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NORMAL INTEGRAL!
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1. Introduction and summary. The bivariate normal distribution, with its
numerous applications, is of considerable importance and has been studied fairly
extensively. Among the first statisticians to investigate the distribution were
Sheppard [12] and Karl Pearson [9], the latter from the point of view of his
celebrated ‘‘tetrachoric functions’, which were used as the basis for computing
tables of the distribution. Pearson’s tables have been extended by the University
of California Statistical Laboratory [16] and, more fully, by the National Bureau
of Standards [5].

In more recent years, the distribution has been studied among others by
Nicholson [6], Pélya [10], Cadwell [1] and Owen [7], [8]. Owen has also provided
useful tables from which the bivariate normal integral may be evaluated. These
tables have been published in [7] and in extended form, together with auxiliary
tables, in [8]. (The reader is referred to [8] and [5] for further references and for
some interesting applications.) An essential part of the procedures used by
Nicholson and Owen is to reduce the integral, which is a function of three param-
eters, the coordinates (xo, yo) of the vertex of the infinite rectangle over which
integration is to be extended and the correlation coefficient p, to functions of
only two parameters.

The series based on tetrachoric functions for the bivariate normal integral
suffers from the disadvantage that it converges rather slowly except when |p| is
small. The need for an expression which shall be suitable for all values of p, but
more especially for high |o|, has long been felt (see e.g., David [3]). Formula
(3.16), taken in conjunction with (2.7), as well as formula (3.21), is designed
to meet this need. These are two-parameter formulae and have the further
advantage of being especially useful for high values of z, and/or y,. Next, the
formulae are used to provide equivalent rapidly convergent Stieltjes type con-
tinued fractions, known as S-fractions (equations (4.6) and (4.19)). These
two sets of formulae constitute the basic results of this paper. They are, in fact,
analogues of the corresponding known formulae for the univariate normal
integral.

2. Reduction of the bivariate normal integral. We wish to evaluate the prob-
ability content, L(xo, yo ; p), of an infinite rectangle under a correlated bivariate
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172 HAROLD RUBEN

normal distribution:

L(xo » Yo P)

BV = - [ e (=46 + 07 = 20m)/(1 = )] do dy.
Zo 0

Diagonalisation of the 2 X 2 matrix involved in the quadratic form for the
distribution of z and y, e.g., by an orthogonal transformation, or by a linear
transformation corresponding to triangular resolution of the matrix, maps the
infinite rectangle into an infinite sector with angle arc cos —p. A rotation of the
transformed coordinate axes to orient one of the two final coordinate axes along
the line joining the center of the distribution and the vertex of the sector maps
the sector into a sector R of equal angle, but with vertex located along one of
the latter coordinate axes. The following single, composite transformation
compactly performs the required task:

(2.2) x=,(xou+(3’1°———’3§)—°,v)/co, y=(you—(31‘l—:——l’;%%v)/00,

where
(2.3) s = (x5 — 2pmyo + 42)/(1 — o).
Under the transformation in (2.2), (2.1) becomes

(24) L(zo, Y03 p) = (2m)7" ff exp [—3(u® + *)] dudy,

where R is defined as follows:

Yo — pZo o — PYo
(25) R:zmu+ A=l %% We =gt E .
The vertex of R is located on the u-axis at a distance of ¢o(co > 0) from the
origin. One possible orientation of R, corresponding to the case

2o <0, Y > 0, Yo — pZo > 0, Zo — pyo > 0, p <0,

is represented in Fig. 1. There are in all 32 possible cases (16 for p > 0 and
16 for p < 0), corresponding to the 4 possible quadrants in the original zy-plane
for the location of (xy, y) and all possible signs of the deviations, yo — pxo and
Zo — pYo, of (%o, o) from the lines of regressions. The angles of inclinations,
6, 62, of the bounding lines of R relative to the positive u-axis are given by
21} ki
(26) tan g = L= ong, ?ﬂ’-(l—_’i (0 <6,,0, <.
Yo — pZo — PYo

Clearly, in all 32 cases the required probability content of B, under a centered
circular normal distribution with unit variance in any direction, may be ex-
pressed in\terms of the difference of probability contents of two sectors, each
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F1g. 1. Illustrating the orientation of R for (z, , yo) in 2nd quadrant, with the deviations
of (zo, yo) from the regression lines both positive and negative correlation. Z4,CU =
0, y lAzCU = 0 y lAchQ = arc c¢os -—p.

with vertex distant ¢, from the center of the distribution and having one arm
oriented along the positive u-axis. Thus, in Fig. 1, the probability content of
R = probability content of sector A,CU-probability content of sector A4,CU.
The probability content of a fundamental sector of the type A,CU (or 4,CU)
with parameters ¢, 0, i.e., having vertex C distant ¢y from the center of the
distribution, angle 8, and one arm of the sector passing through the latter point,
will be denoted by W (co, 6). The fundamental sector is depicted in Fig. 2.

f

F16. 2. The shaded portion represents the fundamental sector whose probability content
is W(co , 6) under a standardized circular normal distribution centered at O.

Detailed examination of the 32 possible cases then gives
(27) L(xo y Yo 5 P) = W(CO ) 02) - W(CO ) 01) + C(.’L’o ) yo))
where

G(z), (@0, y0) in lst quadrant,
0, (20, %) in 2nd quadrant,
G(yo), (0, %) in 3rd quadrant,
G(y) — G(—mx), (0, ¥o) in 4th quadrant,

(28) 0(370 ) yO) =
and

(2.9) G(z) = (2r)? f e gt
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It will be noted that

(2.10) w0, 0) = 6/2n,
W(eco, 7/2) = 3G(co), 0, T) = 3
(211) (co, 7/2) (o) W(eo, m)
W(co,3r/2) =1 — 3G(co), W(c,2r) =1,
(2.12) W(co, —0) = W(co, 6) 0=6=7),
(2.13) W, 0) + W(co,n — 6) = G(cosin8) (0 <0 < x).

(2.10) and (2.12) follow directly from the circular symmetry of the distribu-
tion, while (2.13) follows from (2.12) together with the fact that the left-hand
member of (2.13) represents the probability content of the half-plane below a
line distant ¢, sin 8 from the center of the distribution. In view of the preceding
relationships, a knowledge of W (c,, 6) for 0 < 6 < =/2 is sufficient for a specifi-
cation of all possible values of the function.

The W-function is closely related to the distribution of the non-central ¢t with
1 degree of freedom. The latter statistic with non-centrality parameter ¢, , ., , is
defined by t,,, = (¥ — ¢o)/|v|, where u and v are independent normal random
variables with zero means and unit variances. On referring to Fig. 2, we find
that

(2.14) Prob (4., = t) = 2W(co, arc cot &) (to > 0).

In particular, the asymptotic expansion for W(c,, ) obtained subsequently
(Eq. (3.10)) may be used to evaluate the probability that .., is not less than
to , with ¢ replaced by 1/% in the coefficients of the expansion as given by (3.13).

The relationships between the present W-functions and functions introduced
previously by Owen [7] and Nicholson [6] in their studies of the bivariate normal
integral are of some interest. The functions in question are the T and V-func-
tions, defined as the probability contents, under a centered circular normal dis-
tribution with unit variance in any direction, of an infinite quadrilateral and
right triangle, respectively. These functions are represented in Fig. 3.

O:

1
o h )

Fia. 3. The probability contents of the shaded region and unshaded triangle define
Owen’s T'(h, a) and Nicholson’s V(h, h tan ¢), respectively, withtan¢ = a(h =2 0,0 < 6 =<
7/2). The underlying distribution is a standardized circular normal distribution centered
at 0.
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We have
(2.15) T(cosin 6, cot 6) + W(co, 8) = 1G(cosin 6) 0=0=7/2)
and
V(cosin 6, cocos ) — W(c, 6)
=1—0/(2r) — 3G(csin ) (0 = 0 £ x/2).
The derivation of (2.15) is made sufficiently clear by the following diagram:

A
. /
O u
N, q C
N //
AN /

p\/‘/s

N

(2.16)

Fic. 4. Illustrating the relationship between the 7 and W-functions. O is the center of a
standardized circular normal distribution.

The probability content of the sector ACU is W (¢, , 8). Produce AC to intersect
the line through O which is orthogonal to AC in P. Then £COP = /2 — 0,
OP = ¢ sin 0, and the probability content of the infinite quadrilateral UCPQ is,
in Owen’s notation, 7'(¢osin 6, cot #). On the other hand, the sum of the last
two probability contents is equal to the probability content of the quadrant
ACPQ, which, by symmetry, is equal to one-half of the probability content of
the half-plane below the line ACPR. Hence (2.15) is proved. Again, the prob-
ability content of the triangle OCP is, in Nicholson’s notation,

V(cosin 6, ¢y cos 9),
and the probability content of the sector UOQ is (w/2 — 6)/2x, so that
V(cosin 8, cocos ) + T(cosin 6, cot 0) = (x/2 — 6) /2.

Equation (2.16) then follows directly from this last relationship and (2.15).}

It should be remarked that the V-functions, and therefore also the related
T and W-functions, are of intrinsic interest quite apart from their relationship
to the bivariate normal integral. The V-function has been tabulated in [5] and
[6] and some of its applications discussed in [5].

3 Formulae (2.15) and (2.16) can be extended to the range »/2 < 6 < = if, in accordance
with the integral representations of thed” and V-functions ([7], [5]), T'(h, —a) = —T(k, a)
and V(h, —k) = —V(h, k).
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Fi16. 5. The probability content of the infinite strip DECB is K (¢co , 8), where OC = ¢o
O is the center of a standardized circular normal distribution.

Finally, it will be convenient to introduce a new function K(co, 6) defined by
(2.17) K(co, 0) + W(co, 0) = 8/(2m)e 5.

Geometrically, K(co, 6) represents the probability content, under a centered
circular normal distribution with unit variance in any direction, of an infinite
strip DECB which is bounded by an arc of a circle, with center at the center
of the distribution O and of radius ¢, , subtending an angle 6 at O (Fig. 5). To
verify this, note that exp (—%c;) represents the amount of probability outside
the circle of radius c, and center at O(u* + o* is a chi-square with two degrees
of freedom), whence, by symmetry, exp (—24c;)6/2r represents the amount of
probability in DECU. However, DECU is the union of DECB (probability
content K(cy, 8)) and BCU (probability content W (e, 8)), thereby proving
the required result.

An integral form for K (¢, , 6) may be obtained by the use of new coordinate
axes OED, the 5-axis, and OL, the ¢-axis, orthogonal to OED. Divide the region
DECB into indefinitely thin strips by lines parallel to the n-axis. The prob-
ability density at any point is

(2m) e HEHN = (o) H W (20) R

Hence, by integration with respect to 5 (the lower limit of integration being
(cs — £)*, the probability content of the strip is

(2m) e dg-G((h — &)Y,
and on integrating with respect to ¢ between the limits 0 and OM = ¢ sin 4,
where M is the intersection of BCHI with OL,
co8infd
(2.18) K(co,8) = (2r)} e¥Q((cd — )Y dt
0

(cf., Ruben [11]).
A knowledge of K(co, 6) enables one to eypluate the probability content, say
M(co, ), of that portion of the circle ECHFE with radius ¢, intercepted between
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a diameter and a parallel chord distant ¢, sin 8 from the diameter. For, the in-
finite parallel strip bounded by DEOFG and BCM HI may be expressed as the
union of BCED, IHFG and ECHFE. On the other hand, the probability content
of the strip is 3 — G(co sin ). Evidently then,

(2.19) 2K(00 ) 0) + M(Co , 0) = % - G(Co sin 0).

3. Asymptotic series developments for the W and L-functions. The following
asymptotic series for the tail-end area under the standardized normal curve is
well known (see e.g., [4]):

6) = 2t Ly - 1 13

Zo Xy Zo

(3.1)
+ o+ (_l)m—l 1.3 --.x%(f;):), — 3)} + Rm(xo)(xo > 0),

where R..(z) is the “remainder after m terms”,
(32)  Ralm) = (=1)™3 --- (2m — 1) f (2m) 7 &2

Equation (3.1) is essentially a formula for Mill’s ratio,
G(20)/(2m) ™ exp (—4ai).

It has the property, important for purposes of computation, that the error in-
duced by stopping after m terms does not exceed numerically the value of the
last term. For,

tde

2 x2m

|Rn(z0)| < 1.3 «-- (2m — 1)(2r) e ¥

(3.3)
° (2m - 3) (21!')_*6_}30

x%m-—-l

In this section, asymptotic expansions analogous to (3.1) will be derived for
the bivariate normal integral (i.e., the L-function, expressible in terms of the
difference of two W-functions, as in (2.7)), as well as for the W-function itself.
Consider first W(co , 6), and assume that 0 < § < /2. In actuality, both acute
and obtuse angles may be needed in (2.7) (recall that 6, and 6, are defined by
(2.6)), but in view of the remarks of the preceding section and, in particular,
equation (2.13) there is no loss of generality in assuming that 6 is acute.

Referring to Fig. 2 of the preceding section, let OP, the distance between O
and any point P within the shaded sector be 7. Let £ and ¢ be the polar coordi-
nates of P with respect to C as pole and CU as base line. The probability density
at P is

(34) (2r) F " = (2r)7! exp [—3(cs + £ + 2cof cos ¢)]

and therefore
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(385) Weo,0) = (2m™ [ [[ o (=3 + & + 200t cos o)l e b

Now,

[ £ exp [—3£ — (co cos ¢)¢] dt
= —fw exp [— (co cos ¢)¢] g (e*) de
o £

(3.6) =1 — (co cos ¢) [: exp [—3£ — (co cos ¢)¢] d&

1 — (o cos ¢) exp [3¢s cos® ¢]-(2m)*G(co cos ¢)

Sy 13- (2 —3)
=1 ,Z;( 2 (co cos @)%

— (¢ cos qb)e“: 8’ . (27) R, (co cOS ¢)

after substitution for G(co cos ¢) with the aid of (3.1)." Hence, using (3.6) in
(3.5) and integrating with respect to ¢, we obtain

W(e,0) = (21r)—1e"°:{0 - i (=1)" 13 --- (27 — 3) £0%025_2¢d¢

je=1 031—2

(37) 0 2
- (2n)} f ¢o cos ¢¢*0 ™" *R,,(co cos ) d‘b} '
0

Equation (3.7) gives the desired formula for W(co, 6). We now show that the
upper limit of summation may be replaced by «, i.e., that equation (3.7) pro-
vides an asymptotic expansion in the familiar sense that the error induced by
using the first m terms of the expansion as an approximant for W(c,, 0) does
not exceed numerically the absolute value of the m-th term (cf. the remark
about R,(%) in formula (3.1)). In fact, on using (3.3), this error (apart from
the factor (27)™" exp (—1%ci)) is numerically less than

(2m)} f” o cos getiots 18 (Im = 8) o ete g
(3 8) (CO cos ¢)2m—1
. o
= 13 .- cg(mz—f‘:l, 3) | Seczm—2¢d¢’

which is the numerical value of the last term. Equation (3.7) may now be re-
stated in the form

2 kd N ] — o .
(39) W(c,0) = (21r)_1e““0{0 - Z(—I)HI'3 c%(j_z_]z 3)‘£ secz"2¢d¢},

j=1

413 --- (2 — 3) is to be interpreted as 1 for j = 1.
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or,

(310) Wi, 0) = (x4 3 (-1 12 c(zj_l)f sec” ¢ dg.

Observe® from (3.9) that K(co, 8), defined in (2.17), has the asymptotic ex-
pansion

(311) K(e,0) = (2m) e E( gyt 13 (2"3)f sec? ¢

21—2

The coefficients
(]
(3.12) 4,(0) = fo sec ¢ do (G=12-")

in (3.10) may be evaluated in several ways. One way consists in expressing
¢’ ¢ in terms of powers of 7 = tan ¢ and then integrating. Thus,

t
,Mm=fu+ﬁﬂm
0
i=1 /. 2r+1
- J— 1y ¢t
—‘,‘V.:‘a( r )2r+1’
where ¢ = tan 0, e.g.

A(0) = t,  Ax(8) = t(1 + 3,  A(0) = ¢(1 + 3 + 3.
Alternatively, integration by parts readily yields the recursion relationship
(3.14) (2 — 1)A;(0) = 2(j — 1)4;1(0) + sec " ftan 6 (j=1,2,---)

However, the most convenient method to use in computing (3.10) appears to
consist in the employment of a recursion relationship between the total numerical
coefficients. Let

(3.13)

(3.15) B; = B;(6) = 1.3 --- (2j — 1)A,(6).
Then
(3.16) Wi, o) = @07 S (-0 B,

and a recursion relationship for B;, obtained from (3.14) and (3.15), is

17 ;=2 — 1B+ 13-+ (2 — 3w’ (G=238"-"),

l=t,

5 It should be noted that an asymptotic expansion for a function closely related to
Owen’s T-function (and the present W-function) for the case 0 < h < kin T'(h, k/h) was
obtained by Pélya [10]. (This reproduced in essence an expansion first given by Sheppard
[12].) Unfortunately, however, the expansion in question does not appear to be very man-
ageable, and its physical or geometrical interpretation is obscure.
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‘where = 1 + & = sec’ 6. On using (3.17), the first eight values of B, are
-obtained as follows:

B/t =1,

B/t =2 + u,

By/t = 8 + 4u + 347,

By/t = 3(16 + 8u + 64’ + 5u°),

(3.15) Bs/t = 3(128 + 64u + 484° + 404’ + 35u'),
' Be/t = 15(256 + 128u + 96u® + 80u® + 70u* + 63u’),
B/t = 45(1024 + 512u + 384 + 3200° + 280w’ + 252u°

+ 231u°%),
Bs/t = 315(2048 + 1024u + 768x" + 640u’ + 560u’ + 504w’
+ 462u’ + 42947).
More generally, B,/t is a polynomial of degree j — 1 in %. In fact, if
(3.19) Bi/t = kjp + kau + -+ + kj i’
then, by (3.17),

. 1]
(320) By = 270G = DIEES (p= 0,1+ ,5 = D).
In view of (2.7), the bivariate normal integral may be expressed in terms of
the difference of two asymptotic expansions of the type (3.16). We now show
that in certain situations the integral may be expressed in terms of a single
asymptotic expansion. To achieve this, recall first that the asymptotic expan-
sions (3.16) and (3.10) for W(c,, 6) are valid only for 0 < § < /2. There-
fore, in order to exploit either of the two latter expansions for the derivation
of the bivariate normal integral by means of (2.7), the angle arguments in each
of the two W-functions must either be acute or rendered acute, the “rendering
acute” being effected by (2.13). We then find that the bivariate integral may be
expressed in terms of the difference between two W-functions, each of whose
angle arguments is acute, either when 6, and 6, in (2.6) are both acute, or when
6, and 6, are both obtuse. When one of the two angles is acute and the other
obtuse, the bivariate integral is expressed as the sum (not the difference) of two
W functions with acute angle arguments.
Assume then that 0 < 6,, 6. < v/2 and, for convenience, assume further that
6; < 6, (if 6, > 6, interchange 6; and 6,). Then, by (3.16),
Wi, 0) = Wien,0) = (20)77% 5 (—1)* B—
(3.21)

0=26< 6 <7/2),
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where
(3.22) Bj = Bj(6:, 6:) = B;(6:) — B;(6y).

Equation (3.21) gives the desired asymptotic expansion for the difference of
two W-functions. By virtue of the fact that (3.21) can be derived directly from
(34), just as was W(c,, 9), with the limits 0 and 6 replaced by 6; and 6, , re-
spectively, it follows once again (cf., (3.16)) that an upper bound to the error
after m terms in (3.21) is given by the mth term of the series.

It is important to note that ¢, is large when either (i) |zo| and/or |yo| is large,
or (ii) |e| is high.® Further, from (2.6), a high value of |p| implies generally a
small value for both 6; and 6, . This tends to increase the rate of ‘“‘convergence’”
of the series (in the special sense (refer to (3.8)) in which one may speak of
the totally divergent series in (3.16) and (3.21) being ‘“‘convergent’’). These
series should therefore be particularly useful in extending the currently avail-
able range of tabulation of the bivariate normal integral, as well as of the V-
function.

4. Continued fraction developments for the W and L-functions. A continued
fraction for Mill’s ratio has long been known. Kendall [4] attributes it to Laplace
and rightly points out that Sheppard [13] was enabled to obtain “superb’ tables
for the tail-end area under the normal curve by the use of the fraction. The
relevant formula is

(21r)"*f e = 2m) e ™ ] (z > 0).
z z +
z+ 2
(4.1) o4 3
z+
It will be observed that the coefficients 1, 1.3, 1.3.5, - - - , in the series (3.1) are

the even moments of a standardised normal distribution. This is not accidental;
on the contrary, it provides the essential clue to the development of an analogous
continued fraction for W(c,, 6), as well as, in special cases, for the L-function.

It is known from Stieltjes’ classic work on continued fractions (see Wall
[17], Chapter XIX, for details, as well as for references to Stieltjes’ work) that
a sufficient condition for totally divergent series of the type (3.1) to be repre-
sentable as continued fractions of the type (4.1), known as S-fractions, is that
the coefficients of the series represent the moments of a distribution. Further-
more, the fraction is convergent if the distribution is uniquely determined by

8 ¢ may usefully be regarded as a normed distance, in terms of oblique Cartesian coor-
dinates, between the cut-off point (zo, yo) and the center of the distribution, where the
angle between the coordinate axesis arc cos — p and the standardization factoris (1 — p?)?.
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its moments. Now, from (3.11),

6 a1 17 1

13 (° 4 1
# (7 [[oae) -}

The (27)th moment of a normal random variable with zero mean and standard
deviation ¢ is 1.3 - -+ (25 — 1)¢’, the odd moments being, of course, zero. The
coefficient of 1/cg’, pz;(X), in (4.2),

. (]
(43) (%) = BB CIZ ) [P 4 g,
0

(42)

may accordingly be identified as the (2;)th moment of a weighted normal random
variable X with zero mean and a random standard deviation ¢, ¢ = sec ¢, where
¢ is uniformly distributed over (0, 8). This defines a legitimate distribution

1 0
(4.4) F(z; 0) = 5 j; &(x cos ¢) do,

where &(-) is the standardized normal distribution function. Thus K(co, 0)
may be represented as an S-fraction. The fraction is, moreover, convergent,
since the moment sequence {uz;(X)} uniquely determines the distribution (4.4),
the uniqueness property being a direct consequence of Carleman’s criterion
([2], pp. 78-96). In fact,

—1/(2j . —yep (1 0 g —1/24)
> (g (X)) = 3 (13 - (2 — 1) >(0_[o sec ¢d¢>

>> (13- (2 — 1))V cos 6 = oo,

and the uniqueness is established. Consequently, K(co, §) may be represented
as a convergent continued fraction, as follows:

K(c,0) = %e_hgco- do (co>0;0 =06 < m/2).
¢ + &
(4.5) o+ 2
¢ +
It now follows from (2.17) that
1—oa i
o+ 2
[17]
46) Wic,0) =¥ & + (c0> 0,0 <0 < 7/2).

2r ¢ +
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We remark that K(co, 0) is greater than every even approximant of the con-
tinued fraction in (4.5) and less than every odd approximant. This follows from
a general property of S-fractions proved by Stieltjes [14]. Consequently, W (¢, , 8)
is trapped between known bounds at each stage of computation.

It now remains to construct the coefficients a; of the fractions in (4.5) and
(4.6) which correspond to the divergent series (3.11) and (3.10), respectively.
Two methods appear to be practically useful, so far as the present series are
concerned.

The first method, which is a recursive one, consists in the employment of an
algorithm to determine the orthogonal polynomials corresponding to the dis-
tribution function in (4.4). A knowledge of the coefficients of the first m poly-
nomials (up to and including the polynomial of degree m — 1) allows the next
cycle, the evaluation of a.— and then of the coefficients in the (m + 1)th poly-
nomial to be completed. Formally, if the (p 4+ 1)th polynomial, of degree p,
is defined by

(4.7) , My(z) = Bo” + Bz + -+ + B (B = 1),

then the algorithm’ may be stated in the form

(4.8) 2nBno + Man—1Bm1 + +c ¢ 4 MnBrn = GGy ¢ @n (n=0,1,---),
Bat1a = B,

(4.9) 6n+l.j = 61;;‘ - anﬁn_llj_z (j = 2’ 3’ ceey, n)

’

Brsind1 = Anfn-1,n1,

where u; = up(X) and pgp1a =0 (p = 0,1, - -+ ). (M,(x) is here an odd or even
polynomial according as to whether p is odd or even.)

The second method consists in the direct evaluation of the moment deter-
minants of various orders, since according to the algorithm the a; may be ex-
pressed in terms of these determinants. To prove this, note that (Szego [15])

Mo M1 tee Hn
. M1 M2 Hnt1
(4.10) Mn(x) = A;—-l .................. (n = 1’ 2, . .) ,
Mn—1 Mn M2n—1
1 = "
where
Mo M1 Hn
I Hn
(4.11) A, =Mt K Hen (n=1,2--)

Bn  HBntl  Mon

7 (4.8) and (4.9) have been extracted from Wall [17], Chapter VI, after considerable sim-
plification.
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and A, = 1. Hence, (4.8) is equivalent to

(4.12) An/Bn—y = Gol1 * -+ Gn (n=12,--.),
so that
(4.13) Gn = AnAn_s/A7 (n=2,38---).
Systematic application of (4.8) and (4.9) gives
(a0 =1,
a; = p2,

as = (pe — p3)/pe,
(4.14) X

2
_ ue — pa/pa
oG = —s,
M4 — M2
H8 M2 — M6 M4 M4 M2 — Me
ay = ;] + 3 )
\ Mo fh2 — My Mg — M2

where, by (4.3)
(4.15) uz; = B;/6 G=1L2--).

The formulae for high order a; become progressively and rapidly more com-
plicated, and for a specific computational need it is therefore more appropriate
to use the algorithm ((4.8) and (4.9)) directly when the u.; have been numeri-
cally evaluated.

Similarly, a continued fraction development may be obtained for

W(Co, 02) - W(CO ) 01)

(though for computational purposes it seems more convenient to determine
the continued fractions for W(co, 6;) and W(co, 6:) separately), when

06 <6, <7/2
Thus, from (3.11),

(uw.m%w-Kmmo=@:ﬁﬂ%@—w?°+“@°—u}
27l' Co Cy

where

[}
(417) M@ﬂ=us~w%—nygéﬁﬂsw%w (G=12--),

um(X’) being, then, the mth moment of a weighted normal random variable
X’ with zero mean and a random standard deviation ¢, ¢ = sec ¢, where ¢ is
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uniformly distributed over (6;, 6.). We then have (cf., (4.5))

K(CO: 02) - K(cﬂyol) = 022—- 01 e—%cz 7 “
" o+ 2
az
(4.18) ¢ + —

¢ +

(0> 0,0 =6, <6 <w/2).
and so (cf., (4.6))

C

1- 2
a

co+ 7

(419) W(eo,0) — W(co,0,) = 28 P N B—
2 ¢ +

(c0>0;0=6. <6, <7/2).

Equations (4.8) and (4.9) for computing the coefficients of the fractions still
retain their validity, so that, correspondingly, the first few a; are given by (4.14),
with p,; interpreted as uz;(X’).} The convergence of the fractions in (4.18) and
(4.19) follows from the uniqueness property of {uz;j(X’)}.
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