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1. Introduction. Slippage problems have been considered in the literature by
Mosteller [6], Paulson [8], Truax [11], Doornbos and Prins [2], Kudo [5], and
others. Roughly, the problem is as follows: We wish to compare n populations
which have density functions f(z, 61), f(z, 62), -+ -, f(x, 6,). On the basis of a
sample from each population we want to decide if all the 6; are equal, or, if not,
which is the largest. Actually, a more restricted problem is considered in this
paper, in which either all parameter values are equal, or all but one are equal
and the exceptional one is larger. If the ¢th one is larger we will say it has slipped
to the right. These slippage problems have certain sinilarities with the problem
of ranking means considered by Bechhofer and others [1], but differ in that the
latter deal mostly with procedures guaranteeing with prescribed probability
the selection of the population with the largest parameter, where it is known in
advance that one parameter exceeds all the others. These authors never allow
the possibility that all parameters of the various populations are equal, which,
in our situation, is called hypothesis zero. Other contrasts between the two
problems will become apparent in our later discussions.

A slightly different problem can be formulated in which we have in addition
a control population. The problem is then to compare the n populations with
the control, and decide if all the parameters are equal to the parameter of the
control population, or, if not, which of the n populations has the larger parameter.
In order to obtain optimal solutions to the slippage problems, certain invariance
restrictions will be imposed. Notice the obvious symmetry that states, if X,
X,, -+, X, is observed (X; is an observation from the 7th population) and if
action j is appropriate (i.e., the jth parameter has slipped to the right) then if
a permutation X,1, X2, -+, X, is observed, action =j is appropriate. This
suggests restricting attention to symmetric procedures. That is, if ¢:(Xy,
X., .-+, X,) denotes the probability of taking action ¢ when X;, X,, -+, X,
is observed, then we will require ¢, ;( X1, Xr2, + -+, Xon) = 0i( X1, Xs, -+, X4)
for all permutations (1, 2, --- , n) — («l, 72, - - - , wn). We will further restrict
attention exclusively to those problems in which it is possible to reduce the
problem, by invariance, to a one parameter problem. In particular we will
investigate several cases where the parameter is a translation or scale parameter.

The nature of the Bayes solutions will be examined for these problems. The
Bayes solutions are usually fairly easy to characterize, and many problems lead
us to complete classes of solutions. We will show that any symmetric Bayes solu-
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tion, which usually is Bayes against a symmetric distribution, can be explicitly
evaluated.

One can conceive of more general problems than those we will discuss here.
For example, we have considered only slippage, in the case of a one dimensional
parameter, to the right. A more general problem would be that in which the
direction of the slippage is not specified. Also, one might consider the problem in
which a subset of the parameters has slipped, and, we are to decide which subset
it is, ete. Modifications of our arguments would apply to these more general
problems.

In Section 2 we introduce the pertinent definitions and terminology. In Sec-
tion 3 some preliminary lemmas are proved and the Bayes solutions are character-
ized in general form. In the following section the theory is applied to several
examples, including the slippage problem of the means of normal populations
with common variance and the slippage problem of the parameter of a Gamma
family of distributions. Part of this discussion deals with known examples in a
more direct manner, while other examples are new.

In Section 5 we study the slippage problem for populations having an un-
known translation parameter. The problem is set up in a non-parametric form.
The solutions of the slippage problems of normal variables and exponential
variables are obtained by applying the theory of the translation parameter slip-
page problem in the case of the existence of a sufficient statistic. In a similar
manner, the symmetric invariant Bayes solutions are explicitly determined in
the case of slippage of a scale parameter possessing a sufficient statistic. Mixed
translation and scale parameter problems are discussed in the following section.

In Section 8 it is shown under fairly general conditions that the symmetric
Bayes procedures, characterized in the earlier sections, are uniformly most
powerful amongst all symmetric procedures having the same error of rejecting
hypothesis zero, when it is true.

In Section 9 we discuss a multivariate slippage problem. Two slippage prob-
lems for non-parametric situations are introduced in Section 10. Some decision
procedures based on rank tests are proposed for their solution. In the last section
a few remarks are offered about computing the critical numbers defining the
symmetric Bayes solutions.

2. Preliminaries and definitions. The slippage problem can be formulated in
the following decision theoretic way. We observe an n-dimensional random
variable X = (X;, X,, -+, X,) distributed according to a density function
p(%yr, To, *++, Znj b1, 2, -+, 6,) which is known except for the parameter
point 8 = (6., 6>, -- -, 6,) where the 0; are real numbers. We assume the fol-
lowing symmetry of the density:

p(xﬂ'laxﬁ;"'7x7m;07rl;01r2a"'101m) =p(xlax2a"'7xn;ola 027"'70")

for all permutations (1,2, -+, n) — (xl, 72, -+, 7n). There are n + 1 avail-
able actions which we will call ap, @;, - - -, a., and the loss in taking action a;



298 SAMUEL KARLIN AND DONALD TRUAX

when ¢ is the true parameter point is L;(0). The loss functions are assumed
to have the following properties.

(1) Lyj(6x1, Ox2, -+, 6zn) = Lj(61, 6, -+, 6,) for all permutations
(1,2,+--,n) = (v1, 72, --+, 7n) and for all 5. (We may include the case
J = 0 by defining 0 = 0.)

(2) Lj(0) < Li(6) for all ¢ = jif 6; = w + A for some real w and A > 0,
and 0; = w for all 7 = j. Ly(9) <lgi2 L;(6) if 6, = w for some real w,

t=1,2, .-, n. Otherwise, Ly(0) = L;(8) = --+ = L,(0).

For the problem in which there is a control population, a modification of the
above is needed. In this case (X;, X,, -+, X., Y) is observed according to a
density

p(x17x2’"'7xn’y;017"'10n1 0)7

which satisfies

p(xrl)x‘lr?)"”an,y;oxlyoﬁ,"',orn, 0)
=p(xlyfo)"'1xnay;017"';0n’0)

for all permutations7:(1,2, ---,n) — («l, - -+, wn). Thelossfunctions satisfy

(') Laj(0e1, -+, Oen, 0) = Lj(6,---, 6., 6) for all permutations
(1,2, -+ ,n) — (xl, 72, -+, wn) and forall . (Weinclude j = 0 by defining
0 = 0.)

(2’) L,-(ol, e, 0,,,0) < L,~(01, cecy, 0,,, 0) fora,llz' ?fjlfoj = 0+ AfOI'
some A > 0 and 6; = 0 forall ¢ 5 j. Lo(61, -+, 0., 0) < L;(6:;, -+, 6., 0)
(1 =¢ = n)if 6 = 60 for all <. Otherwise, Lo(6y, -+, 0,, 8) = -+ =
Ln(ol, STty 0,,, 0)

DerFiniTION 2.1: A symmetric decision function is a vector function
[ (¢0!¢1’ T ,‘Pn) on R" with

(i) 0 S gi(z) =1,

(i) 2ioei(z) =1,

(i) @rj(@r1, Zr2, ** 5 ZTen) = o@i{@m, 22, -+, x,) for all permutations
(1,2, ---,n) = («l, 72, - -+, 7n) and all j (including j = 0, with 0 = 0).

3. Bayes solutions.
DrriniTioN 3.1: If & denotes the set of all possible decision functions, ©
the parameter space, the risk function p is a function defined on & X ® by

o(6,0) = [ 3 100 (@)p(a,60) da

where x = (21, -+, %.), 6 = (61, -+, 6,), and dx denotes ordinary Lebesgue

measure on R".
Lemma 3.1: The risk function of a symmetric decision function ¢ is a symmetric
Sunction of 6.
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Proor: Let (1, 2, :--, n) — (w1, #2, ---, 7n) be a permutation and let
70 = 0. Then

[ 3 10e)n(z:0) do = [ 3 L0 )ees(ea)p(on 500) dav = (e,0,),

where 0, = (0m, Omg, -+, Orn).
DerFiNITION 3.2: A decision function ¢’ is said to be Bayes against a distribu-
tion F if

[ o(,0) o) = min [ oto,0) ar o).

THEOREM 3.1: Any symmetric Bayes solution is Bayes against a symmetric
distribution.

ProoF: Let ¢ be symmetric. Then by Lemma 3.1, p(¢, 8) = p(e, 0,) for all
permutations (1,2, - -+ ,n) — (w1, 72, - -+ , 7n). If ¢ is Bayes against a distribu-
tion F, ¢ minimizes

[ (0,6 ar (@) = [ o(o,00) aP@2) = [ o(e,0) aF(a,).

Define the distribution function F*(8) by F*(8) = 1/n!>_ F(6,) where the
sum is taken over all permutations. F* is symmetric and ¢ is Bayes against F*
since fp(¢, 8) dF(0) = [p(e, 6) dF*(6).

It is well known ([4], p. 279) that the Bayes solutions have the form

os(z) = 1if f L;(8)p(z; 0) dF(6) < f Li(8)p(z;0) dF(6) for all 4 5 .
In computing the Bayes procedures we examine expressions of the type
[ ) = L®p(z;0) ar o)

for changes in sign. Since L;(6) — L;(6) = 0 for all those points 6 not of the
form 6, = w for all k except possibly a single value, where 6; = w + A, A = 0,
we may restrict attention to those distributions F whose spectrum is contained
in this set of points. If we denote this set by @ we can identify the points of Q
with {(7, w, A)} by the correspondence (61, 02, -+, 6,) < (4, w, A) If §; = @
for some real w for indices § with the exception of ¢ where 6; = w + A, A = 0.

Let F denote a distribution function on Q2. Then define & as the probability
(under F) that A = 0. Define £; as the conditional probability when the ex-
ceptional index is ¢ given A > 0. Let Fo(w) be the conditional distribution of
o given A = 0, and F;(w, A) the conditional distribution of (w, A) given the
exceptional index ¢ where A > 0. Note that F is symmetric if and
onlyif sy =b=---=¢ , FL=F,=---=F,.

We now proceed to examine the Bayes procedures. In order to facilitate
the study we state some lemmas concerning the loss functions on Q.



300 SAMUEL KARLIN AND DONALD TRUAX

LemMa 3.2: If ¢ # 7,1 # k, j, k > 0, then L;(i, w, A) — Li(i, w, A) = 0.
(This includes the case A = 0.)

Proor: Consider any permutation (1, 2, ---, n) — («l, #2, -+, 7n), such
that w2 = 4, mj = k, 7k = j. Then

L;(i, 0, A) — Ly(4, 0, A) = L.j(w1, w, A) — Lu(wi, w, A)
= Lk(i’ W, A) - Li(i’ W, A)

LemMA 3.3: If 7 #£ 5, k #£ 1, then Li(j, 0, A) = Ly(l, », A).

Proor: Consider any permutation (1, 2, ---, n) — (xl, 72, ---, wn) such
that 72 = k, 7§ = . Then L;(j, w, A) = Lyi(nj, 0, A) = Ly(l, w, A).

If we let L;(w) denote the loss function when action ¢ is taken and A = 0,
and let p;(z; w, A) denote the density when the parameter is (j, », A), then the
computation of the Bayes solution reduces to consideration of the expressions

[ 35 1Lk, 0,8) — Lk, 0, M)Ip(; 0, 8) dF(k, w,8)

k=0

= &0 [ 1Li(0) = Ly(o)lpu(; ) dFoo)

+ 1921 Ek f [Lt(ky w, A) - Lj(k: w, A)]pk(x; w, A) dFk(w, A)'

When we are seeking only symmetric Bayes procedures, we may, by Theorem
31,take = - =§ = FL=F,= ... =F, =F.

A detailed study of the Bayes procedures will require an extension of the
notion of densities possessing a monotone likelihood ratio. The usual idea of a
monotone likelihood ratio is given below.

DeriNITION 3.3: A function f(z, y) defined on R? is said to have a monotone
likelihood ratio if for any choice 2; < @2, 41 < ¥z, we have det || f(z;, y;) | = 0.

The fundamental property possessed by these functions is summarized in
the following lemma. A proof may be found in [4].

LemMA 3.4: If h(y) is a function which changes sign at most once from positive
to negative values, and f(x, y) has a monotone likelihood ratio, then

0@) = [ @), y) du(y)

changes sign at most once in the same direction as h. Here, p denotes any positive
a-finile measure.

We now generalize the concept of a monotone likelihood ratio for joint densities
of n variables that depend on n parameters. (See also Pratt [9].)

DEeFINITION 3.4: Let A and B be arbitrary sets. For each o ¢ A, 8¢ B, let
za(t) = (2L(t), aP(t), -+, a()) and Gs(s) = (65°(s), 657 (s), -,

2 The notation L, (¢, w, A) means that we are evaluating L; at the parameter points in
the set {7, w, A}.
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5™ (s)) be curves in R". A density f(@, @2, <=+, &n; 01, 02, -+, 6a) is said
to have a monotone likelihood ratio with respect to the family of pairs of curves
{(za(t), 05(s)); ac A, Be B} if for every ac A, Be B, f(xza(t); 6s(s)) has a
monotone likelihood ratio in the variables ¢ and s.

Most of our discussion of Bayes procedures will be based on the following
assumption on the densities.

(A) Forj > 0,k > 0,

pj(x17x2a“'axn;waA) ;pk(xlazha""xn;wyA)

if and only if x; = x , or strict inequality in both instances.

The following theorem provides one condition which implies the validity of
assumption (A).

TaEOREM 3.2: Let v(s) and 8(t) be continuous strictly increasing functions de-
fined for all real s and ¢, v(0) = 8(0) = 0, and such that v(s) and §(t) range from
— ® to + . Define a family of pairs of curves with the following properties: the
curves z (t), 0(s) belong to the famaly if and only if for some j, k and real numbers
aand b,

zi(t) = a +6(), ) = a+ (1),
x;(t) constant for © # j, v # k;

0i(s) = b+ v(s),  6Ou(s) = b+ v(—9),
0:(s) constant for © # j, ¢ # k. If the density p(x1, Tz, -+ , Xn; 01,02, -+ ,0,) hasa
strict monotone likelihood ratio with respect to this family of pairs of curves, then
assumption (A) is satisfied.

REMARK: Our main applications involve the curves 6(¢) = ¢t and v(s) = s.

Proor: Suppose 2; = 7. We can find a pair of curves (z(¢), 6(s)) in the
family so that for some ¢, = 0, z = x(t,) where z; = a + (%), zx = a + 6(—t)
and such that for some s, > 0, 6(sy) corresponds to the density p;(z; w, A)
and 6(—sy) corresponds to the density pi(z; w, A). Then [p(z(t); 6(s0))]/
[p(z(t); 8(—s0))] is a monotone strictly increasing function of ¢. But at ¢ = 0
this ratio is one, since if « is the permutation which interchanges j and & and
leaves all others fixed,

p(2(0); 6(—30)) = p(2+(0);0:(—30)) = p((0); 6(s0)).

Hence, the above ratio is 21 if ¢ = 0, in particular for ¢ = ¢, .

Conversely, if p;(z; w, A) = pi(x; w, A) we can choose the curve 6(s) described
above and an arbitrary curve z(¢) such that z,(t) = a + 8(t), zx(t) = a 4+ 6(—1)
for some real number a and arbitrary (but fixed) coordinate z; when 7 = j, ¢ # k.
Then, as before,

Pa(:0() |
p(x(t); 0(—s0)) —

implies that ¢ = 0, which in turn implies z;(¢) = x(¢). Since this holds for all

curves z(t) of this form, the theorem is proved.
TaroreM 3.3: If p(x; 0) satisfies assumption (A), then any symmetric Bayes



302 SAMUEL KARLIN AND DONALD TRUAX

procedure for the slippage problem has the form ¢o(xz) = 1 if x ¢ Ry, a symmetric
set, and i(x) = lifxeRoand x; > z;forallj #£ 4,0 = 1,2, --- ,n. Ifx 2 Ry
and MaXi<ign Tj = Ty = Lgyy = *++ = Xi, then ¢ (x) + ¢ip(x) + ---
+ i (x) = 1.

Proor: If ¢ is Bayes against an @ prior: symmetric distribution F, then
eo(x) = 1if

b [ o) = Li(w)lpa(; ) dFo(w)

+£kZ:;f[Lo(k, w0, A) — L;(k, 0, A} pe(z: @, A) dF(, A) < 0

forj = 1, 2, -+, n. The symmetry assumption on p and L clearly show that
this set is symmetric. Call this set R, .
If 7 # 0, p;(z) = 1 provided

b [ [Lw) = Li()lpo(z; @) dFo(w)

n gk‘; f [La(k, 0, 8) — Lk, &, A)lpe(z; w, A) dF(w, A) < 0

forj=0,1, ---,n, 5 # <. If j = 0, the above inequality says that 2 £ R, .
Ifj> 0,7 # i,by Lemma3.2, L;(w) — L;(w) = 0,and L;(k, w, A) — L;(k,w, A) =
0if 2 # k, 7 5% k. Thus, the above inequality reduces to

£ f [L:(5, 0, A) — L;(3, 0, A)lps(z; 0, A) dF (w, A)

& [ LG, 0,8) = LG, 0, A)py(z; 0,4) dF (s, 4) <0.

The symmetry of the loss function shows that L;(¢, w, A) — L;(%, w, A) =
—[Li(4, w, A) — L;(j, w, A)] so that the inequality becomes

Ef[L’l(Z} w7A) - Lj(i: w, A)][pz(x; w)A) - p](xy w:A)] dF(w;A) < 0

Since L;(¢, w, A) — L;(i, w, A) < 0, assumption (A) says that this inequality
holds for z; > z;. Thus, ¢;(x) = 1if . 2 R and 2; = max; <;<.2; (except pos-
sibly ¢;(2) < 1 on the boundary).

Theorem 3.3 gives the general form of the Bayes procedures, but does not
make explicit the nature of the set Ry (the set where H, will be accepted) aside
from the fact that R, is symmetric. The character of this set depends strongly
on the form of the density function. In the next section we will consider several
specific densities of importance in their own right, and the slippage problems
connected with them. Some of these examples have been studied previously
in the literature, while the others are new. All of them are easy examples of our
general unified approach.
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4. Specific examples. In this section we will examine the form of the Bayes
solutions to specific slippage problems. The discussion of these cases are written
in detail to exemplify the method of analysis. In most of the situations we will
consider two cases which we will label the uncontrolled case and the controlled
case. The controlled case refers to the situation where in addition to an observa-
tion from each of the n densities, we have an observation from a density whose
parameter is known not to have slipped.

For reasons of symmetry, the controlled case will be easier to treat, and we
will usually examine that case in detail and merely state the result in the uncon-
trolled case. Moreover, whenever the problem possesses a natural invariance
structure with respect to a group of transformations, we will then automatically
restrict ourselves exclusively to those procedures invariant under the induced
group of transformations acting on the decision space.

4.1. The normal density with known variance.

(a) The controlled case. Suppose we have independent observations
X:, Xa, -+, X., Y with X; (each X; and Y usually represent a sufficient
statistic, the average sample values, based on several observations) having a
normal distribution with mean 6; and variance 1, and Y having a normal dis-
tribution with mean 6 and variance 1. In addition to the assumptions made on
the loss function in Section 2 we will assume that for every real number c,

Li(0l—|—c,..-,0n—|—c,0+c) =Li(01,"’,0n,0), i:O’ 1,...,n.

Since the problem is invariant under translation of each observation by a fixed
amount it is reasonable to look only at those procedures which depend upon

U,=X,-Y,U,=X,-Y,---,U, =X, - Y.

(The statistic U represents a maximal invariant under the translation group.)
For a discussion of invariance we refer to ([12], Chaps. 6-7).

The joint density of Uy, Us, ---, U, is given by
P(Up, +v oy Un @1, vy wa) = C exp[—%z Zk”(ui — wi)(u; — wji)l,

1=1 j=1
where C is a constant independent of the w;(w; = 6; — 8), and

n

) it =g
ij
A= 1

[y

- m lf 1 ?£ J -
Assumption (A) can be verified by showing that the density has a monotone
likelihood ratio along the curves u(¢), w(s) defined by
u = a + i, Uy = a — i, all other u; fixed;
w = b+ s, w2 =b— s, all other w; fixed.
In fact, t
p(u(t); w(s)) = f(t)g(s)e” k>0
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which clearly has a monotone likelihood ratio. Thus, the form of the Bayes
solutions are as described in Theorem 3.3. Only the set R, must be characterized.
In order to characterize R, we will make an additional assumption concerning
the losses, namely,

(B) Lo(k, w, A) = Lj(k, w, A) forallj # kand A > 0.°

In the present problem the real parameter » reduces to the single value 0,
on account of the translation invariance; and we may write L;(k, w, A) simply
as L;(k, &).

R, is an intersection of sets of the form

[ 2 1L, 8) — Lk, )lp(us b, 8) dF(k, 8) < 0.
Using the notation of Section 3 this can be written
&(Lo — Lj)po(u) + 2; fo+ [Lo(k,A) — L;(k, A)]pe(u; A) dG(A) < 0.

(the first term Ly — L; corresponds to the parameter point A = 0). Under
assumption (B) this reduces to

£(Lo — Lj)po(w) + & /: [Lo(j, A) — L;(j, A)lpi(u; A) dG(A) < 0.

Using the fact that pi(u; A) = po(u) exp [—EIN7A® + Ah;(u)], where

L
n+1"

hi(u) = Nu; + 3 Ny = u; —
=

=1

the inequality becomes
po(u) &(Lo — L;) + ¢ /0+

[Lo(j, A) — L;i(j, A)lexp [—3N"A* + AR;(u)] dG(A) < 0.

We see (by virtue of condition 2’ of Section 2) that the quantity in brackets
is a monotone function of ~;(u), so the inequality is equivalent to h;(u) < ¢,
oru; — (n/(n + 1))a < c. Thus, every Bayes solution has the form

. ' n o
eo(u) =1 if 1232. (uA—n+1u><c,

. n _ . .
ei(u) =1 if max (w; — —— @) > cand u; > u; for all j = <.
1<ign n+1

3 This assumption is reasonable in many situations and leads to a tractable explicit solu-
tion to the problem. Nonetheless our method can be employed in the general case without

this assumption, but then the solution is only expressible implicitly.
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In terms of the original observations, the procedure is of the form

T )
)

e ) = 1if . y
ooy, Zn YY) if max <x, P

1<jign

ez, -+ ,2,,y) = 1 if max <x]- — m) > cand z; > z; for all j # 3.
1<jign n + 1
(b) Uncontrolled case. (Paulson [8].) This example was first treated by Paulson
and now emerges as a special case of our theory. For the uncontrolled problem
we assume that, for all real numbers c,

Li(01+cy"' ,0,,—*—6) = Li(al: "'70n):

and also condition (B) of part (a). Restricting attention to invariant procedures
leads to considering decision functions on the variables U; = X; — X, U, =
X,—X,---,U, =X, — Xwhere X = (1/n) D_%1 X . The analysis proceeds
in a manner similar to case (a) above, and actually factors in simpler terms.
Every symmetric Bayes procedure for the slippage problem in terms of the u;
has the form

oo(Ur, -+, u,) =1 if maxu; <e,
1750
oi(ur, ~++,u,) =1 if maxwu; > cand u; > u; forall j = 4.

1ZjiZn

In terms of the original observations

eo(xr, -+, 2,) =1 if max (z; — %) <,
1=j=n

oi(xy, -+ ,2,) =1 if max (z; — &) > cand z; > z; forall j > 1.
1<jgn

4.2. The normal density with unknown variance.

(a) Controlled case. We have independent observations Xy;, Xz;, -+, Xn;,
Y;,7=1,2,---, k;, where the X;; are normally distributed with unknown
mean 6, and unknown common variance ¢°, and the Y; are normally distributed
with unknown mean 6 and unknown variance o°. For convenience of exposition
we take k; = k, and for reasons of invariance we assume that, for all real numbers
« and real 38 > 0, the loss functions satisfy

0, + « 0, +a 0+a o
Li(lB y Tty 3 ’ -g ,B>=Li(01,"‘,3n,0,0’).
For reasons of invariance it is reasonable to consider only those procedures which
depend on

U= (X, — 7)/8, -+, Up = (X. — 7)/8,

where
n k

k k k
X, =2 Xi/k, Y= Zl Y;/k, 8= > (Xy—X)+ }:1 (Y; — V)2
Jj=1 Jj= ] Jj=

1=1j=1
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The U; constitute a maximal invariant with respect to the affine group of
transformations of the real line into itself, under which the problem is invariant.
The joint density of Uy, U,, + -+, U, can be written as

plsn) = [ e[ =33 2N ws = m) s — ) — 2]

=1 j=1

1) (k—1)—1
gD g

where
My =
N = (n —Ilc- 1) and #; = (8; —6) /0.
TmFn 1T

For this problem let us verify assumption (A) directly. If p;(u; ) denotes the
density when H; is true and § = A/s, we may write

pi(u; 8) = C-f(8)g(w) f exp [t6Z; — L0 gy
0

where

nk_ g o i (ntk) (1)
= on 0], a0 =1/ [(B Fpen +1) 5]

and
. noo noa 4
Z: = <)\”u,. + > k"u,-) / (Z > ANy uy + 1).
;z; 1=1 j=1
Thus,

piCu; 8) = p(u; ) = Cf(O)g(u) [ (65— &) r Ve gy
0
so that pi(u;8) — p;j(u;8) = 0if and only if Z; = Z; and it is easy to establish
that the latter is equivalent to u; = u;. Hence, assumption (A) holds and the
form of the Bayes solutions is determined except for the set R, .

To represent the set R, , we again postulate that (B) is valid for the problem
in terms of the U;. Then, R, is an intersection of sets of the form

£(Lo — Lj)po(u) + £ 'L_ [Lo(7, 8) — L;j (g, 8)lp;(u; 8) dF(8) < 0.
Inserting the explicit expressions of p; the inequality becomes

o) [ [ 100G, 9) — LG O™ = bl = L))

.e’*'zt("ﬂ)(k—l)—l dt dF(8) < 0.
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Since the integral (by virtue of condition 2’ of Section 2) is a strictly increasing
function of Z;, the inequality is equivalent to Z; < ¢,

uy — —
|

(ree[Be- )

Thus, every Bayes procedure for the problem in the variables u; has the form

u

a<c.

n

U; —
eo(u) =1 if max n+t1 3 < G

- n 2
(g B

n _
U — ——— @
e;(u) =1 if max ntl ;> ¢

N n 2
T ]

and wu; > u; forall j# <.

In terms of the original observations a slight calculation shows that ¢o(X;;, ¥;)
=1 if

ixi"l'y
Vg eSS |
max X n+1 [<c
1<j<n Vg o\ 2 v o\ 2
=7= 2 = nX +Y -_nX+Y
[S +kZ(X" n+ 1 ) +k(Y n+1>]

¢i(X:j, Y;) = 1if the above max is >c¢ and X; > X; for all j 5 1.

(b) Uncontrolled case (compare with Paulson [8]). Here we have independent
observations X;;, ¢ =1,2,---,n;7 = 1, 2, --+, k, where X;; is normally
distributed with unknown mean 6; and unknown common variance ¢°. Again,
we assume that the losses are invariant if a constant is added to each 6;, and
if each 6; and o are multiplied by the same positive constant. Then, invariance
considerations tell us to look at procedures based on

U1= (XI_X-)/S"..’U”= (Xﬂ_X)/S

where 8 = D by D i (Xi; — X ;)2.' An analogous and simpler analysis as in
(a) above shows that the symmetric Bayes procedures for the problem in terms
of the variables U; are all of the form

n i
eo(u) =1 if max u,~/(k2uf+l> <,

1<ign i=1

n E
e;(u) =1 if max uj/(kz'uf—}—l) >c¢ and u; > u; for j# 4.

15i<n i=1
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In terms of the original variables this becomes
§00(x) =1 if lmax (X] el X)/[E Z (X” ot X)2P < c,
SIEn
pi(z) = 1 if  max & = /2 X Xy - X <o
Sisn
and X,> X, forall j# 3.

4.3. The gamma distributions.
(a) Controlled case. Suppose we obtain observations X;, X, -++, X,, ¥
such that the X; and Y are independent and X; has density

1 _]-_ —z/0; p—1
I'(p) 6%
and Y has density
1 l —y/8, p—1
I'(p) 6
(Here p is a fixed positive parameter.) We assume that the losses under scale
transformations satisfy the invariance condition

Li(a01,~--,a0n,a0) =Li(01,"’,0n;0)

for all @ > 0. In addition, we will assume that condition (B) holds. We see
clearly that the problem remains invariant under the transformation which
multiplies each observation by the same positive real number «, and as usual
we will consider only invariant procedures. That is, procedures depending only on

U, =Xy/Y,---,U, = X,,/Y.
The joint density of Uy, ---, U, is

p(u; w) = <C ill wif’“fﬂ)/[(l + ?;%)(nﬂ)p] ’

where w; = 6;/6. Assumption (A) may be checked by showing that p(u; w)
has a monotone likelihood ratio with respect to the curves

u;=a+4+t u,=a—t (0=1t=a), whileall other coordinates stay fixed;
wi=b+s, wj=b—s (0=s=0b),. whileall other coordinates stay fixed.
This is readily established by direct calculation. To characterize the set R®
we take the intersection of the sets defined by the inequalities

&(Ly — LJ)PO('M) + ‘/: [Lo(j» 8) — L;(j, 5)]7’1‘(“} 8) dF(8) <0

where 5 = A/6.(L, — L; denotes the difference of the loss functions, when
taking action 0 and 7 where the true hypothesis is zero.)
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This inequality can be written as

* . . 1 ) Uj e
po(u) fo+ {[LO(J: 8) — Lj(];a)]{m/[l T+ 114 oia u] }

— &(L; — Lo)} dF(s) < 0.

The integral expression is clearly a strictly increasing function of w;/
(1 4+ D_%;u;) and hence the inequality is equivalent to

uj/<2ui+1><c or x,~/<ixj+y)<c.
=1 Jj=1

Thus, the symmetric Bayes solution has the form

o(z,y) =1 if max x,/(Z x; + y) <
=

1<jgn

oi(z,y) =1 if max x,-/(ij + y) >c¢ and z; > xz; forall j# 4.
1<ign Jj=1
(b) Uncontrolled case. A special case of this example was treated in [11].
The corresponding symmetric Bayes solutions in the uncontrolled case have
the form

eo(z) =1 if maxz;/ Dtz <
1<7=n
edz) =1 if maxz;/Q fx:>c¢ and x; > x; forall j = 4.
1<j<n
b. Translation parameter slippage problem.
5.1. The general form of the tnvariant Bayes solutions. Assume that X; , X, , -+ -,
X. are independently distributed according to the densities p(z — 61), -+,
p(x — 6,) respectively, and suppose that Y is independent of (Xy, -+, X,)

and has density p(y — 6). Here, the variable z and the parameter 6 traverse
the real line. It is possible to develop a corresponding theory in the case where
z and 6 are integer valued. However, for the sake of exposition, we have limited
our discussion to the case of continuous variables. The densities differ only
in their location parameter.

The assumptions on the losses are the same as in the preceding problems which
dealt with the controlled case. In addition the losses will be assumed to satisfy
the invariance property

Li(01+c,"';0n+c,0+c) =Li(01;"';0n,0)

for all real numbers ¢. A maximal invariant for the problem is then U; = X; —
Y,.--,U,=X,—-Y.

We will assume throughout this section that the density p(z — 6) has a
monotone likelihood ratio (abbreviated M.L.R.). i.e.,



310 SAMUEL KARLIN AND DONALD TRUAX

p(2 — 0)p(x2 — 62) = p(x1 — 62)p(z2 — 61)
whenever
1<z and 6, < 6.

The class of distributions which possess a M.L.R. with respect to a translation
parameter include all P.F.F.’s [4], any non-central x*, any non-central ¢, etc.
Most distributions arising in statistical practice are of this kind. For convenience
of exposition we shall assume henceforth that p(x) is strictly positive. All our
discussion will remain valid if we merely take p(z) non-negative and positive on
some interval. This involves a tedious consideration of cases with no essential
new ideas.
The joint density of Uy, ---, U, is

q(u; w) = f_w ’

where w; = 6, — 6. To check assumption (A) we note that

| p(u; — w; + t)p(t) dt,

0 7=

0 n

¢(u8) = gu(;8) = [ ]

[pQu; — A+ 6)/p(u; + 1)) — (p(ux — & + 8)/p(us + ))p(2) dt.

Since p(u — 6) has a monotone likelihood ratio, then for every ¢, the quantity
in brackets is greater than or equal to zero, if and only if w; = u; . Thus, assump-
tion (A) holds, and we know the form of the Bayes solutions except for the set
Ry . The set Ry is an intersection of the sets of u values satisfying the inequalities

| pu; +t)

fo(Lo — Ly)qu(u) + £ [+ Lo, &) — L;(G, A)la;(u; A) dF(A) < 0,
or

£(Lo — Lj) ]:: zIiIl p(u; + )p(t) dt + & foi [Lo(4,A) — L;(j, )]

[ TLpCw + Dlwts — & + 0/p(; + 0)p(®) dtaP(a) < o.
If we interchange the order of integration and set
2(w) = [ (8L, 8) — LG, Dlp(u'— 8)/p(w)) — to(L; — Lu)} dF(a)
we may write the inequality as
f_: ®(u; + 1) I:I]L p(u; + t)p(t) dt <0,

where ®(u) is monotone increasing. Now consider the curve u; = A\,
t=1,2, ..., n For u on this curve the inequality becomes :



SLIPPAGE PROBLEMS 311

f_: (A + ) {I:Il p(\ + t)} p(t) dt

(1) ® n
= fw &(u) {III p(u)} p(u — N) du < 0.
Now, ®(u)[p(u)]" changes sign at most once, and p(v — \) has a monotone
likelihood ratio. Hence, by Lemma 3.4, [ ®(u)p"(u)p(u — \) du changes sign
at most once in A (from negative to positive values). Let Ao be the value at which
it changes sign. If there is an interval of A values where the integral is zero,
then define A to be the smallest value of this set. Let Ao = == respectively if
the integral is always negative or always positive.
THEOREM 5.1:

Ry C {u| max u; < Ao},

1<i<n

where o 18 defined in the preceding paragraph.

Proor:
Cask I: A\¢ = 4 «. The theorem is trivially true in this case.
Case II: Ny = — ». This means that [Z. ®(u)p"(u)p(u — \) du is positive

for all real \. We must show that R, is the empty set. Suppose that u ¢ Ry and
that «; is the maximum coordinate of u. Now,

f_: 2w + 1) I:II p(us + )p(2) dt
= f_: p(2)®(2) ﬁ p(ui — w + 2)p(z — w) de

=2

changes sign at most once in %; when the other variables are held fixed, since
Il p(w: + 2 — w)p(z — w) has a M.L.R. in the variables z and w, . Hence,
there exists a vector point u’, having the same components as u, except for the
first component, where uy is determined so that u; = maxXs<j<at; , and belongs
to Ry . This is the case, since the above integral is negative for the point u, and
remains negative when the first component u, is decreased. Continuing in this
fashion we may show that a point, having all coordinates equal, belongs to R,
which contradicts the assumption that \p = — .

Casg III: A is finite.

Consider a point u £ {u | max;<;j<.%: < Ao}. For definiteness suppose u; =

max <i<a%; . Consider a curve I'(u; = u;(s),j = 1, ---, n), passing through
the points (Ao, X, *++ , No) and u, with the property u;(s) — wui(s) is decreasing
forz = 2,3, -+, n, and u,(s) is increasing. Along this curve it is easily verified

that the density [ Ji—iple — (wi(s) — ui(s))]p(2 — wi(s)) has a monotone likeli-
hood ratio in the variables z and s. Then

[ otuats) + A IT plusts) + o)
= f<I>(z) iIiIlp[z — (m(s) — u;(8)Iple — wi(s)] dz
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changes sign at most once. But since it changes at (Ao, Xo, - -+, Ao) the point
ug k.

In general, we cannot make more explicit the nature of the set R, . However
when there exists a one-dimensional sufficient statistic, a more precise char-
acterization of R, is possible. This is done in the following paragraph.

5.2. Form of the Bayes solutions when there is a sufficient statistic. In this section,
by way of variation, we shall discuss the uncontrolled problem and state without
proof the corresponding conclusions in the case of the controlled problem.

We suppose that p(z) is bounded, and we may assume for convenience that p
has its maximum at z = 0. For, if it has a maximum at z = z, we can relabel
the parameters so that ¢/ = 8 4 x, . In addition we will suppose that there is a
statistic ' = T(a, ---, z,) which is sufficient for § when 6, = 6, = ... =
6, = 6. That is, the likelihood function can be written

I p(z: = 0) = r(@)a(T; 6).

Since the maximum likelihood estimate (M.L.E.), 6, is a fortior: sufficient we
can take T = 4. The following lemma is now immediate.

Lemma 5.2.1: The mazimum likelthood estimate of 6, 8, is translation invariant,
ie, 0(zi+c, -, 2+ ¢) = O(zy, -, ) + ¢ and [[i=p(z; — 6) can be
written as r(x)q( — 9).

Lemma 5.2.2: q(8 — 0) has a monotone likelihood ratio.

Proor: We assume for simplicity of exposition that p is positive everywhere.
The general situation can be handled by a tedious enumeration of cases. Let
0> 6y, 0= (1, -+, 20), 60 = B(x + 8, -+, 2, + 8) = b, + 8, where
5 > 0. Then

lg(b — 61)/q(b — 6,)] — [g(d, — 61)/q(b, — 65)]

= [gp(xi + 86— 6,) iI:IIP(xi + 46— 02):'

- [IJI p(z; — 6:) IiI1 p(z; — 02)] > 0,

since foreach ¢, p(x; + 6 — 61)/p(x: + 8 — 62) > p(x; — 6,)/p(x; — 62) because
of the monotonicity of the likelihood ratio for p(z — 9).

THEOREM 5.2.1: For the uncontrolled problem the set Ry has the form

Ry = {z | max (z; — 8) < ¢}
1<ign

where 8 is the M.L.E. of 0 under Hy ; 6 = -+ = 0, = 0.

Proor: The maximal invariant has a density which can be written in the
symmetric form [Z.] [ioip(x; + t) dt, and, as before, the set R can be expressed
as an intersection of sets defined by the inequalities

f ®(z; 4+ ) [T pla: + ) dt <0 i=12--,n
o0 i=1
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where ®(u) is the same as in Paragraph 5.1. By assumption, § is sufficient for
6 so that

[Cat +0 I pt+0di = [ r@ats + a6 + 0 di

r(z) f_: ®(u)q(u — (z; — 0)) du.

Since ® is monotone increasing and ¢(u — (z; — #)) has a monotone likelihood
ratio, the above is less than zero if 2; — § < ¢ for some appropriate constant c.
Since the above is to hold for j = 1, -- -, n, the set R, is determined as

{z | max (z; — ) < c}.
1<ign

An identieal result holds for the controlled problem. The formal arguments
are similar.

THEOREM 5.2.2: If the maximum likelihood eslimate 0 s sufficient, then the
class of procedures of form

eo(z) =1 if max (z; — 8) <e,
1<i<n

ei(z) =1 if max (z; — 8) > cand z; > z, for all 4 5 j,
110
constitute a mintmal essentially complete class of symmetric invariant procedures.
Proor: Let Ay = 0, Ay, Ay, --+ be a dense set of points which includes all
points of discontinuity of the function y(A) — Lo(¢, A) — Li(¢, A) which is
clearly independent of 7. Consider any symmetric invariant Bayes procedure

#™ which improves on ¢ at A, Ay, -+, An. That is,

(e, ) — ple™, A) 20 fori=0,1,---,m,

where
o(6,0) = oo™, 0) = =0 [ (0 — ¢§™)po(a) d,
for vo = L;(0) — L¢(0), and for A > 0
ple, A) — p(e™,A) = —v(4) f (e — " )p.(2; A) da

where p;(x; A) refers to the density for which the sth parameter has slipped an
amount A and the right hand side is clearly independent of ¢ by symmetry
considerations. Since we have a sequence {¢'™} of procedures, which improves
on ¢ in terms of risk, at Ay, Ay, -+, An, and o™ is determined by a real num-
ber ¢ , i.e.,

e (z) =1 if maxa; — 0 < cm,
1<ign

e (x) =1 if maxa; — 6> cpand z; > ; forall + % j

1<ign
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we can choose a limiting procedure which is of the same form, and which im-
proves at all points of the enumerable dense set. Since any A g {A,} is a point
of continuity of y(A), it will follow that this limiting procedure has risk no
larger than the risk of ¢ at all points A. This shows that the class of procedures
given above is essentially complete.

To establish minimal completeness we must show that no two procedures in
this class can dominate the other. Let ¢' and ¢ be two procedures determined
by the critical numbers ¢; and ¢; . For definiteness, suppose ¢1 > ¢z . Then

p(¢,0) = p(¢,0) = =70 [ (6b — PDpo(a) da

= —yoP{c; < max (X; — ) <a} <0,
1gign

and

p(¢', A) — p(e’, A)

—v(8) [ (¢} = eDpilz; A) d

y(A)P{X; = max X;, and ¢; < max (X; — A)
1gign 1gign

given that the ith parameter has slipped by A} > 0.

We state without proof that the corresponding result to Theorems 5.2.1 and
5.2.2 apply to the symmetric two sided slippage problem. Namely, every sym-
metric invariant Bayes procedure is characterized as follows:

eo(z) =1 if max|z; — 8| <e,
1<ign
and

1 if max|z; — 8| >c¢
1<i<n

and |z; — 6| > |z; — 6| for all s 5 j.

ei(x)

We now indicate two illustrations of Theorems 5.2.1 and 5.2.2. We discuss
first an example treated earlier by direct methods. Example 2 below offers a new
example of our theory. Except for small variations, these are the unique examples
of the theory since the only distributions which admit a sufficient statistic
under independent observations and for which the parameter occurs in transla-
tion form are the distributions of these illustrations.

ExampLE 1: Normal distribution with known variance.

For both the controlled and uncontrolled problem the maximum likelihood
estimate is sufficient. Consequently, by virtue of Theorem 5.2.2 a minimal
complete class of procedures in the uncontrolled case consists of all procedures
having the form:

oo(z) =1 if maxz; — & <cg,
1<iZn

ei(x) =1 if maxa; — Z > cand z; > z; forall ¢ = j.
1<i<n
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In the controlled case the minimal complete class of procedures were char-
acterized in terms of the statistic maxi<i<n %: — [0/(n 4+ 1)]J@ where u; =
x; — y. We observed here as mentioned earlier, that this can be expressed as
max z; — 6, where § = (ni + y)/(n + 1) is the maximum likelihood estimate
of § when 6, = -+ =6, = 6.

ExamprLE 2: Exponential distribution.

Let us take p(z — 0) = ¢ ““y(z — 6) where

0 if u<O
Y(u) = .
41 if w=0.

For the non-controlled problem § = min;<;<s #;. The minimal complete class
of symmetric invariant procedures consists of all procedures having the form:
oo(r) =1 if maxz;, — minz; <e,
1<i<n 1<i<n

and

oi(z) =1 if max z;, — min z; > ¢ and z; > z; for all 7+ # j.

1<i<n 1<i<n
For the controlled case
y if min 2; 2y
a 1<isn
0 =

min z; if min z; £ y.
1<i<n 1<i<n
The minimal complete class of symmetric invariant procedures consists of all
procedures of the form:
eo(z) =1 if max z; — min (min z;, y) < ¢,

1<i<n 1<i<n

pi(x) =1 if lmax Z; — min gmin Zi,y) > cand z; > z; for all ¢ # j.
<iZn <i1Zn
6. Scale parameter problem. Here we assume that X;, X,, .-, X, are
independently distributed according to the densities (1/61)p(x/61), -,
(1/8.)p(x/8.) respectively. p(x) is defined for + = 0 and taken for con-
venience to be strictly positive. The densities differ only in their scale parameter.
In addition to the usual assumptions on the loss functions we will assume

L,~(ct91, ey, 00,,) = Li((h, ey, 0,.)

We also hypothesize that where 6, = --- = 6, = 6, the maximum likelihood
estimate 6 exists and is sufficient for 8. Finally, we assume that p(x/0) possesses
a M.L.R. in the variab'es  and 6. As usual, we restrict attention to symmetric
procedures invariant under scale transformations where x and 6 traverse the
positive real line. An argument entirely analogous to that given in Section 5
leads to the following result.
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THEOREM 6.1: Under the above assumptions the class of procedures of the form
eo(z) =1 if maxz/6 <ec,

1 if max 2;/6 > cand z; = max z; and z; > 2, for all 4  j

1<5iZn

Il

ei(x)

constitule a minimal essentially complete class of symmetric invariant procedures.
The I'-family of distributions provide us an example. In the uncontrolled case,

b = (1/np) ;1 x
and in the controlled case

b= (1 + Dp)(E a +9).

Thus, for the uncontrolled problem and the controlled problem the minimal
complete class of symmetric invariant procedures as characterized in Theorem
6.1 agree with the class of procedures described in Section 4.3.

7. Combined translation and scale parameter slippage problem. Let X,
X,, -+, X, be independent, and let X; have density (1/¢)p((z — 6:)/s)
for7 = 1, 2, - -+, n. The density is known except for the location parameter
0; and the scale parameter ¢ > 0. The slippage problem refers to the location
parameters 6; . Again, we make the usual assumptions about the losses with the
added restriction that

Li((ol + b)/a: ooy (6a + b)/a’ 0'/0,) =Li(61, -+, 0n,0)

for all real numbers b and all positive numbers a. A slight extension of the
methods of the previous sections enables us to prove
TuroreM 7.1: Let [[iap((z: — 6)/s) = h(x)g(é/a)r((6 — 6)/c) where
q(é/a) has a monotone likelihood ratio, and r((8 — 6)/c) has, for each o, a mono-
tone likelthood ratio. Then the class of procedures of the form:
eo(z) =1 if max (z; — 6)/6 <,

1<i<n

ei(r) =1 if max (z; — 8)/6 > cand z; > z;forall j = ¢
1<iZn
1s @ minimal complele class of invariant symmelric procedures.

Theorem 7.1 may be illustrated by Paulson’s result for Normal variates in-
volving slippage of the mean parameter with unknown common variance. An-
other application of Theorem 7.1 is on the density
—(’—;0—) for 2= 6

e

p(z — 6)/\) = (A > 0 and 8 real)

0 for z <86

There are discrete analogues of the results of Sections 5-7 valid for the Pascal
family of distributions to which our methods apply.
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8. Uniformly most powerful procedures. In this section we prove, subject to
slight smoothness restrictions, that each symmetric invariant Bayes procedure
involving a single critical parameter is uniformly most powerful amongst the
class of all symmetric invariant procedures, having a prescribed error associated
with hypothesis H, . The loss functions are assumed to be zero or one, according,
as a correct or incorrect decision was made. All relevant distributions in this
section are assumed to derive from continuous densities.

We suppose that the problem has been reduced by invariance so that the
density p;(x; A) under the condition that the jth population has slipped de-
pends on a single positive parameter A. Moreover, as usual, the permutation
m which interchanges j and & and leaves the other indices fixed satisfies

Pri(@r 5 A) dze = p;(x; A) da.
Finally, we suppose, it has been demonstrated that all symmetric invariant
Bayes procedures are of the form

eo(z) =1 if maxz; — v(z) <ec,
1<j<n

(1)

ei(xz) =1 if maxz; —v(x) > candx; > z;forallj = ¢
1<j<n

i=1,2-,n

where v(z) is a symmetric function of z, and ¢ is a constant.

Consider a class of a priori symmetric distributions Fa,; depending on a
parameter £ constructed as follows. Let A, be an arbitrary positive but fixed
real number. We define Fy,: as a discrete distribution which assigns mass &
to po(z) and mass (1 — £)/n to pi(z; Av),7 = 1, - -+ , n. By our previous theory
we know that the Bayes procedure against F,,¢ is of the form (1) with an
appropriate ¢ depending on £. A simple continuity argument shows that when £
varies between 1 and 0, the constant ¢ varies continuously from its largest
possible value to its smallest possible value. In particular, when &£ = 1, () = 1,
and when £ = 0, po(2) = 0. For any preseribed ¢, by continuity, we obtain the
existence of & such that the given procedure of (1) defined by the constant ¢
is Bayes against Fa,,¢, . This can be done for any Ay > 0.

Let @ denote a decision procedure characterized as in (1) for which the prob-
ability of accepting hypothesis zero when it is true has fixed size equal to

f@o(x)po(x') dr =1— « 0 <a<l)

Consider any other symmetric invariant procedure ¢ having the same prescribed
error associated with action a,. Since & is Bayes against F,, z, for a suitable
£ we have

[ #(2,0) dFuses() 5 [ oe,0) R (0)
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or

b [ a@pl@) o+ 311 = /0] [ 11 = 2y(a)lpi(a, A0 de

< & [ @) da + (1 = t/m 3 [ 11 = ei(@lpia, &) da.

(Remember that the loss due to a wrong decision is 1, independent of the nature
of the error.)

Since ¢ and & are symmetric invariant we infer that [ [1 — 3;(2)]p;(z, Ao) dz
is independent of j. Since the error in rejecting Hp is fixed, we obtain

(2) [ 11 = a@pyz, a0) dz = [ 11 = o(@)lpi(, 80) do

and this is true for any Ay > 0 by choosing in each case £ suitably.

Thus, we have proved that, amongst all symmetric invariant procedures
possessing a prescribed probability of rejecting hypothesis Hy when it is true,
there is a single member (up to equivalence in terms of risk) in the class (1)
which is uniformly most powerful.

Another way to express the conclusion of (2) is as follows: Amongst all sym-
metric procedures with a prescribed probability of accepting hypothesis zero
when it is true, there is a unique decision procedure of type (1) which maximizes
the probability of making the correct decision, whatever the true state of nature.
That there is only one is clear by virtue of the fact that the related distributions
are all continuous densities.

9. A multivariate slippage problem. Let S be a p X p Wishart matrix with
covariance matrix =, and let X;, Xz, -+, X, be independent normal random
p-vectors with mean vector 6; respectively, and covariance matrix Z. In addition,
let S be independent of (X;, -+, X,).

The loss functions satisfy conditions (1) and (2) of Section 2, where the 6;
are now vectors and A is a non-zero vector. Also assumption (B) of 4.1 is assumed
to hold. The loss functions will also be required to satisfy the invariance property

L(C6+ a, -+ ,C0,+ a CZC') = Li(61, -, 0n, Z)

for all non-singular p X p matrices C and all p component vectors . We restrict
attention to symmetric procedures based on X, S which are invariant under the
non-singular transformations X — CX and S8 — CSC’, and under translations
of X; by the same vector.

It is known that the density of the maximal invariant when the jth mean has
slipped can be calculated by integrating, with respect to the Haar measure of
the full linear group, the joint density p(CX, CSC’) transformed by a general
element of the group, viz;

(X, 8) f f exp — } {tr (CSC'Z™ 4+ CXX'C'E™ + 270,00,
‘ — 9570X0,)}(d0dC/| C 1Y)
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where X = (X;, ---, X,) is the matrix with column vectors as indicated and
Oy = (0,---,0,0+ A, 0,---,0) is a matrix whose jth column is the vector
0 + A, while the remaining columns are each composed of the vector 6. Here
g denotes an appropriate real number. We will let © represent the p X n matrix
every column of which is composed of the vector 6. Now completing the square
and integrating with respect to ®, we have exp [— 3 tr &’ =Alf(X, 8)-

[[ewi=ptrosez™ — e oXX'CZ + tr37CK; &
— tr (n/2)27(00’ — 2(CX — (&/n))8)1(d6 dC/| C|%) = g(A, 2)f(X, 8)
[ expl= 4t 27C(S + XX — nXX)C" + tr 27C(X; — RIXNAC/| C ).
Put W = S 4+ XX’ — nXX’ and the density is
g(A,2)f(X,8) f exp [— 3 tr C’Z7'CW + tr A’Z;’C(X; - X)1(dc/|cl9).
Introducing the new variable D = >7*¢, and deﬁning 7 = A =% we have
98, )/(X, 8) [ expl— tx DWD' + trw'D(X; — X)) @D/ |DI).

(It should be understood that after each change of variables, the functions g and
f may change by a multiplicative factor. However, since the explicit expressions
of these functions are of no relevance, we will continue to use the same symbol
and no ambiguities will arise.)

Since W is positive definite with probability one, we can reduce the integral
further by the change of variable DW? = E. The density becomes

0(8,2)(X, 8) [ expl— 4 tx BE' + tx BW (X, —X)w') (B/ | E|").
Making use of polar decomposition of matrices we write
WHX; — X)n' = Uln(X; — XYW H(X; — X))
where U is orthogonal. Now the change of variable A = EU gives
0(a,2)f(X,8) [ expl~}tr Aa’
+ tr Afn(X; — X)'W(X;— X)o'1'] (dA/|A[Y).

Let V be orthogonal and such that V[n(X; — X)W (X; — X)n'I'V' = A
is diagonal. The resulting matrix is clearly of rank one since

[(X; — X)W (X; — X))
is of rank one. A further change of variable of 4 into V’AV gives

g(a, 2)f(X, 8) f exp [— 3 tr AA’ + tr AA] (dA/|A |9
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or

q) OIS [epl- i dd + ol (X, - X

WHX; = )P (dA/| A ]9).

Let Z; = (X; — X)W (X; — X), and denote the integral by p(Z;, 8)

where & = 7'9. We now show that p(Z;, §) has a monotone likelihood ratio,

and moreover, is a monotone function of Z; for each &, where p denotes the in-
tegral expression (1) excluding the multiplying factors.

If we expand the integral in an infinite series and integrate term by term we

obtain p(Z;, §) = Z:—o C, 5™ Z{"™P  The even coefficients C,, are non-
negative. We will prove that the odd coefficients are zero.

Couns = [ expl— 3 T2 al] ali™ (d4/| A [).

In fact, the change of variable

-1
1 0
1 4
D= A,
L 0 1]
leads to
02n+1 = f exp [_ % Zz d?i](‘ d%?H)(dD/ID Iq) = _02n+1 )
SO C2n+l = O-

The fact that p(Z;, §) is monotone in Z; is now clear. The monotonicity of
the likelihood ratio follows from the general result in [4] which states that if
¢1(Z, y) has a monotone likelihood ratio and ¢.(y, ) has a monotone likelihood
ratio, then p(Z;, 8) = [qi(Z:, y) ¢(y, 6) d¢(y) has a monotone likelihood
ratio, where y represents any o-finite measure. In our case

a(Z;,y) = &',
g(y, 8) = %

both of which clearly possess monotone likelihood ratios.

Finally, careful examination of the derivation of the distribution of the maxi-
mal invariant will show that the normalizing function g(Z, A) is only a function
of 5.

The Bayes procedures are now easily characterized as follows: Let F(8) denote
an a priort distribution. ¢(X, S8) = 1 if for every j
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f(: [0(Lo — L)ho(X,8) + £(Lo(5,8) — L;(j, 8))hi(X, 8:3) 1dF(8) <0

where ho denotes the density of the maximal invariant when there is no slippage,
and h; is the density when the jth parameter has slipped. This can be written as

55,8) [ @CotTo — L) + £(Lo(s) = L,(5))pi(Z;, D1 dF() <0,

Since the integral is monotone in Z;, the inequality is equivalent to Z; < c.
Moreover, since p;(Z; , 8) is strictly increasing in Z;

o+ 9(8) pi(Z;,8) — pi(Z:,8)]dF(5) 2 0

according as Z; 2 Z;. Thus, applying Theorem 3.3 we conclude that the form
of the Bayes solutions is

eo(X,8) =1 if max (X; — X)W UX; - X) <e,

1<j=zn

ei(X,8) =1 if max (X; — X)YWHX; — X) >e¢,
1<j<n

and
X:-X)ywx;.-X)> X, - X)yw'(Xx; - X) for all j = 4,

where W = 8 + XX’ — nXX".

If there is a control population each symmetric invariant Bayes solution can
be determined in an analogous fashion. The explicit solution is: Let Z; = X; —
Y, and let S be a Wishart matrix independent of X;, Y.

eo(X,Y,8) =1 if max{Z;—[n/(n+ DIZYW {Z,—[n/(n+ 1)]1Z} <e¢,
1gjgn

where W = {8 + ZZ' — [n’/(n + 1)] ZZ}
e:i(X,Y,8) =1 if max{Z;— [n/(n+ DIZY W HZ;— In/(n+ 1)1Z} > ¢

and
{Z; — In/(n + DIZYW{Zi — [n/(n + 1)]Z}
>{Z;— [n/(n+ DIZYW{Z; — In/(n + 1)1Z} forall j = .

In most applications, the matrix S represents the sample covariance matrix
based on several observations of a normal distribution with covariance matrix =.

The case where Z is known can be handled by similar methods. The solution
is to look at maxi<i<n (X; — X)’Z7(X; — X) in the non-controlled case,
and maxi<;j<n {Z: — [n/(n + 1)]Z}27 {Z; — [n/(n + 1)]Z} inthe case where
there is a control and Z; = X; — Y.

10. Some results for non-parametric problems. Let X;; be independent
random variables with X;; having a continuous e.df. F; for ¢ = 1, ---, k;
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J=1,2,---,n We will define two notions of slippage and, for each, give a
symmetric invariant procedure which has local optimum properties. These
notions were discussed by Lehmann [3], and I. R. Savage [10] and the solutions
we will give are direct applications of their results.

In general, we will say that the jth distribution has slipped if F; = F for all
© # j, and F; = g(F) where g(z) X z is a continuous distribution function on
[0, 1]. The problem is invariant under monotone transformations, and hence, any
invariant procedure will depend only on the ranks of the observations. First, let
us take g(F) = (1 — A)F + AF’. Lehmann has shown that if we let 7;; denote the
rank of X;; in the combined sample, and R the matrix of ranks, then if the jth
distribution has slipped, the probability of R is

PP (R) = [1/<nk”ﬁ k)] {I_I1 (- + 2xU"-f)]}

where U"? denotes the r;;th order statistic in a sample of nk for a distribution
uniform on [0, 1]. We want to find regions Cy, Cy, -+, C, in the set of possible
ranks so that Py(C;) = 1 — a, the procedure is symmetric, and P{¥(C;) is
maximized for small \. Since

. k ]C
(d/aN)PSM(C5) [a=o ={ 2 [2 Sory/(nk4+1) — k]} / ( " )

ReCyj =1 nk k
it is clear that the region C; is of the form max;<;<n Dhary =Dkt >
where v is chosen so that

k
Po[ max Zr;j§'y:|=1—a.
1<ign I=1

Now, consider slippage as follows. We let g(F) = F'™ where A > 0. We
order the combined sample and define for each j, Zi” = 0 or 1 according as the
<th member of the ordered sample is not, or is, from the jth distribution. Let Z
denote the set of Z{”. The distribution of Z when the jth distribution has slipped
is, following Savage [10]

l

PP(2) = [(nk — BRI 4 / { (Z 29 + (1 — Z9)(1 + V)] )} .

l=1 \i=1

We want to choose regions Co, Cy, - -+, C, in the set of all Z so that Py(Cy) =
1 — a, the procedure is symmetric, a,nd P » (C;) is maximized for small \. Since,

I=1 =1

(d/aN) PP (C)) hmo = E [(nk — k) !/ (nk) r]{ k — E >l - ZE”)/l]}
the region C'; must be of the form

max 5 Z (zP/) = E E (ZP/) > ¢

=1 i=1 =1 7=1
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and Cy of the form

max (f‘, i (Z§"’/l)) <ec

l=1 i=1
where ¢ is determined by the condition that Py(Co) = 1 — a.

11. Selection of a procedure from a complete class. The complete classes of
procedures obtained are always of the form:

eo(z) =1 if max Ulzx) <,
1Sisn

oi(z) =1 if 11;1@;: Ui(x) > cand Uj(z) > U(z) for all ¢ = j.

The usual way of selecting a procedure from the complete class is to control the
probability of one of the errors. One may thus choose a number o, 0 < a < 1,
and ask that E(go| 6 = -+ = 6,) = 1 — a. Thus, the distribution of max;<; <,
U.(x) is needed to determine ¢. In most of the cases discussed, this distribution
is not tabulated (or even worked out). It has been suggested by Paulson that,
since the U; are negatively correlated and have the same distribution, a reason-
able approximation to the solution of

PlmaxU; <clbh=---=86,]=1—a

1<isn
is provided by the solution of
P{Uy(z) > c] = a/n.

Another alternative for finding ¢ is to use a multivariate Chebychev inequality
proposed by Olkin and Pratt [7]. In this way one can put a lower bound on the
probability of deciding there was no slippage when this indeed is the case. The
bounds given by Olkin and Pratt can be evaluated explicitly in case the correla-
tion matrix has equal non-diagonal elements.

Finally, the constant ¢ can be approximated by direct sampling.
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