THE POISSON APPROXIMATION TO THE POISSON BINOMIAL
DISTRIBUTION!

By J. L. HopgEes, JR. AND LucieN LE Cam
Unaversity of California, Berkeley

1. Introduction. It has been observed empirically that in many situations
the number S of events of a specified kind has approximately a Poisson dis-
tribution. As examples we may mention the number of telephone calls, accidents,
suicides, bacteria, wars, Geiger counts, Supreme Court vacancies, and soldiers
killed by the kick of a horse.

Many textbooks in probability content themselves with an explanation of this
phenomenon that runs something like this: There is a large number, say =,
of events that might occur—for example, there are many telephone subscribers
who might place a call during a given minute. The chance, say p, that any
specified one of these events will occur (e.g., that a specified telephone sub-
scriber will call), is small. Assuming that the events are independent, S has
exactly the binomial distribution, say ®(n, p). If we now let n — «© and p — 0,
so that np — A where A is fixed and 0 < A < «, it is shown that ®(n, p) tends
to the Poisson distribution ®(\) with expectation A.

As was pointed out by von Mises [4], such an explanation is often not satis-
factory because the various trials cannot in many applications reasonably be
regarded as equally likely to succeed. Let p; denote the success probability of
the ¢th trial, ¢ = 1, 2, - -+, n. Then S has the distribution sometimes called
“Poisson binomial.” Starting from this more realistic model von Mises shows
that S has in the limit the distribution ®(\), provided n — « and the p; vary
with n in such a way that Zp; = X is fixed and & = max{p:, pz, -- - , pa} tends
to 0. This result is given in a few textbooks [1]; [5].

The limit theorem of von Mises suggests that the Poisson approximation will
be reliable provided that n is large, « is small, and A is moderate. But even
these requirements are unnecessarily restrictive, as may be seen from a general
approximation theorem of Kolmogorov [2]. When this theorem is applied to our
problem, it asserts that there is some constant C, independent of » and the p;,
such that the maximum absolute difference D between the cumulative distribu-
tions of S and of ®(Zp;) satisfies the bound D < C +v/a. Thus, the Poisson ap-
proximation will be good provided only o is small, whether # is small or large,
and whatever value Zp; may have. It seems to us that this is the type of theorem
that best “explains” the empirical phenomenon of the “law of small numbers.”

The purpose of our note is to present an elementary and relatively simple
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proof of a bound of Kolmogorov’s type. By using special features of the Poisson
distribution, we are able to get the improved bound 3+/« for D, and to accom-
plish this in a good deal simpler way than is required for the general result.
We believe that our proof is suitable for presentation to an introductory class
in probability theorv.

2. The approximation theorems. Let X; indicate success on the ¢th trial,
so that P(X; = 1) = p; and P(X; = 0) = 1 — p;. Our proofs will be based
on the device of introducing random variables Y; that have the Poisson dis-
tribution with E(Y;) = p., and are such that P(X,; = Y,) is as large as pos-
sible. Specifically, we give to X; and Y the joint distribution according to which

PX;=Y;=1)=pe ™, PXi=1Y:=0)=pi(l—e"),
PX;=Y:;=0)=¢" —p(1l —¢™),
and
P(X;=0,Y;, =y) = pie " /y! fory =2,8,---.

We let the Y; be independent of each other. (The construction is valid if p; < 0.8,
insuring P(X; = Y; = 0) = 0. For p; > 0.8 the results below are trivially
correct.)

From the familiar additive property of Poisson variables, we know that
T = ZY, has exactly the Poisson distribution ®(Zp;). Our objective is to show
that 8 = =X, has nearly this distribution. Specifically, if we let

D =sup|P(S=u)— P(T 2 u)|

denote the maximum absolute difference between the cumulatives of S and T,
we want to find conditions under which D is small.

THEOREM 1. D < 2Ep§.

Using the inequality ¢ ™ = 1 — p;, it is easy to check that

P(X; %= Y) =14 p; — (1 + 2p:)e™ < 2pi.

Therefore, by Boole’s inequality, P(S = T) < ZP(X; = Y.) < 22p:. But
since |P(S < u) — P(T =u)| = P(8S#T), the theorem follows.

In order to prove our next theorem, we shall need a uniform bound on the indi-
vidual terms p(k, A) = ¢ "\*/k! of the Poisson dlstnbutlon It is well known
that for large A, the maximum term is of the order A but we will give a spe-
cific upper bound.

LE1\§MA. The mazimum term of the distribution ®(\) s less than (1 + 1/12)\)/
(2mn)7.

Proor. Suppose ¥ < A < k + 1. The maximum term is then e k), as
may be seen by lookmg at the ratio of successive terms. Since ()\)*e A is maxi-
mized at X = k + 1, and since 1 + 1/12\ > 1 + 1/12(k + 1), it will suffice
to show that

2otk + 3 < kL 4+ 1/12(k + 1)]
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fork = 0,1, 2, - - - . This inequality may easily be checked by direct computa-
tion for k = 0, 1, and 2, and for k = 3 by using the Stirling bound
k> (21r)§kk+§ e—k+(1/12k)—(1/860k3).

Let us denote Zp; by A and Zp? by p.
Tusorem 2. D < (3u/d®) + (a + 1)(1 4 1/120)/(2m\)E
To prove this, we shall consider the random variables Z;, = ¥; — X;.

E(Z:) =0,
while
Var(Z:) = E(Z}) = p(1 —€7) + ngi’(p’:e“")/k!
= pi(1 — ) + B(YY) — pie™ = pi + 2p:i(1 — €7) = 3pi.
Let 2Z; = U. Then E(U) = 0 and Var(U) = 3gu.

Let a be any positive number. If 7 = S 4+ U =< v — a, then either S = v
or U< —a, so that P(T<v—a) £ P(S=v)+P(U = —a) and

P(T<v)—P8=v)=Pw—a=T=v)+PUSZ= —a).
Similarly, if S = T — U < v, then either T < v+ a or U = a, so that
P(S£v) S P(T=v+a)+ P(U 2 a)
and P(SSv) —P(T=v) SPw=T=v+a)+ P(U 2 a). Combin-
ing, we see that

D =sup |P(8 =v) — P(T =) |
<supPwW=T=v+a)+P(U| = a)

By the Chebycheff inequality, P(|U| = a) = Var (U)/d® £ 3p/d’. Using
the lemma, we see that

supPo < T <v+a) = (a+ 1)1+ (1/120))/(2mA)},

since there are at most a + 1 Poisson terms in the interval from v to v + a.
This completes the proof.

We now combine Theorems 1 and 2 to obtain our main result.

TaeoreM 3. D £ 3/ a.

We prove this by considering two cases. If 2u = 34/, the theorem is an im-
mediate consequence of Theorem 1. On the other hand, if 2u > 34/ a, we have
by virtue of 4 < a\ the inequality N > 3/24** > 1. Now suppose that a = 1.
Then

[(a+ 1)1 + (1/122)1/[(2m)}] < a/A
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and

< (3p/d’) + (a/Ah).

This is minimized when a = \/6x(\)¥ = ao. Since X > p/a and p > 3(a)t/2,
we see that u(A)! > (3)* or a0 > (3°/2)Y® > 1, so the restriction a = 1
is satisfied, and the theorem is proved.

3. Remarks.

(i) We have presented our results as approximation theorems rather than as
limit theorems. We believe it is better pedagogy to do so, since in the applica-
tions there will be definite values of n and the p;, which are not “tending” to
anything. However, if limit theorems are desired they follow at once. For ex-
ample, Theorem 1 implies that D — 0 as u = Zp} — 0, whereas Theorem 3
implies that D — 0 as a = max {p:, ---, p.} — 0.

(ii) Our Theorem 1 gives a simple and elementary proof of the standard
textbook result that ®(n, p) — ®(\) as n — «, p — 0, and np — A, since
under these conditions =p} = Ap — 0., Furthermore, Theorem 1 implies the
more realistic theorem of von Mises, since if Zp; = \ is fixed while & — 0, we
must have Zp; < aZp; = oA — 0.

(iii) As is customarily the case with bounds for the accuracy of approxima-
tions, our bound has only theoretical interest, being much too crude for prac-
tical usefulness. By pushing the method of proof, the constant factor 3 in the
inequality D < 3+/a can be reduced, but the result would still be of only
theoretical value. It can be shown [3], using a much less simple argument, that
D < 9a. While it is clearly a theoretical improvement to have a bound of order «
rather than one of order v/a, even the bound 9« is of limited applicational
use. Fortunately, approximations are usually found in practice to be much
better than the known bounds would indicate them to be.

(iv) The condition that a — 0 is sufficient but not necessary for D — 0.
It is easy to see that S will have approximately a Poisson distribution even
if a few of the p; are quite large, provided these values contribute only a small
part of the total Zp; .
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