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1. Introduction and Summary. Many problems in experimental design can be
stated as follows: An experimenter can perform N trials to estimate » parameters
Bi, B, -+, By. There is available a set, X, of treatment combinations which
may be performed (allowing repetitions). At each trial a treatment combina-
tion, x, is chosen from the set X and applied to an experimental unit. Thus, for
each treatment combination there is associated a random variable Y (z) whose
distribution may depend on parameters 8, --- , Bx(k = v) and on z. That is,
Prob (Y(z) <t) = F(t|B, ) where 8/ = (B1, Bz, -, Be). The problem is
how to choose treatment combinations x;, 2z, - -+, Zx in the set X, allowing
repetitions, to observe Y (z:), ---, Y(a») and to make inferences concerning
the @’s.

In this paper we consider a special but important case. It is usually assumed
that the number of available experiments, N, is larger than the number of param-
eters, i.e., N > k. For factorial experiments this is often not the case and N
may be substantially less than k but still larger than », the number of 8’s of
particular interest. In a sense the 8’s not of interest are nuisance parameters.
For example, in 2™ factorial experiments, the set X consists of k = 2™ factorial
combinations. The random variable, Y (), associated with each of these k
combinations, depends on k parameters, one for the mean, and the other for
the k& — 1 orthogonal contrasts corresponding to the main effects and various
interactions.

The “classical” approach to the case N < k is through the fractional fac-
torial designs, where the parameters of interest are confounded with effects as-
sumed negligible, see [3], [5], [6], [8], [15]. These designs are often used for ex-
ploratory purposes, where one wishes to consider many possible factors, and
where interactions, even of high order, cannot always be assumed negligible.

In this paper we study two randomization procedures for p™ factorial experi-
ments where one obtains unbiased estimates, valid tests and confidence intervals
for parameters of interest without the usual assumptions concerning interactions.
These designs, called Randomized Fractional Factorials, consist of choosing
Ty, %2, -+, Ty in X in some randomized manner. Randomization plays a vital
part in modern statistics. Early work in this connection is by R. A. Fisher [7].
More detailed discussions are given by E. J. G. Pitman [10], M. B. Wilk and
0. Kempthorne [13], J. Cornfield and J. W. Tukey [4] and others [9], [12], [13],
[14]. Much of the work in this area concerns randomization with respect to the
experimental units in the experiment. Recently, increased consideration has
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been given to randomization with regard to the choice of treatment combina-
tions. The designs developed, called random balance designs have been studied
by Satterthwaite [11]. A critical discussion of various aspects of this work is
given in [11]. The motivation of this work is mostly that of screening the interest-
ing parameters from all the possible ones. In the present paper, the motivation is
somewhat different and is concerned with inference about certain pre-assigned
parameters out of a total of p™ parameters. Let us suppose that the experimenter
is particularly interested in p° out of p™, (m > s) parameters. Two randomiza-
tion procedures are studied in detail. Randomization Procedure I, discussed in
Section 3, is to choose at random, with or without replacement, blocks of treat-
ment combinations, out of p™ * ones constructed by confounding the “nuisance”
parameters. In other words, the set X is divided into p™ " blocks, according to
the usual fractional factorial schemes and some of the sets are chosen at random.
Such a procedure is suggested by Cochran and Cox in [3]. Randomization Pro-
cedure II, discussed in Section 4, is to choose at random treatments from every
block. In this case, however, the blocks are constructed by confounding the p°
chosen parameters, and not the ‘“nuisance” ones. It is proved that in randomized
fractional designs from a 2™ system, the second procedure gives estimates of
all the chosen parameters with equal variance, while the first may estimate dif-
ferent parameters with different variances. In the case p™ (p = 3) both pro-
cedures may estimate with unequal variances. In both procedures, however,
with some replication, still keeping the total number of experiments <p™ one
can test hypotheses and obtain confidence intervals for the chosen parameters.
Analysis of variance tables are derived and various tests of hypotheses, sug-
gested by the usual F-like ratios, are indicated. The properties of these tests and
distribution problems will be studied in a subsequent paper. The analysis of
variance also provides a method for testing whether the p™* parameters not
chosen are significantly different from zero.

To illustrate the procedures consider the simple case of four factors, 4, B, C,
and D with p = s = 2. That is, there are four parameters of interest. Let these
be the mean M, ABC, CD and ABD. These four are considered to emphasize
that they are quite arbitrary except for the requirement that they be a group
under the usual multiplication rule.

In method I we divide the sixteen treatment (2') combinations into four sets
(2*7%) each composed of four combinations (2%) according to a defining relation-
ship which holds between certain ‘“‘nuisance” parameters. There are several
such possible relationships (in this case 66) but we will choose one for illustra-
tion. With the usual notation we can have, using 4, B, and AB in the defining
relationship,

I= A= B= AB
I= A= -B=—-AB
I=—-4= B=—AB
I =—-A=—-B= AB.
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The treatment combinations in the sets are

(1) ab a b
c abc ac be
d abd ad bd

cd abed acd bed.
We choose two sets at random, either with or without replacement, and com-

PN
bine the estimates from each set. The estimate for ABC, ABC, for example, is
unbiased with variance

N
V(ABC) = o’/8 + w[(BC)* 4 (4C)* + (C)’],

where w is equal to % or 1 according to whether the sampling is with or without
replacement.

An analysis of variance for testing the hypothesis ABC = 0 can be obtained
by comparing the mean square for A BC with the mean square associated with
the variation between the estimates in the two chosen sets. Similar remarks hold
for estimating all the parameters of interest. Note that, in Procedure I, the di-
vision of the treatment combinations into sets depends on the defining rela-
tionship.

In method II we divide the treatments into four sets (2*) of four (2'?) using
the parameters of interest in the defining relationship

I= ABC= €D = ABD

I = ABC = —CD = —ABD

I =—ABC = CD = —ABD

I = —ABC = —CD = ABD.
These sets are

(1) abe cd abd
ab c abcd d
acd bd a be
bed ad b ac.

In this case, however, we choose a random sample, say two treatment combi-
nations, at random, from each set. The estimates are obtained by taking the
appropriate contrasts of the observation totals for each set. The estimates are
unbiased with constant variance V, where

V = ¢"/8 + 4[(4)* + (B)* + (4B)" + (C)" + (4C)" + (BC)

+ (D)* + (AD)* + (BD)* + (ACD)* + (BCD)* + (ABCD),
and where v is equal to } or 1% according to whether sampling is with or without
replacement. An analysis of variance scheme can be used by comparing the mean

square of the estimate with the mean square associated with the variation be-
tween choices within sets.
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In the above, we have a } fractional factorial. A ¢ fractional factorial is ob-
tained by choosing three blocks in method I, or three combinations per block in
method II. In the subsequent development we also consider replications at each
chosen treatment combination. This leads to a test of the hypothesis concerning
the significance of the nuisance parameters.

It is interesting to note, in this example, that method II gives a constant
variance while method I does not. For any possible choice of defining relationship,
if the variances of the estimators of the interesting parameters 8; (+ = 1, --- , 4)
are denoted by V1(8;) for method I, then the constant V of method II is equal
to the average » V1(8:)/4. This result is generally true for p = 2, but fails to
hold when p > 2.

Randomization Procedure I is essentially a cluster type of sampling from the
population of treatment combinations X. Randomization Procedure II is es-
sentially a stratified type of sampling. The population X is divided into p’ strata
and from each stratum a random sample is drawn. It should be emphasized that
for both procedures, the sub-division of X can be obtained by the usual, standard
confounding methods.

The methods developed in this paper can easily be generalized to the case of
mixed factorial experiments. In Section 5 a discussion of various questions raised
in this paper is given. Some of these are concerned with confidence intervals,
distribution problems, the comparison of Procedures I and II, and with a com-
parison between randomized and non-randomized designs.

Finally the procedures developed lend themselves to a sequential approach
where at each stage a decision is made about the importance of the “nuisance”
parameters. Furthermore, the sequence of steps can be carried out keeping the
necessary ‘‘orthogonality’ properties.

2. Basic Notions and the Statistical Model. A p™ factorial system is a system
comprised of m factors, each at p levels. It will be assumed that p is a prime
number. The space of treatment combinations, X, is represented by the set
X = ((d,%, ** ylma)t;=0,1,--- ,p—1forallj=0,-.--,m — 1) which,
clearly, contains p™ points. The jth coordinate of a point represents the 7;th level
of factor j. A standard order of the points x in X, is given by the relationship

between the coordinates of a point x, = (%, %1, -- , 2m_1) and the order sub-
seript
m—1
v = D i;p.
j=0

This order relationship between the points of the treatment space is unique. It
is similar to that given by F. Yates in his procedure [15].

The multiplication operator ® between any two treatment combinations z
and 2’ is defined as follows: If z = (49,91, -+ ,4m) and 2’ = (4o, %1, -+ , Gm_1)
thenz ® 2’ = (45,41, -+ ,im) Where, 4 = ¢, + 4; (mod p) for all j =
0, ---,m — 1. It follows, immediately, that the set X is a group with respect

to the operator ®.
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The order of a treatment combination z; obtained by multiplying z, by . is
given as follows: If v= >0 dipand u = D orgp’, then t = Do kip’,
where k; = ¢; + ¢, (mod p). We designate this relationship between v, » and ¢
by:t = u ® v. We denote by [z,]° (a = 0, ---, p — 1), the multiplication of

z, by itself a-times. Also, [z,] = z, where z, = (0, - -, 0).
A treatment z, is said to be independent of a set of treatments x,, , 2,y , *++ , 24,
if there are no n numbers a,, a2, *- - , @, such that,

Ty = [xn]al ® [xvz]az ® - ® [xvn]a”-

Every group of p* treatments is generated by k independent treatments. We
now specify the statistical model for the p™ factorial system. Let Y (z,) be a
random variable associated with the treatment combination x, which measures
the response of the system to treatment combination x,. The relationship be-
tween the expected value of each random variable Y (z,) and treatment zx, is
given by a linear function of parameters 8y, 81, -+ , Bpm_ as follows:

pm—1

(2.1)  E(Y(2,)) = D cu(x,)B. forevery v =0,---,p" — 1.
u=0

The parameters 8, have the usual interpretation of main effects and interac-
tions of the m factors. We distinguish between linear effects, quadratic effects
and effects of higher order. We also distinguish between linear-linear interactions,
linear-quadratic, etc. A discussion of this model is given in [8]. We further de-
scribe the structure of the p™ parameters, 8, , by considering the space B of p™
points where,

B=((7\0,7\1, ,7\,,._1\)27\7’:%, ,p'—‘l for an ]=%, ,m—l).

The correspondence between the parameters 8. and the points of B is given by
the usual standard order relation specified by, u = Y A\;p’.

We introduce the multiplicative operator ® on the space B. The unit element
of this group 8, = (0, 0, - - - , 0) is the mean response of all the treatment com-
binations. The parameters B,,k =(,---,1,0,---,0),k=0,---,m—1),
where the one is in the kth place, corresponds to the main effects. Linear inter-
actions correspond to points where coordinates are zero or one with at least two
coordinates ones.

According to the usual interpretation of the 8’s it can be shown that the co-
efficients c¢,(x,) of the linear system (2.1) are related to the coefficients of the
orthogonal polynomials of order p, by the following relation: Let us denote by
C®™ the matrix of coefficients c.(z,) of system (2.1). Furthermore, let C” be
the matrix whose column vectors are the coefficients of orthogonal polynomials
of order p-namely,

1 &1 - &opa ]
C(p) — 1 511 51,?—-1

1 &p11 oo Epapa
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The inner product of any two different column vectors of C*® is zero. The matrix
C®™ can be defined recursively for all m = 2 by,
l’ C(p"'—l) . %, C(p"'—‘) : : &, p_lc(p’" 1
__________________ !
[
C(p"') |'
|
|

C(P"'—l)l S C(P"'"l)

(2.2)

In other words, the matrix C*™ isobtained from C*" " by a Kronecker’s direct
multiplication of C®"™" by C™® from the left, i.c., C*™ = C® ® C*"™. For
example,

(i) when p = 2,C? =|} _11] , and thus
m C(ﬁ"‘_‘) _C(2"‘"1)
(23) c” = [C@m-l) Cmm-l) :I;
1 -1 1
(ii) whenp = 3,C® =|1 0 —2]1, and thus
1 1 1
1 -1 1 ~
(24) cC™ =11 0 -2|®Cc*"™
1 1 1

In order to simplify the further development in treating randomization pro-
cedures it is necessary to study the structure of the matrices C*™. We now
derive some properties of these matrices.

From relationship (2.2) and the properties of C® we easily obtain that the
column vectors of C?™ are orthogonal. Thus, (C®™)’ (C*™) = A®™, where
A®™ is a non-singular diagonal matrix. Moreover, as a direct consequence of the
recursion relation and the associative property of the Kronecker direet multi-
plication operator, ®, we have that, for every 1 < s < m, the relationship be-
tween C” and C®™ is given by C?™ = C*"™” @ C*”,

LemMA. The elements of the matriz C*™ are related to those of C*” and C*™"
according to the following:

(2.5) cilip=cily " -ciky
orallj =0,---,p" " — 1,and1 = 0, ---, p° — 1, where
J
l=gp’+mn (@=0--,p"" = 1;rn=0--,p — 1).

Proor: We have that C?™ = C?"""” ® C®”. By this structure the matrix
C® is divided into p™* X p™* submatrices, given by ¢f3; "C®".
Thus, the element of C®™ in the vth and Ith column belongs to the submatrix

e ‘)C(” ), where j = [v/p’] and q, = [I/p’], where [x] means the largest integer
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not greater than z. Moreover, if v = 7 + jp’ (# = 0,---,p° — 1), and Il =
rn+ qp (ri=0,---,p° — 1), then ¢{I™ is the element in the ¢th row and
rith column of c?’.’z'," ')C(”').

By the lemma proved here, the following well known relationship can be easily
shown, namely: In a 2™ factorial system, the elements of the matrix C*™ in any
row, and in columns corresponding to 8, , 8, and B, where Br= By ® By
(L,lL,=0,---,p™ — 1) are related by therule ¢{’™ (z) = ¢{>™ (x)es2™ (x). It
should be emphasized that this, being true for 2™ factorial system, is not neces-
sarily true for the general case of p™ factorial systems, where p = 3.

LemMA: In a 2™ factorial system, the value of the coefficients

¢ (x,) for v= %42 and u= D N2 (45, =0,1)

18 given by:
m=1
2. m 2o MO
(26) () = (1)
Proor: Every parameter 8. (v = 0, 1, --- ,2™ — 1) can be represented as
2.7 Bu=BI" B ® -+ ® Bymal",
where 8,z (k = 0,1, --- , m — 1) are independent parameters that generate the

parameter group (the “main effect” parameters). From relation (2.7) and the
preceding remarks, it follows that for every treatment combination x, ,

(2.8) ™ (@) = o™ (@)™ (@)™ - -+ [ehma ()]
The matrix C*” reveals that if z, = (4 ,’1,1) then,
(2.9) F(x) = (=D for k=0,1.

Let us prove, by mductlon that (2.9) is true for all m.
Assuming that c§t )(x,,) = (=1)"* whenk =0, ---,m — 2, and applying

relation (2.3) since C*™ = [ i 1 ] ® C®"™" we obtain for the parameter Byn-1,

. -1 if »=0,1,---,2"" —1
(2.10) csn (z,) = o
1 if »p=2""2""41,.--,2" — 1.

For the other independent parameters 8, (k = 0,1, - - - , m — 2) the following
relation holds:

(2m—1) . m—1
. o0 (z,) if v=0,1,---,2""—1

211) o (2) =1 o , T

csk (Tp_gm—1) f v =2"", ... 2" —1,
moreover,

(fo, 1, *+* , Ims, 0) if v< 2"
(2.12) v = ) . -

(do, %1, *** ) tma, 1) if v =2"".
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Hence, ¢t (2,) = (—1)"*forallk = 0, ---, m — 1. By substituting this
result in (2.8), formula (2.6) is proved.

3. Randomization Procedure I in Fractional Replication Designs.

3.1. The case of a n/2™ " replicate of a 2™ (m > s) factorial design. A n/2™"°
replicate of a 2™ (m > s) factorial system, according to Randomization Pro-
cedure I, is a design in which n blocks of treatment combinations are chosen,
at random, out of 2™ blocks. The 2™ blocks, each containing 2° treatment
combinations, are constructed as follows:

(i) A subgroup of 2° interesting parameters is chosen and specified.

(ii) A set of (m — s) independent parameters is chosen. The parameters of
this set do not belong to the chosen subgroup of interesting parameters. Designate
these parameters by (B4, By, *** 5 Bap_o_y)-

(ili) Specify the subgroup of 2™ ° parameters generated by the basis
(Bag » Bay »*** 5 Ba,_,_,). Every parameter 84, (w = 0, ---, 2™ ° — 1) contained
in this subgroup is obtained by multiplication of independent parameters. This
subgroup is called the defining subgroup.

(iv) Classify all the treatment combinations into 2 mutually exclusive
blocks by the following rule: If x = (%, %1, - -, 2m-1) satisfies the following
system of equations

m—s

m—1

’;’xkd,.i,,sa,.(modz) forall j=0,1,---,m—s— 1,

where a; = 0, 1, then z belongs to X, whose index v is given by

m—s—1

ZO a2’ where Meg; (K =0,1,---,m— 1)

=

are the coordinates of the independent defining parameters Bs; , i.e., 8s; =
(Nog; 5 -+, Am—ngq;). This classification rule is common to procedures of con-
founded designs, see O. Kempthorne [8]. However, for the sake of further de-
velopment of the theory the following definition of blocks of treatment combi-
nations, X, , is adopted.

X, = {x:cﬁ"‘)(x) = (_1)“)‘_14(‘1"))) .7 = 0) 1,0 ,m—s— 11

m—s—1

(3.1) where v = D 4;27, Ba; = (Nagj » Maj 5 *** 5 Nm-1d;)5

j=0

m—1

and L(d;) = kzo“"" (mod. 2)}.

Classification according to definition (3.1) is particularly convenient, since it can
be carried out just by comparing the coefficients of C*™ in different rows and
columns corresponding to the independent defining parameters B4, . It can be
easily shown that classification according to (3.1) and that given by solving the
equations Y Aegjte = aj (mod. 2), (j = 0,---, m — s — 1), are equivalent.
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Let us classify all the parameters 8, into 2™ exclusive sets as follows:

(i) The first subset, By will contain all the 2° chosen parameters.

(ii) Let us order the chosen parameters, belonging to B, according to the
order relationship prevailing by the standard order. Thus, the chosen parameters
are, according to the order in By, (Bo, By, ,Bus_,), where I, < L
(r=0,---,2 —1).

(iii) Construct B; by multiplying all the chosen parameters 8;, successively
by the defining parameter 8;, . All the parameters 8;, ® 84, (r = 0, --- , 2" — 1)
constitute B; .

The parameters obtained are called the aliases of 8;, with respect to s, . This
relationship is denoted by Bii,) = B:, ® B4, . All the subsequent sets are obtained
similarly. Correspondingly, the aliases of 8;, with respect to 84, are denoted by
Buty = Bi, ® Ba,.

Thus, all the 2™ treatment combinations are classified into 2™ ° blocks, X, ,
and all the 2™ parameters are classified into 2™ ° subsets, B, (v, u = 0, 1, -- -,
2™ — 1).

Since there is no restriction, whatsoever, on the choice of the group of in-
teresting parameters, B, , the development of a general theory requires that new
matrices, denoted by P2” be introduced (v, u = 0, ---, 2™ — 1).

Thus, let us define the matrix P{2” to be a square matrix of order 2°, whose
elements are those of C*™ corresponding to the treatments belonging to X, and
parameters belonging to B, . The order of elements of P2 is the same as that
of its elements in C*™.

DerINITION. An estimator of the 2° chosen parameters, 8, given the block X,

of treatments, and the independent defining parameters (84,, - - , Bin_,_,) 1S 88
follows:
(3.2) By = 27 (PSy) y(X,)

where y(X,) is the vector of random variables associated with the treatments in
X, and the subscript, in brackets, d, refers to the defining group. Different de-
fining groups may, of course, lead to different estimates. In order to study the
properties of this estimator the structure of the matrices P{.” must be examined.

TueorEM 3.1: For every confounding system, given by a set of independent de-
fining parameters (Bay , Bay , =+ Bim_,_,) the matrices

sz?;) (vyu = 0) 1 ,2m—s - 1)

are related to Py by the following relationship;

. "Gy
(33) P = (-1 Pi;”,
wherev = > e 02 u = Dt 62 and L(d;) = Doim Aka; (mod 2).
Proor. Every defining parameter 84, (v = 0, 1, ---, 2" — 1) is given by

(34) Bo, = Burl® ® B ® - ® [y, S,
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where u = 4,2’ and Ba; ( (J = 0,---,m — s — 1) are independent. According
to (3.1), the coefficients cd, ™ (z,) assomated with the independent defining pa-
rameters 8a; (j = 0, -+ -, m — s — 1) and with treatment combinations which

belong to X, are given by cd, "(z,) = (—1)"%"*%’ Thus, from (3.3) and the
recursion relation it follows that

m—s—1 "G =L@

(35) @) = T1 @)= (1) =
i=0
However, the parameters that belong to subset B, are related to those of By by
the relationship: B.,) = Bi, ® B4, whereS;, in Bo It follows that all the elements
of P&” are obtained by multiplying those of P§" by c>™ (x,) correspondingly.
LeMMA : The vectors of the matrices P52’ (v,u=0,---,2"° — 1) are orthogonal,
ie.

(3.6) (PE)(P2Y) = 2°1%,

where I®" is a unit matriz of order 2°. The proof of this lemma is straightforward.
Since the coefficients which relate the matrices P{%” to P§a” according to (3.2)
play an important role at the sequel, let us designate them by b,, . Thus

mT}‘;—_l
(3.7) b = (—1) '7°

Clearly, b,, depends on the coordinates of the independent defining parameter
through L(d;). The matrix of the elements, b,, will be designated by B®" "
(L(dy), -+, L(dm—s_1)) to indicate this dependence. The above is a square
matrix of order 2™°.

It is easily shown that every matrixB®" " (L(do), -+, L(dmiss1)) is &

i(ij—L(d;))

permutation of the rows of B*" " (0, 0, ---, 0). Also the vectors of B" "
(L(dy), - , L(dm—s—1)) are orthogonal for all the sets (L(dy), - -+, L(dn—s—1)).
TuEOREM 3.2: For every given X, (v=01,---,2"° — 1)
gm—s_1
(3'9) E(Bv(d) ] Xv) = B + Zl bvuﬁ:(d) 5

where ﬁ:(d) 18 a vector of the parameters, which belong to the subset B, .
Proor. According to (3.2),

EBua | Xo) = 27 (PSk)" E(y(X,)).

According to the linear model (2.1), E(y(X,)) = ! (Pf,f,’(d))ﬁu(d) .
Hence

EBoay | Xo) = 272 u (PS5 (P4l )Bucay -
By Theorem 3.1 and (3.7) we have
EBuey | Xo) = 27° 2 butbou (PG ) (PS5”) By = B + boo D boulBacar -
However, according to (3.7), b = 1.
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TuaeoreEM 3.3: If a block of treatment combinations is chosen at random then
Bo(ay s unbiased and the variances of its components are:

(3.10) V(Buw) = ¢*/2° + D Bl »

where By s the Ith component (I = 0, -+, 2 — 1) of Bow , and Bluca 15 the
Ith component of Bf(d) .

Proor.

(i) The estimator 8, is unbiased, because:

Eba) = ELEBuw | Xo)} = B+ D2u Bo(bu)Buca

= ﬂ + 2™ Z“( Zv bvu)ﬂ:(d) ’

but Y, by is zero, as is seen by (3.7).
(ii) The variance of a parameter 85, is given by

V(Buw) = BV (Bua | Xo)} + VoA E(Bua | X0)}.
However,
E(V(Buw | Xo)} = Efd*/2°} = 6°/2°

and,

Vv{E(ﬁlV(ﬂ | Xv)} = Vv{ﬂ + Zu bvuﬁfu(d)}-

Since the matrix of b’s is orthogonal, covariances of the b’s are zero. Thus
’ )
am—s_1

VAEBow | Xo)} = gl Bra@Volbo).

According to (3.7), V,(b,,) = 1. If n blocks are chosen at random, and the
estimator B, is the arithmetic mean of the n individual estimators, then
V() = o*/n2" + n'M 3. Bita) , where

M= 1 if sampling is with replacement
T 1 = (n — 1)/(2"* — 1) if sampling is without replacement.

3.2 The case of a n/p™* replicate of a p™ factorial experiment (m > s;p = 3).
In the present section, Randomization Procedure I is applied to the p™ factorial
system, when p = 3. The derivation of the theory, for the present case, is faced
with some complications which were not present in the case of 2™ factorial sys-
tems. When p = 3 the matrix C'® might contain some zero elements. Thus, if
we are free to choose any subgroup of p° parameters and classify the treatment
combinations into p™ ° blocks, by confounding a subgroup of defining parame-
ters, it might happen that the matrix of coefficients P{¥” (v = 0, --+, p™* — 1)
is singular.

ExaMPLE: Suppose p = 3, m = 2 and s = 1. Let us choose the following sub-
group of parameters: B = M, B4 = AB and 8 = A’B’; and the following de-
fining parameter 8; = A, where M, AB, A’B® etc. are the usual notation for
the parameters. That is, M denotes the mean, A B the linear interaction between
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factors A and B, and A”B’ the interaction between the quadratic of A and the
quadratic of B. Thus, the three blocks of treatment combinations are

Xo = {(%, 1) :% = 0 (mod. 3)} = (20, x5, 5)
X: = {(’io, 'il):io =1 (mod 3)} = (171 y L4, 377)
Xz = {(%, %)% = 2 (mod. 3)} = (x2, 75, 25).

If we define an estimator like in (3.2) we are faced with the problem that
Pfg) is a singular matrix.

In order to avoid possible singularities, let us rule that every chosen subgroup
of parameters should be generated by s main effects, i.e., (8pig , Bpiy s * - * » Bpis_y)
where ( =0,---,m — 1).

For this class of subgroups, of order p°, there is no loss in generality if we as-
sume that the chosen sub-group of parameters is the set of first p° parameters
(Bo, Br, -+, Bpe—1) because here it is a matter of relabelling the parameters’
order and those of the treatment combinations correspondingly in order to get a
matrix of coefficients identical with C*™.

Substantial difficulties may also arise, in the case p = 3, if we choose the de-
fining parameters without any restrictions. For example, take the case of p = 3,
m = 2, s = 1. Let the chosen subgroup of parameters be (M, A, A*) and let
the defining parameter be 8, = AB. In this case it can be shown that the sub-
matrices P& (v = 0, 1, 2) have nonorthogonal column vectors.

In order to avoid complications of this kind, let us rule that the defining group
should be generated by the (m — s) independent parameters, representing main
effects, which are not in the chosen group of parameters. Without loss of gen-
erality, let us assume that the defining group is generated by the set

(ﬁpa , Bpo+l y "y Bp”“l)-

DEFINITION: An estimator of the vector of the chosen parameters 8, given a
block of treatment combinations X, (v = 0, ---, p™° — 1), is defined by

(3.11) Boy = (A"”)THCP)y(X,).
THEOREM 3.4: For any given block of treatment combinations
X, (v = 07 17 e 7pm_8 - 1)’

the conditional expection of B,, is
pm—a_1

(3.12) EBu | X)) = Bo+ 2 c2"7"6%,
u=1

where By are vectors of parameters alias to those of By with respect to Byyps .
Proor. According to the linear model (2.1),

pm—se_1

E(y(X.)) = 2 ai™ 7(C™)8..

u=0
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Substituting E(y(X,)) into (3.11), we obtain
m—s_.]

E(B| X.) = (%) 3 8™ 0(CO)(CH)8E = gy + T 2" "

w .
u=0 u

If n blocks of treatment combinations, X,,, X, , -+, X,, are chosen, an esti-
mator of B is given by

(3.13) Bo = ; Bojo/m.

TarEOREM 3.5: If n blocks of treatment combinations are chosen at random, then
Bo is an wunbiased estimator of B, with a variance of its lth component
(1=0,---,p" — 1) given by

pm—ea—1

B14) V(o) = ¢'/nd P+ M 2y AT B /"
where
M= 1, if sampling is with replacement
1—(n—1)/(p"" — 1), if sampling is without replacement.
Proor.

(i) The estimator f, is unbiased, since

pme—1
B = BB G X)) = B{a+ % o™ gL}

pm—e—1

=B + Z Ba E,(c2™"

v=0

1 pm—a—_1 pm—e—1 (s
= B0+ Z Bu{ 2. o ’}.
Since 327 "1™ = O forall u = 1,2, -+, p™° — 1, we obtain E(B,) =
Bo . Moreover, from the unbiasedness of every f,, it immediately follows that
Bo is unbiased.

(ii) The variance of the Ith component of the vector B, is found as follows:
V{Blo} = Ev{V(élo | le ’ sz y Tt Xvn)} + Vv{E(ﬁlo I le y "t X"n)}’

The statistical model states that y(X,) = E(y(X,)) + e. Thus, according to
(3.11) By, = (A")HCPYVE(y(X,)) + (A®”)7(C®”)%e. Hence, the condi-
tional variance of B, , given a block X,, , is

V(Blo I ij) = az/dgp‘) for all J=12 - ,mn.
According to (3.1), V(Bi, | Xoy, -+ -, Xu,) = o°/nd{®”. Furthermore, by Theo-
rem 3.4

n pmTe-]

E{ﬁlo I le y T Xv,.} = ﬁlo + n_l z:l Zl Cv(:,p: .)Bl+up‘ .
i=1 u=
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Thus, from the orthogonality of the column vectors of C*"" ", we obtain:

pm—e_1 n
Vv{E(ﬁlo ' Xvn y " Xvn)} = Z:l B§+w' V" {n—l ~ cs;;':n .)}°
U= i=
But,

p— X m—s M pm_.—l m-—s M m—s
v, 1 ‘n()?u )} — ( ) (pm=o)y2 ( > flp )
{n = Co; npm—s ”;0 ( ) npm d ’

where M is defined above.

3.3 Testing of Hypotheses according to Randomszation Procedure I. In this sec-
tion, we study procedures for testing the following types of hypotheses:

(i) He:Bi=0({=0,---,p" — 1) against the alternative

H1 B # 0.
(i) Ho.,(z) Buay = 0 for all u = 1, p"'_‘ — 1 against the alternative,
Hlu(l) at least one Buy # 0 (u = 1 . m_x 1)

These form a set of hypotheses where [ = 0 N p — 1.

Test statistics, for testing the above hypotheses, are suggested by an analysis
of variance scheme, in which the sum of squares of deviations of all the random
variables about the grand mean is partitioned into components, according to
different sources of variation. In order to be able to test hypotheses of type (i)
and (ii) we require that the number of chosen blocks n = 2; and the number of
repetitions of every chosen treatment combination r > 2. If nz2andr =1
hypothesis of type (i) can still be tested.

The sum of squares, of deviations, of all the y’s is partitioned as usual, into
the sum of squares “within treatments” and “between treatments”. The es-
timators Bz,,,. (I =0,---,p" — 1) are the orthogonal contrasts between the
treatments means of block X,; ( =1, --- , n). Every contrast of this kind car-
ries one degree of freedom. As deﬁned in (3 13), 8. is the mean of all B,,,, over
all the n chosen blocks. Thus, the quadratic forms

(3.15) Q(B.) = rdi™” ’Z_,; (ﬁzui - B.)? l=0,---,p—1)

carry (n — 1) degrees of freedom.

It is obvious that all Q(4..) are mutually orthogonal. Clearly, Q(8,) measures
the variability between the defining parametersof the chosen blocks. Q(8;) meas-
ures the variability between the aliases to 8; in the chosen blocks, etc. Let us de-
fine, foralll = 0, ---,p" — 1, :

(3.16) Q*(B.) = rndi®"Bi. .
Thus the F-like ratio
(3.17) FiY = (n — 1)Q*(8.)/Q(Br), (1=0, - , ' — 1)

could serve as a test statistic, for Ho:8; = 0 against H,:8; # 0. It is also seen
that the test statistic

(3.18) Fi = Q(B1.)/su(n — 1) (I=0,---,p" = 1),
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where np*(r — 1)sh = D P20" D71 2het (Yioyn — Y, )” could serve to test the
hyp(’)kthesis:
Hy,.y: all the alias parameters, B.(p , are equal to zero; against the alternative:
% . m—s .
H1.y: at least one alias parameter B, (v = 1, - -+, p™° — 1) is not zero.
According to the theory of simple random sampling, if the sampling of blocks,
X.,; , is at random, with replacement then

m—s_1

(319) E(Q(B)/(n — D} = o + (rdi"/p™™) 2 AP Blsupe

foralll = 0, ---, p° — 1. It is easily shown that E(s5) = o". The results lead
to the conclusmn that the test statistic F'; could test the hypothesis Hy, 0w () against
H, 1uy - From Theorem (3.5) it follows that,

pm—e_1

(3.20) E{rnd{"B.}) = o + (rd®/p™) D AP B iupe + rndiPUBE .

TABLE 1
Analysis of Variance for Randomization Procedure 1
Source of
Variation d.f. S.S. EM.S.)
B 1 Q*(él') o+ (rd?’ )/P"'_') D AL A
+ rn dPNp2 u
Br’-1 1 Q* (3,51 ot + (rdi> 1/11"‘")2 dm g
+rn dps—lﬁp o
defining n—1 Qo) o? + (r/p"'_z')z dm g
parameters
aliases to 8; n—1 Q1. ot + (r i /pm0) D AP TR
aliases to 8%, n—1 Q(ép‘—l') o+ (1 BV /) Y B s’
u
all the chosen np* — 1 — —
parameters
between treat- | np* — 1 [P —
ments T—ZO: E (ylv - BO )?
within treat- |[np*(r — 1) | np*(r — sk o2
ments
Total npr — 1 — —
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Thus, the test statistic (3.17) could test whether 8; = 0 or 8, # 0. It should
be remarked that the F-like ratios (3.17) and (3.18) are not distributed like
central or noncentral F(v,, v;) random variables, because the distributions of
these ratios, in the present case, are also affected by the variability introduced
by the sampling procedure. The study of these distributions is reserved for an-
other paper. The analysis of variance scheme suggested is summarized in Table 1.
The sum of squares for between treatments serves, as usual, the purpose of
simplifying the computation of the within sum of squares.

4. Randomization Procedure II in Fractional Replication Designs.

4.1 The case of a n/p™ * replicate of a p™ factorial experiment. Randomization
Procedures I and II differ substantially due to the fact that, in Randomization
Procedure I, the confounded parameters are not the p° chosen ones, while in
Randomization Procedure II the confounded parameters are the p° chosen ones.
Thus, in Randomization Procedure II all the p™ treatment combinations are
classified, into p° blocks of equal size and from every block a random sample of
n treatment combinations is drawn at random. While, in Randomization Pro-
cedure I the sampling of treatment combinations is essentially a cluster type of
sampling, Randomization Procedure II is essentially a type of stratified sampling.

For the present Randomization Procedure we do not give a special presenta-
tion of the theory for the n/2™° case, because the theory for this case can be
derived in a manner similar to that of Section 3.1. Moreover, as will be seen later,
the important results for a n/2™™" fractional replication can be derived directly
from the results for the general case.

For the same reasons which were mentioned in Section 3.2, we require that
the subgroup of chosen parameters be generated by s independent parameters
(Bpioy Boit, ** - , Bpis—1) representing main effects of s chosen factors.

There is no loss of generality if we assume that the chosen parameters are the
first p° ones, i.e., (Bo, B1, -, Bps—1). For this subgroup, of chosen parameters,
the corresponding p° blocks of treatment combinations are given by the sets

(4.1) X: = {z:¢8"™ (Tigipr) = " (2:)
forall ¢=0,---,p"—1;7=0,---,p""—1 and 1=0,1,---,p" — 1}.

Formula (4.1) results from the fact that here every block

Xi= @ijp:t =0, -, p = 1L;j=0,---,p"" = 1)

and from the equation C*™ = C*"™"” ® C®. It should be remarked here
again that the classification according to (4.1) is equivalent to the regular pro-
cedure of confounding the p° chosen parameters.

From every block of treatment combinations X; a random sample of
n(l = n < p™° — 1) treatments is drawn. Let

Si(x) = (Titjopt » Titisant s *** 5 Titisnpt)
be a random sample of treatment combinations from block X;, and
{yifk:k = 17 e :n}

their associated random variables (treatment yields).
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DEriNITION. An estimator of chosen p° parameters is thus defined to be
(4.2) B = (a®")7(Cc")'y,

!
where y' = (yo. , y1-, -+, Ypony. ).

THEOREM 4.1: For any given set of p° samples of treatment combinations S =

{Si:i=0,---,p — 1} the conditional expectation of an estimator

a

B1 (l=0y°":ps_1)

18 given by
rel pl ] ] 3t m=—s

43 B@IS = bt 3n 5 3 o w0 |E >a,+qp.]
=0 r= q=

where

n
(p(m=2)) -1 (pm=9)
Cisq =n Z Ciska -
k=1
Proor. According to the linear model (2.1),

n pm—1
E(y. | S:) = n! Z Z Cgpm(xi+i.;kp')ﬁt s

k=1 t=0
where
(™) (p™)
¢t (Tiriaps) = Cilsgpet;
8
however, ¢ (Zitjupe) = ¢f” forallt = 0,1, ---, p° — 1. Thus,
-1 (
D) -1 m)
E(yi. |8:) = 2 Bic?” +n Z Z Beet™ (Tirjipor)-
t=0 k=1 t=p?*
Substituting
(o™ _ (M (pm—a)
Ce (xi+f¢kp’) = Ciry Cjiirar >
where
t=r‘+q1ps (ql:1:"':l‘im—‘s_l;rl:O)"'yps_
we obtain
pe— pm—a—1 pi—1
(p?) (pm—9) (p')
E(y: | 8:) = Z cit B¢ + Z Cii-q Brtape -

r=0

By inserting this result into definition (4.2), we obtain formula (4.3).

THEOREM 4.2: If the sampling of treatment combinations from every block X;

1),

18

at random, then B3, ts an unbiased estimator of (1 = 0, --- , p° — 1) with variance

V(B) = o’ /ndi””
m—g_1 1

(4.4)

g=1 =0

P
+ M /np" (@)1 2 a7 2 () el Brranel’,
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where
_ f1, , if sampling is with replacement
1 — (n — 1)/(p™° — 1), if sampling is without replacement.
Proor.
(i) B:is unbiased, because

E(B:) = E{{E(B:| 8)},

where Eg() is the expected value of the estimator in brackets, with respect to all
the possible choices of samples 8 = {8;:¢ = 0, - - - , p* — 1}. Accordingto Theorem
4.1,

pe—1 po-1 pm—a—1
E(Bl) =6+ (d(p')) ; 1_2:_0 c(pt) (pa) Z Brtaps Eg,(c,(p'" c))

However, sampling is at random. Hence,
pmII-1 (p™0)

Es‘(c]p'"“)) —_ Z Cjq =0
= pm——a
foralli =0,---,p" — landallg=1, ---,p"™" — 1.
(ii) According to definition (4.2) of ; and the linear model (2.1),
pe—1 pm—1
B = (d“")) Z cif” [ Z C(p‘)ﬁ + n_lkf_‘i :Z cz+1kp' B + ez]
=1 t=p?

where V(e) = ¢ is independent of the 2’s. Moreover, samples from different

blocks X; are independent, thus,

pe—1 n pm—1
V(Bz) =0 /ndma) + (d(p'))—z Z (C )) Vg, { I; tZ cz+JkP' tﬁt} )
=1 t=p?
where Vg, ( ) is the variance of the estimator given inside the brackets ( ) over
all the possible random samples S; from block X, .

—1 2 —1 (p™)
Ve (7 5 T, eitRent) = T Ve E iE e
k=1 t=p?* t k
Ry (™)
-1 m L= (p™)
B:y Bty €OV, (n Z ci“{jkp"tl yn Z ciiikp’.tz)-
(t17tg)=p?* k k

According to the lemma in Section 2, we can substitute

(p™) (p®) (p™™9) s
Citipet = Cit, Ciige where ¢ = qp’ +

¢=1---,p"" -1 and r=0,---,p" — 1.
Thus,
pm—s—1 ps—1 e m—s
< Z ch+lkp‘tﬂt) = Zl Zo qu‘-l—r(c )) Vs.( - ci(':q ))
¢=1 r=

pm—e—1 pe—1
(p®) (p®) -1 (pm~e), -1 (p™=2%)
+ Z Z ﬁqw’+rlﬁq2p'+r20”1 Ciry COVg; (n }k: Crkay sn Zk C) ks ) .

(q17#92) =1 (r17r3)=0
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However,

pm—a—1

Z CJ(':"‘"') = Oforallq = 1,2, - ,pm—a -1

=0

Hence, according to the theory of random sampling,
Vs, (n_I 2 qum-.)) =MdP" " /np",
k

where M is a “finite multiplier”, defined in (4.4). Similarly,

0 @ 7 g
-1 (pm—28) _—1 (pm—e) )
oV, (n Ek: Cixer ST ‘Lk: Civas ) = {

M " /np™" 1 = o
It follows that

™21 e [P . 2
Vs, (n-_1 Zk: ; cf'iu)p'.t Bt) = (M/np™™") Zl dq(rp ) [ 2% cs‘f ) ﬁqu‘] .
a= r=
Substituting this result in the formula of V(8;) yields formula (4.4). From this
theorem the following corollaries are obtained:
(1) In a n/2™" fractional replication, according to Randomization Procedure
I1, all the variances of Bi(l = 0, --- , p° — 1) are equal to

2m—1

(4.5) V(B) = o*/n2' 4+ (M/n2") 22:« Bi .

(2) In a n/2™" fractional replication the variance of every estimator
Bi(1 =0, ---,p — 1), according to Randomization Procedure II, is equal to the
arithmetic mean of the variances of 2° different estimators given by Randomization
Procedure I.

If we designate the variance of 8;, according to Randomization Procedure I,
by V1(B:) and that of 8, according to Randomization Procedure II, by V1:(4:)
then, -

(4.6) Vu(B) = 2—8§ Vi(By).

4.2. Testing of hypotheses according to Randomization Procedure II. In this
section test statistics, appropriate for Randomization Procedure 11, are suggested.
The null hypotheses and alternatives are similar to those represented in Section
3.4.

There are some substantial differences between the analysis of variance for
Randomization Procedure I and that of Randomization Procedure II. In the
former, the significance of the nuisance parameters is tested by p’ different test
statistics. In the latter, one tests the significance of all the nuisance parameters
together. It will be shown also that in the case of /2™ " fractional replication,
the analysis of variance according to Randomization Procedure II might be more
powerful than that of Randomization Procedure 1. In order to make the analysis
possible we require that the number of treatment combinations, chosen at ran-
dom, with replacement, from every block X;, n = 2, and the number of repeti-
tions of the chosen treatments r = 2.
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The total sum of squares about the grand mean is partitioned into three com-
ponents. The first one measures the variability “within treatments”, the second
one measures the variability between choices within blocks, and the last one
measures the variability between blocks. The analysis is similar to a nested
classification type of design.

The expected value of the mean square between choices within blocks, MSC,
shown in Table 2 is given by,

pm—e—1 — pe—1 pe—1 . 2
47)  BMMSC) =o' +r/p" 2 477" X, [g cﬁf’a,+q,-].
&

=0

Thus, in the case of a n/2™° fractional replication,
am—1

(4.8) E(MSC) = o* + r‘}_:,. B .

Comparing (4.8) to (4.5), we come to the conclusion that a proper test of the
null hypothesis Hy:8; = 0(l = 1. --- ,2° — 1) against H,:8; > 0 when p = 2
is to compare the quadratic forms

(4.9) Q*(B.) = nr2°Bi. (l=1,2 --,2°—=1)

with MSC. Thus, in the case of an n/2™ * fractional replication the appropriate
analysis of variance that applies is given in Table 2.

TABLE 2

Analysis of Variance for Randomization Procedure II in the Case of an
r/2m=¢ Fractional Replication

Source of
Variation D.F. S.S. M.S. EM.S.)
A A 221
B 1 nr2'ﬁf. an'ﬁf. a? + rZ ﬁf + rn2‘ﬁf
t=2e
: ; =
B2*1 1 nr2eBae_,. 7”‘2'3%‘—-1- a2+ TZ 8% + rn2e83_,
t=20
201 .
Between 2 — 1 nry, (yi. — Bo)? — —
Blocks =0
28—1 n om_—1
Between 2¢(n — 1) rZ Z WYiji — Yi-)? MSC o + rz 8
choices i=0 k=1 =20
within
blocks
28—-1n r
Within 2n(r — 1) | 23D (Wi — Yiip)? s o?
treatments i=0 k=1 h=1
Total 2nr — 1 — — —
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Here, we test the significance of 8; by the F-like ratio
(4.10) FI = nr2'g2/MSC (1=1,2--,2" —1).

The s1gn1ﬁcance of the nuisance parameters 1s tested by the F-like ratio F;
MSC/s% . The distribution function of F is the average, over all the

[(2n >:|2 possible samples, of non-central-F distribution functions. The dis-

tribution function of F7 is more complicated.

In the case of a n/p™ * (p = 3) fractional replication we suggest testing the
hypothesis Ho:8; = 0 against Hy:8; # 0 for every I = 1, ---, p° — 1 inde-
pendently by an analysis of variance similar to that given for Randomization
Procedure I. We first sample one treatment combination, at random, from every
block X; independently and from the obtained set of random variables
(Yojy » Yrir s *** » Yps—j,) estimate the chosen parameters. Call this vector B.
In a similar manner we repeat this sampling procedure and estimation n times
(n = 2). Thus, for every parameter 3; (! = 0, ---, p° — 1) we obtain a set of
n estimates (B, , -+, Bu,)-

Define, for everyl = 0, --- , 9’ — 1,

(4.11) s = (n — 1)“,; By, — B1.)',  where B = n—‘kL: B, -
Because sampling is at random with replacement, it follows that E’(s%,) =
V(8:). Hence, a proper test statistic for Ho:8; = 0. against H1:8; # 0 is

(4.12) Ff = np'Bi./sh,,
with fy = 1 and fo = n — 1 degrees of freedom.

Bo B B2 Bs Bs Bs Bs B Bs
Chosen . . . . 2pa
Parameters (M) (4) (4?) | (B) | (AB) | (A2B) | (B?) | (AB?) | (A*B?)
true values 198.5 39.8 |—68.5 | 33.9 46.4 21.0 18.4 | —19.0 3.1
B B1o Bu Bz B13 B B1s Bis Bz
aliases with (C) | (AC) | (42C) | (BC) | (ABC) | (A2BC) | (B*C)| (AB*C) |(A*B*C)
respect to C
true value 13.8 |—21.2 |—22.3 2.5 —15.6 | —12.1 |-9.7 9.0 5.5
Bs Brs B20 B Ba2 B23 Bas B2s B26
aliases with (C2) | (AC?) | (A2C?)| (BC?)| (ABC?)|(A2BC?) | B*C? | (A B*C?) | (A*B2(C?)
respect to
o2
True value —10.9 7.4 —2.7| 5.6 | —11.0 —6.7 3.4 5.7 —2.5




In (4.7) we see a possible test statistic for testing the hypothesis

against

H; : At least one parameter 8; (¢t = p°, - - -
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Hy:AllB, =0fort=p’,p° +1, ---,p" — 1
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, " — 1) is not zero,

isFy = MSC/si, with f; = p"(n — 1) and fo = p'n(r — 1) degrees of freedom.

ExampLE. In the following we illustrate the possible effects of the two randomi-
zation procedures, by an example of a 32 factorial system given by O. L. Davies,
([6], p. 353). The three factors studied are designated by A, B and C. The chosen
parameters are those generated by the main effects 4 and B. A 2 fractional
replication is considered. For the purposes of illustration we assume that the
estimates given by Davies are true values. (See page 290.)

The standard deviation of ¥, for any treatment combination is ¢> = 27. In the
case of fixed fractional replication designs, the biases and standard errors of the
estimators of the chosen parameters are given in the following table: (Confound-

ing here is according to M, C, and C%.)

Chosen True Bias Standard
parameters  value o esign 1 Fixed Dosign 2 Fixed Design3  LTOT
M 198.5 0.316 —10.344 10.028 6.364
4 39.8 4.250 6.567 —10.817 7.794
A —68.5 13.383 —2.422 —10.961 4.500
B 33.9 —1.400 5.600 —4.200 7.794
AB 46.4 4.425 —11.000 6.575 9.546
A*B 21.0 10.725 —6.700 —4.025 5.511
B 18.4 4.033 2.844 —6.877 4.500
AB? ~19.0 —8.675 6.533 2.142 5.511
AB? 3.1 ~1.058 —2.778 3.836 3.182

Fixed Design 1, 2 and 3 are taken to be the blocks (X, , X1), (Xo, X;) and (X;,
X,) respectively. With the randomization procedure there is no bias but the
variance of the estimators are increased. Standard errors of the estimators for
both procedures are given below.

Parameters Rand. Procedure I Rand. Procedure 11 Fixed
With Without With Without (gﬁg‘;t

replacement  replacement replacement replacement ’
M 14.9 11.5 12.9 10.2 6.4
A 16.3 12.8 13.3 10.9 7.8
A? 13.9 10.3 10.3 8.0 4.5
B 9.7 8.8 13.9 11.3 7.8
AB 17.1 13.9 16.1 13.2 9.5
A2?B 11.1 8.8 8.9 7.4 5.5
B? 7.9 6.5 8.8 7.0 4.5
AB? 9.5 7.8 9.0 7.5 5.5
A?B? 5.0 4.3 8.6 6.5 3.2
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It was shown in Sections 3 and 4 that, for the sake of testing hypotheses, sampling
should be done with replacement. In this example, variances of estimators given
by randomization procedures are about twice as large as those given by the fixed
procedure (without randomization). However, the presence of bias of the fixed
procedure gives sometimes benefit to estimators of the randomization procedure.
This will be discussed fully in the next section.

5. Discussion. In this section we comment on various questions which arise
in connection with the paper. :

1. It is apparent from the development in Sections 3 and 4 that both randomi-
zation procedures can readily be applied using standard confounding methods,
see [3], [5], [6], [9], [15]. The use of the matrices C®™ is particularly convenient
since they can readily be written down and confounding only involves looking
at suitable columns of the matrices. Similarly, the application of the analysis
of variance is straight-forward.

2. In order to compare Procedures I and II let us first consider the case of the
2™ factorial system. In Procedure II the variances of the estimate of the param-
eters of interest are constant, while in procedure I the variances may not be. The
relationship of the variance for the two methods is given in the corollary at the
end of Section 4.1. If no information is available concerning nuisance parameters
procedure II seems preferable since it guards against excesses in variance. This
is particularly true if one is equally interested in the parameters of interest. How-
ever, if information concerning ‘“nuisance’” parameters is available it might, with
profit, be used to choose the defining parameters in Procedure I so that the vari-
ances of particular parameters of interest are reduced. This, of course, takes place
at the expense of increasing other variances. This, can be particularly useful if one
does not have equal interest in the parameters of interest. When p = 3, the com-
parison of the two procedures becomes more complicated. However, here again,
Procedure II takes into account all the nuisance parameters, while Procedure
I only the aliases of each parameter.

Another aspect, in the comparison of Procedures I and II, for the case of the
2™, is the respective abilities for testing the significance of parameters of interest
with the two methods. In Procedure I, the test is made in terms of an F-like
ratio with degrees of freedom f; = 1 and fo = n — 1 while in Procedure II we
have fi = land fo = 2°(n — 1).

A further comparison between Procedures I and II is in the respective methods
for testing the significance of the ‘“nuisance” parameters. In Procedure I one
tests the nuisance parameters in blocks of aliases, while in Procedure II the test
is in terms of all the nuisance parameters simultaneously. The degrees of free-
dom, for error, in Procedure II is, however, larger. It is clear that the relative
merits of the two procedures depends on the purpose of the experiment. In the
case where randomized factorial experiments are used, for exploratory purposes,
it seems a definite advantage to be able to test the nuisance parameters in
blocks. This is so, since such tests may shed light on how to proceed further.
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3. The question of confidence intervals for the parameters of interest can be
approached in at least two ways, according to whether information about
nuisance parameters is or is not available.

One approach is to use the confidence interval suggested by the analysis of
variance tables as if the usual quantities had t-distributions. There is reason to
believe that this approach has merit, since the ¢-distribution is known to be
robust against departures from normality. The adequacy of this approach will
also depend on ¢° and the nuisance parameters. These questions will be further
treated, as part of the general distribution problems arising from the randomiza-
tion procedures, in a subsequent paper.

Another approach depends on some knowledge of the nuisance parameters.
LetB; (1= 0, ---, p° — 1) be an estimated parameter and B, its unbiased
estimator. What is the interval (8; — €, 8; 4+ €) for which the probability is at
least 1 — a that the estimated value belongs to that interval?

The conditional distribution function of 8; given a block or a sample of treat-
ment combinations, X, is normal with conditional mean E(8;| X) and standard
deviation o/ (nr d{*”)}. Thus

PlBi—eshi=Pit+e =E.(PB—eB<B+e|lX)}

(5.1) Bi+e—EBi|X) —e—EB]|X)
=Ex {‘I’( ! a/(nT dSpl)l)) )} - Ex {‘I’( ! o/(nT d;p')l)} )} ’

where ®(u) is the cumulative normal distribution function with zero mean and
unit variance.

Let E*(8:| X) = E(B:| X) — B:. Explicit formulae for E(8; | X) are given
by (3.17) and (4.3).

Let us expand the function ®(u) into a power series about u = e(nr d{*”)!/ 0.
We obtain

(B*(8:] X))¥)
€(29)!
where &7 (u) is the jth order derivative of ®(u).

A fairly good approximation is obtained if only the first two terms (j = 0, 1)
of the above series are considered. Thus,

Pi—e<Bi<Bi+ ¢

WP (u) — 1,

(52) Plhi—e<h <P+ e = ,z_:o 2Ex |

5.3 2

(53) = 98(u) — 1+ % 0% () Bx [ (B*(B: | X)),
Let

(5.4) D, = (V(B) — o /nr di*”) (nr di*"/a"),

where V(8,) is given either by Randomization Procedure I or II. Formula (5.3),
after some manipulation, reduces to
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(5.5) Prob{8; — e £ B < B+ ¢ = 20(u) — 1 — Dip(u),

where ¢(u) is the normal density and v = e(nr d{*”)*/o.

The quantity D, depends on the nuisance parameters and is a measure of the
excess of variability due to randomization. If all the nuisance parameters or (for
Procedure I) only the alias parameters are zero, then D; = 0.

It is clear that in order to obtain a probability 1 — « the value of e is given,
approximately, by the root of the equation

(5.6) d(u) — o(uw)uDy)/2 =1 — a/2.

The relationship between the required value of ¢, the confidence level 1 — «
and the measure of excess due to randomization D; can easily be represented
graphically. It is clear that the application of the method depends only on having
an upper bound for D;. For a numerical illustration, we return to the example
previously presented. The values represented in the following table measure
half of the length of 0.95 confidence intervals of 8; for sampling with replacement.

Chosen True Rand. Rand. When
Parameters Value Proced. I Proced. 11 D=0
M 198.5 19.84 18.88 13.10
A 39.8 23.38 21.82 16.10
A? —68.5 14.85 13.72 9.18
B 33.9 18.71 21.43 16.10
AB 46.4 26.73 26.25 19.50
A?B 21.0 16.53 14.60 11.30
B2 18.4 12.82 13.10 9.18
AB? —19.0 12.81 14.93 11.30
A2B? 3.1 8.27 10.18 6.50

With respect to the length of the 0.95 confidence interval, Randomization Pro-
cedure II is slightly better than Randomization Procedure I. In Randomization
Procedure II the maximum length over all the intervals is 26.25 while in Ran-
domization Procedure I the maximum length is 26.73. When all the nuisance
parameters are zero (D; = Oforalll = 0, ---, p° — 1), all the confidence in-
tervals are uniformly shorter.

4. The study of the distribution functions of the test statistics (3.17), (3.18),
(4.13) and (4.14) is very important for the determination of the level of signifi-
cance and power function, in the analysis of variance. It can be readily shown
that the distribution under the null hypothesis, of test statistics (3.18) and
(4.14), which tests the significance of the nuisance parameters, is like that of a
central F, with f, = n — 1 and f = np’(r — 1) degrees of freedom. However,
under the alternative hypothesis, when D; > 0, the distribution functions of
these test statistics is the average, over all the possible samples, of non-central F
distribution functions with f, and f> degrees of freedom and of non centrality:

(5.9) A (8) = (r dﬁ”')/-‘laz)é [E*(Bu; | 8) — E*(Bu | 9)F
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where E*(81. | S) = n"' > ;21 E*(Bu, | 8). These distribution functions are given
approximately by

G(F | fi,fa M) X H(F | f1,fo; M) + 2 V(A (S))

(5.10) [;0( 1) () ( ﬁ‘-ﬁfffﬂ f1+2j,fz;A,.)],

where H(F | f1, f2 ; Ai.) is a non central F distribution with f; and f, degrees
of freedom, and parameter of non-centrality

The distribution of test statistics (3.17) and (4.13), which test the significance
of the interesting parameters, is more complicated. Its conditional distributions,
for any given sample is like that of the ratio of two noncentral chi-squares. Under
the null-hypothesis these distribution functions are given approximately by:

G(F*) = H(F*|1,n — 1; D;/2; Dy(n — 1)/2)

/4[720( 1)’(>H<F* __12j|5—2j,n—1;%;_____("_21)D..’>]

G2 )b /4[2)( 1)’ ()

H(F*(n—ln)irlzi—zy’ nt3 -2 2 <n_—222>]
where
(5.13) H(z|fi1,fe50,8) _Z-;o _ﬁf H( fz-}'2] fi, fos )

The validity of these approximations, and the determination of test criterions
for a given level of significance will be given elsewhere. Numerical computations
indicate that G(F*), in many circumstances, can be approximated adequately
by the central F' distribution.

5. One of the relevant aspects in the comparison between the randomization
procedures and the “classical”’ fractional replication designs is that the classical
design may give biased estimates. The randomization designs give unbiased es-
timates with variances, say V&, , while the classical designs give possible biased
estimates with variance V. and bias, say B. In general, we have that Vi, = V..
A relevant factor in the comparison between randomization and nonrandomiza-
tion is the old problem of comparing variance and bias. In a sense the randomiza-
tion removes bias at the expense of increased variance. How should one compare
(Ve ,0)and (V,, B)? Thisis a variant of the problem of balancing accuracy and
precision in measurement. On the one hand, it is clear that it is useless to have
a very precise inaccurate estimate, on the other hand we do not want an ac-
curate but very imprecise estimate. There are at least two approaches to this
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problem of adopting an appropriate criterion. One criterion is simply to look at
the variance plus the bias squared. In other words, choose the procedure, p, to
minimize V, + B2, where V, is the variance using procedure p and B, is the
bias using procedure p. This criterion was adopted by G.E.P. Box [2].

Another approach is to adopt a “closeness” criterion. Suppose we are compar-
ing (Vz,0) with (V. , B). Let us compute, Prob {|8 — 8| < ||} for a particular
procedure, where § is the estimator using the procedure and 0 < X < 1. The
parameter A measures how important it is to be close to 8.

We give, below, some calculations of the probability, for A = 0.2, for the previ-
ously discussed example.

Parameters closeness = Prob{|8 — 8| < 2|8}
Fixed Fixed Fixed Rand. Rand.
Design 1 Design 2 Design 3 Proced. 1 Proced. 11
(without
replacement)

M 0.858 0.999 0.999 0.952 0.999
A 0.229 0.540 0.348 0.372 0.458
A2 0.348 0.994 0.729 0.690 0.965
B 0.197 0.504 0.550 0.417 0.399
AB 0.266 0.412 0.562 0.413 0.467
A*B 0.114 0.303 0.444 0.287 0.368
B 0.108 0.502 0.230 0.280 0.263
AB? 0.106 0.298 0.478 0.294 0.319
A3B? 0.008 0.106 0.075 0.063 0.001

This table illustrates that for 6 out of the 9 chosen parameters, Randomization
Procedure II is better than Randomization Procedure I, with respect to the
closeness criterion. Fixed Design 2 is almost always better than both Randomiza-
tion Procedures. However, Fixed Design 1 is always the worst. If information
about the nuisance parameters is not available, there is no way how to decide
which Fixed Design is a good one and which is a bad one. Thus, Randomization
Procedures I and II guard against a bad choice of a design when the nuisance
parameters are unknown. Finally, it is to be emphasized that fixed fractional
replication, or for that matter a full replicate of a factorial design, requires as-
sumptions about parameters, usually of the form that high order interactions
are negligible. However, for the randomization schemes, for n = 2, no such as-
sumptions are required.
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