NOTES

DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING MULTIVARIATE LINEAR HYPOTHESES¹

By S. K. KATTI²

Iowa State University

- 1. Introduction. Random orthogonal transformations having elements depending on certain random elements have been used by Wijsman [4] to derive the Wishart distribution and the important statistics such as Hotelling's T^2 . The purpose of this paper is to use these transformations in a simple derivation of the result that the likelihood ratio for testing multivariate linear hypotheses is distributed as the product of q independent Beta variables (cf., Anderson [1], Section 8.5.2). Indirect derivations through the use of moments etc., are given in Wilks [5] and Bartlett [2].
- 2. Notation and results. Let X be a $q \times r$ matrix of N(0, 1) variables and Y a $q \times s$ matrix $(s \ge q)$ of N(0, 1) variables, all variables being independent. Let $A_{q,r} = XX'$, $B_{q,s} = YY'$. In terms of the canonical reduction as given by Hsu [3], it can be shown that the likelihood criterion for testing a general linear hypothesis with r constraints (r < q) can be written in the form

(1)
$$\Lambda = \frac{|B_{q,s}|}{|A_{q,r} + B_{q,s}|}.$$

If q = 1, the problem is trivial. In the following, we shall assume q > 1. Denote by x_{ij} , y_{ij} the (i, j)th elements and by x_i , y_i the *i*th rows of the matrices X and Y.

Let c_1 be the column vector $y'_1./(y_1.y'_1.)^{\frac{1}{2}}$, so that $c'_1c_1 = 1$, and complete c_1 with s-1 additional columns to an orthogonal matrix $||c_1:\Omega_B||$. Following Wijsman [4] we make a random orthogonal transformation from Y to Z,

$$(2) Z = Y ||c_1:\Omega_B||.$$

In the first row of Z all elements are 0 except z_{11} , which is equal to

$$z_{11} = (y_1.y_1')^{\frac{1}{2}}.$$

If the first row and column of Z are deleted, there results a $(q-1) \times (s-1)$ matrix V, whose elements are N(0, 1) variables, independent of each other and

Received June 24, 1959; revised October 9, 1960.

¹ This research was sponsored by the National Science Foundation under Grant NSF G-5248.

² Present address: Florida State University, Tallahassee, Florida.

of z_{11} [4]. Furthermore [4],

(4)
$$|B_{q,s}| = |YY'| = |ZZ'| = z_{11}^2 |VV'| = z_{11} |B_{q-1,s-1}|,$$

where we have set $B_{q-1,s-1} = VV'$.

Let Ω_A be an $r \times (r-1)$ matrix whose columns are mutually orthogonal, and orthogonal to x'_1 . Define the following column vectors

$$c_{2} = x'_{1} / (x_{1}.x'_{1} + y_{1}.y'_{1})^{\frac{1}{2}}, c_{3} = y'_{1} / x_{1}.x'_{1} + y_{1}.y'_{1})^{\frac{1}{2}},$$

$$c_{4} = c_{2}(c'_{3}c_{3} / c'_{2}c_{2})^{\frac{1}{2}}, c_{5} = -c_{3}(c'_{2}c_{2} / c'_{3}c_{3})^{\frac{1}{2}},$$

and transform ||X:Y|| to W with the following orthogonal transformation

(5)
$$W = ||X:Y|| \qquad \begin{vmatrix} c_2: c_4: \Omega_A: O \\ ----- - \\ c_3: c_5: O: \Omega_B \end{vmatrix}.$$

Since the vectors c_2 and c_3 are zero with probability zero, that such a random orthogonal transformation can be chosen measurably follows from the arguments of Wijsman [4]. The elements in the first row of W are 0 except w_{11} , which is

(6)
$$w_{11} = (x_1.x_1'. + y_1.y_1'.)^3.$$

It can be easily checked from (5) and (2) that the $(q-1) \times (r+s-1)$ matrix T, which results after deleting the first row and column of W, can be written as

$$T = ||U:V||,$$

where U is the $(q-1) \times r$ matrix

(8)
$$U = \begin{vmatrix} x_2 & \vdots & y_2 \\ \vdots & \vdots & \vdots \\ x_q & \vdots & y_q \end{vmatrix} \begin{vmatrix} c_4 & \Omega_A \\ c_5 & O \end{vmatrix},$$

and V is as defined before. Moreover, the elements of U are N(0, 1), independent of each other, of V, of w_{11} and of z_{11} . Setting $UU' = A_{q-1,r}$, we can write, analogously to (4),

$$|A_{q,r} + B_{q,s}| = |||X:Y||||X:Y||'| = |WW'| = w_{11}^2 |TT'|$$
(9)

$$= w_{11}^2 |A|_{q-1,r} + B_{q-1,s-1}|.$$

Substitution of (4) and (9) into (1) gives

(10)
$$\Lambda = \frac{z_{11}^2}{w_{11}^2} \frac{|B_{q-1,s-1}|}{|A_{q-1,r+} B_{q-1,s-1}|}$$

Using (3) and (6), the first factor, z_{11}^2/w_{11}^2 , on the right-hand side in (10), which we will denote by $\beta_{r/2,s/2}$, is a β -variable with degrees of freedom r/2 and s/2.

Moreover, the second term is independent of the first. By repeated application of the above procedure, we obtain Λ as the product of q independent β -variables $\beta_{r/2,s}$, $\beta_{r/2,(s-1)/2,\cdots},\beta_{r/2,(s-q+1)/2}$.

If r = 1, i.e., if x is a column vector, we have

(11)
$$\Lambda^{-1} = 1 + X'(YY')^{-1}X.$$

Since $X'(YY')^{-1}X$ is Hotelling's T^2 times a constant, equation (11) implies that the product of the q independent Beta variables $\beta_{1/2,s/2}$, $\beta_{1/2,(s-1)/2}$, \cdots , $\beta_{1/2,(s-q+1)/2}$ is distributed as the reciprocal of one plus a constant times an F variable.

If the null hypothesis is not true, let $E(x_{ij}) = \mu_{ij}$. If the matrix (μ_{ij}) is of rank 1, which really means r = 1 (since the multivariate hypothesis is assumed to be in canonical form, we transform X and Y to ξ and η respectively through the relations

$$\xi = MX$$
 and $\eta = MY$.

where M is a $q \times q$ orthogonl matrix with $(\mu_{11}, \mu_{21}, \dots, \mu_{q1})/(\sum_{i=1}^{q} \mu_{i1}^2)^{\frac{1}{2}}$ for the first row. Obviously $E(\xi_{11}) = (\sum_{i=1}^{q} \mu_{i1}^2)^{\frac{1}{2}}$, $E(\xi_{i1}) = 0$ for $i \neq 1$ and $E(\eta) = 0$. By treating ξ and η along the same lines as the matrices X and Y in the above discussion, we obtain equation (10) in which, now, $x_{11}^2 = \eta_1 \cdot \eta_1'$.

$$w_{11}^2 = \xi_{11}^2 + \eta_1 \cdot \eta_1'.$$

and the components U and V of $A_{q-1,r}$ and $B_{q-1,s-1}$ are matrices of independent variables, distributed as N(0, 1). Since ξ_{11} has a non zero mean, we refer to z_{11}^2/w_{11}^2 as a noncentral Beta variable and conclude that Λ is distributed as the product of one noncentral and q-1 central independent Beta variables.

REFERENCES

- T. W. Anderson, Introduction to Multivariate Statistical Analysis, John Wiley and Sons, New York, 1957.
- [2] M. S. Bartlett, "The vector representation of a sample," Proc. Camb. Phil. Soc. Edinburgh, Vol. 30 (1934), pp. 327-340.
- [3] P. L. Hsu, "Canonical reduction of the general regression problem," Ann. Eug., Vol. 11 (1941-2), pp. 42-46.
- [4] ROBERT A. WIJSMAN, "Random orthogonal transformations and their use in some classical distribution problems in multivariate analysis," Ann. Math. Stat., Vol. 28 (1957), pp. 415-422.
- [5] S. S. Wilks, "Certain generalizations in the analysis of variance," Biometrika, Vol. 24 (1932), pp. 471-494.