.0558 2.5722
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TABLE V
B = .01
t Flt, 1, %) t Ft, 1, u*%) t $(t, 1, %)

0. 17.2623 1.1009 16.0875 2.2018 12.8353
0.0479 17.2600 1.1438 15.9863 2.2497 12.6498
0.0957 17.2531 1.1967 15.8812 2.2976 12.4603
0.1436 17.2417 1.2445 15.7724 2.3454 12.2665
0.1915 17.2256 1.2924 15.6598 2.3933 12.0683
0.2393 - 17.2051 1.3403 15.5435 2.4412 11.8655
0.2872 17.1800 1.3881 15.4235 2.4890 11.6579
0.3351 17.1503 1.4360 15.2999 2.5369 11.4452
0.3829 17.1162 1.4839 15.1726 2.5848 11.2271
0.4308 17.0776 1.5317 15.0418 2.6326 11.0033
0.4787 17.0346 1.5796 14.9074 2.6805 10.7732
0.5265 16.9872 1.6275 14.7694 2.7284 10.5364
0.5744 16.9353 1.6753 14.6279 ’ 2.7762 10.2922
0.6223 16.8792 1.7232 14.4829 2.8241 10.0399
0.6701 16.8187 1.7711 14.3343 2.8720 9.7785
0.7180 16.7539 1.8189 14.1822 2.9198 9.5067
0.7659 16.6850 1.8668 14.0266 2.9677 9.2230
0.8137 16.6118 1.9147 13.8674 3.0156 8.9254
0.8616 16.5345 1.9625 13.7046 t*(1,u**) =  3.0634 8.6109
0.9095 16.4531 2.0104 13.5382

0.9573 16.3677 2.0583 13.3681
1.0052 16.2782 2.1061 13.1943
1.0531 16.1848 2.1540 13.0167 t(1,p**) =  3.3621 5.0153

For small values of a (say <%), we may with an error at most unity in the
first sample size and relatively small error in the second sample size function
employ (4.8) as a substitute for (4.6), taking first and second sample sizes to the
nearest integer. Due to lack of space, the only second sample size functions which
are tabulated here are those which correspond to the rules (4.8) for 8 = .05
and .01 (Tables IV and V, respectively). For convenience, we use the abbrevi-
ation p** = u*(B, 1, 2(8), 1). Recall that by (2.7), 9(¢, 1, u) is symmetric about

= 0. By (2.9), (2.11) the second sample size specified by (4.8) corresponding
to a first sample with mean X is

aPa e B)X, L, u*), i [ X| < a*(1, #)/2(8),

and zero, otherwise.

A program for use on the Datatron prepared by the author with the aid of the
Purdue Compiler [3] is available (routine library of computing laboratory at
Purdue) for calculation of & for any z and 8 which satisfy (4.5) as well as for
any of the auxiliary functions tabulated here. The individual computations of
which the program is composed may be determined directly from the definitions
of the functions tabulated. Once 7 (a, 8) has been determined or approximated
by a~*2(8), computations of corresponding optimum second sample size values
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tqQ the degree of accuracy attained in Tables IV and V require about fifteen
minutes of datatron time. Location of 2(8) may take several hours or more de-
pending on the accuracy desired. If only ##:(a, 8) is wanted, for particular argu-
ments, the time may be considerably reduced. For example, (2, .05) would
require only two non-trivial calculations of é.

Let us now consider a specific example with @ = .1, 8 = .05. Using the rule
(4.8), we take a first sample of 100 X 5.5393 = 554 observations. If | Xss |
= .1-1.8289/5.5393 = .0330, we take no additional observations and choose
fo or fi according as X is < or > 0. If | X | < .0330, we take 1007
(10-5.5393X5s , 1, u**) additional observations. For example, if Xs4 came out
equal to .0191, we would (using Table IV) take 705 additional observations. We
would then choose fy or fi according as the overall mean of both samples is neg-
ative or positive. We toss a coin to decide, if the overall mean equals zero.

The optimum rule outlined above has an expected total sample size of 777.69
(a possible error in the decimal may exist due to the use of integral sample
sizes). The rule requires a minimum of 554 observations (when no second sample
is required), and can call for at most 1082 observations in the second sample.
Under either hypothesis, Prob {| Xs4| < .0330} = .3192, i.e. there is less than
one chance in three that the rule will require a second sample. 1082 observations
would be required by the corresponding one-stage rule.
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