A GENERALIZATION OF WALD’S IDENTITY WITH APPLICATIONS
TO RANDOM WALKS

By H. D. MiLLER
Statistical Laboratory, University of Cambridge

0. Summary. Let S, = X1 + --- + X., where the X; are independent
random variables with common m.g.f. ¢(¢) which is assumed to exist in a real
interval containing ¢ = 0. Let the random variable n be defined as the smallest
integer m for which either S,, = aor S, £ —8 (e > 0,8 > 0). Thus n can be
regarded as the time to absorption for the random walk S,, with absorbing bar-
riers at « and —B. Let S = §, and let

Fn(z) = P(—B8< 8 <a for k =12 ---m—1 and S, < z).
The main result of the paper is the identity
(0.1) E(e2") = 1 4 [2¢(t) — 1]F (2, 1),

where
F(z,t) =Y. z'"[ e dF ,(z).
m==0 —B

Wald’s identity follows formally from (0.1) by setting z = [¢(¢)]™". Regions of
validity of (0.1) and of Wald’s identity are discussed, and it is shown that the
latter holds for a larger range of values of ¢ than is usually supposed.

In Section 5 there are three examples. In the first we consider the case where
there is a single absorbing barrier and where the X; are discrete and bounded.
This is a gambler’s ruin problem, and we obtain an expression for the prob-
ability of ruin. In the second we use the classical random walk to illustrate the
region of validity of (0.1). In the third we obtain the Laplace transform of the
distribution of the time to absorption in a random walk in which steps of +1 and
—1 occur at random in continuous time.

1. Introduction. Let X;, X., --- be a sequence of independent random
variables with common distribution function A4(x) and moment generating
function

(1.1) e(t) = [_: ¢ dA(z).

Let So = 0 and let S, denote the cumulative sum
Sn=X1+Xo+ -+ + X, mz=1

We ignore the trivial case where the X; are constant with probability 1. The
X; can be regarded as the successive steps of a particle starting at the origin
and S,, then represents the distance of the particle from the origin at the mth
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step. Suppose that there are two absorbing barriers, one at o and the other at
—B(a > 0,8 > 0), and that the regions S,, = a and S,, £ —p are absorbing
regions. Let n be the integral-valued random variable denoting the step at which
absorption occurs. Thus n = 1 is defined by

—B < 8n < a m=12---n—1,
S = —B or 8= a
For convenience, write S = S, . Then the fundamental identity of Wald [12] is
(1.2) El{e(1)} "] = 1.

If & and B are both finite and ¢ is complex, then Wald showed (1.2) to be valid
for all values of ¢ for which |¢(t)| = 1.

In the single barrier case, say where @ < «, 3 = o, (1.2) has been used to
determine P(n < o). This is the probability of ultimate ruin in the gambler’s
ruin problem where X ; is the gambler’s loss at the jth play and E(X;) < 0. His
initial capital is «. (Cf., Bahadur [1], Bartlett [2], p. 89, Wald [12].) Another
application of Wald’s identity is the determination of the characteristic function
of n (Wald [12]). Some authors, in particular Bellman [3], Blackwell and
Girshick [4], Ruben [9], and Tweedie [11] have generalized (1.2) in the direction
of widening the class of processes for which such an identity is valid. Doob
([5], pp- 350-352) has shown that (1.2) may be derived from the theory of
Martingales. In statistics the most important application of (1.2) has been in
sequential analysis. However, the present paper has been written from the point
of view of random walks rather than that of sequential analysis.

Generally, Wald’s identity seems to have the character of an isolated result,
unconnected with the Chapman-Kolmogorov relations which hold for a Markov
process such as the random walk. In the present paper we stress the Chapman-
Kolmogorov approach and show that (1.2) may be derived thereby. We restrict
our attention to random variables whose distribution admits a moment generat-
ing function, since it is in this case that we are able to discuss regions of validity
of (0.1) and (1.2). However, (0.1) is true even if ¢(¢) exists only on the imagin-
ary axis.

2. Notation and Definitions. We adopt the convention that a single absorbing
barrier at, say, « is denoted by @ < «©, 8 = «. We define

Fu(z) =P(—8< S <a for k=1,2,---m—1 and Sa = z),

(2.1) Fo(z) =1, z 20,
=0, z < 0.

Fn.(z) is a distribution function in an extended sense simce Fn(®) < 1 in
general, owing to the fact that probability has been “leaking” through the bar-
riers (cf., Bartlett [2], p. 16). The relevant Chapman-Kolmogorov relations are
the recurrence relations satisfied by the F.(x), namely
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(2.2) Fulz) = L Az — y) dFma(y), (m=1,2-).

We define the double generating function

0

(23)  Flot) =3 2" [ﬂ ¢ dF,(z), (0<as »0<Bs )

where z and ¢ are complex variables whose respective regions will be stated as
the need arises. We define G,.(z) to be the distribution function for the unre-

stricted sum S, , i.e.,
(24) Gn(x) = P(Sn £ ).

We shall assume in the sequel, except in Section 4(i), that the integral (1.1)
defining ¢(¢) is convergent in a real interval surrounding ¢ = 0, say b < ¢ < q,
where —0 £ b < 0 < a £ «. This will be true, for example, if A’(x) exists
and decreases exponentially as x — ==. It follows that ¢(¢) is an analytic
function of ¢ in the strip b < Re () < a, and for real ¢, ¢” (t) > 0. Thus ¢(¢) can
have at most one minimum in b < ¢ < @, and we assume that this minimum
exists and that it occurs at the point ¢ . Thus #is the unique real root of ¢/(¢) = 0
in b < ¢t < a. (The point # does not necessarily exist for an analytic moment
generating function, for consider the probability generating function

M(z) = A1 — &) + (ea] + Bl(1 — ™)™ + (Pez7],

where 0 < ¢ < 1 and A and B are chosen so that M (1) = 1. M(z) has a Laurent

expansion in the annulus ¢ < |¢| < ¢, and 4 and B may be chosen so that

M’(z) has the same sign throughout the real interval ¢ < z<ch)
Let p = E(X;) = ¢'(0). Then to 0 according as pu < O and if p # 0 then

0 < o¢(t) <1.
3. Main Results.

LemMA 3.1. Let u denote the real part of t. Then the series (2.4) defining F(z, t)
18 convergent in the region

(1)
l2| < [p(t)]!, HSu< o,
(3.1) —1 for a< ©,8 = o,
le| < ¢, b<u<t,
and correspondingly
2 < [p(t)], —o <u=t,
(3-2) Il [ (0)]_1 ' fOT a = oo,ﬁ< ©;
lol <lp(w)]™, ®<u<a,
(ii)

(3.3) l2| < ()],  all finitet, fora< o, < o,
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PROOF.
(i) Suppose that & < ©,8 = o and w 2 ¢ . Then
(34) " F(zt) = Zo z"‘f e dF .(z).

Now we have

e dF ()

=< [:e“”dFm(x) éf_:e"” dG,.(z)

L
§ea(u—to) f etoz dGm(x)
'—00

= """ [¢(t)]™.

Thus if w = ¢, the series (3.4) is convergent for |2| < [p(t)] "
If w < &, then

P [: e dF,,(z)

< Iz"‘lf_ e dF,(z)

<z _[a e dQ.(x)
=lz|™ [¢(w)]",

and in this case the series (3.4) converges for |z| < [¢(u)] ™.

A similar argument gives the corresponding result for the case where @ =
and 8 < oo.

(ii) If a and g are both finite, then by a similar argument to that in (i) we
have

[ e arato) | 2 o lotw foru 4

and

‘fa e dF,.(z)

< [ (1) " foru < t.

Thus in this case the series (2.3) converges for all finite ¢ and ]z] < o)
This completes the proof.

ConvenTIoN. In the sequel we adopt the convention that in cases where
P(n < =), the probability of absorption, is less than unity, the expectation
symbol E is taken to mean p.E., where p. = P(n < =) and E. denotes ex-
pectation conditional on absorption.

THEOREM 3.1. (A Generalization of Wald’s identity). Let S and n denote the
random variables defined in Section 1. Then we have the identity

(3.5) E(e"2") = 1+ [ep(t) — 1]F (2, 1),
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and provided we adopt the above convention, (3.5) holds for all t for which ¢(t)
exists and for |2| < [¢(t)] ™"
Proor. In virtue of the definition of F,.(z), (2.1), we have

E(e¥2") = i 2" (j_.:s + f:) e dF.(z)

m=1

_ ;—; - ( [: _ [ﬁ) ¢ dF ()

=X o [ e arae) - P 0 — 1)

m=1

provided that the series on the right hand side converges; it converges absolutely
for |z] < [¢(u)]™, b < u < a, where again w = Re(t), since

[k e dF,(z)

00

0

< L ¢ dGa(z) = [o(u)]™

In virtue of the product theorem for the two-sided Laplace-Stieltjes transform
(Widder [14], Ch. VI, Theorem 16a), we obtain from (2.2), on inverting the
order of integration,

fw e dF . (z) = [o e” dA(y) L: e“dF (),
0 ) . (b <u< a)
= () [ " dFPua(a).
-8

Thus

E@) = Y (1) L ¢ dFps(z) — [F(z,0) — 1]

=1+ [2¢(t) — 1] F(z,t),

which is the identity (3.5).
As far as the region of validity is concerned, we note that if « < «, 8 < o,
then F(z, t) is an entire function of ¢ and a regular function of z for

lo| < [$(t)] ™"

The right hand side of (3.5) may thus be taken to define the left hand side for
l2| < [$(t)]"* and for those values of ¢ for which ¢(t) exists.
In the case where o < ® and 8 = o, we have

E@™2") = Y, z"'f e dF (),
m==l a

and an argument similar to that used in the proof of Lemma 3.1 shows that the
series on the right is convergent for
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2] < [p(u)] h=u< «,
56 ol <ol b s (4 = Re(t))
el <o), b<u=t.
Thus for fixed ¢ the left hand side of (3.5) is a regular function of z in the region
given by (3.6), while the z-region of regularity of F(z, t) is given by Lemma
3.1. Thus, as functions of 2, each side of (3.5) may be regarded as the analytic
continuation of the other beyond the common region of regularity, and the
identity therefore holds for |2| < [¢(t)]™" Each side is clearly an analytic func-
tion of ¢ for b < Re(t) < a.

A similar argument deals with the case where « = © and 8 < =, and the
theorem is therefore proved.

For the special case @« = 0, 8 = =, the identity (3.5) was proved by Spitzer
([9a), Theorem 3.1) who quotes the result as being due to G. Baxter.

The identity (3.5) is a generalization of Wald’s identity and the latter follows
formally from (3.5) by putting z = [¢(¢)]™". In Theorem 3.2 we show the im-
portance of the point # , the minimum point of ¢(¢), in determining the region
of validity of Wald’s identity.

TureoreM 3.2. (Wald’s identity) If we adopt the convention of the previous
theorem regarding the expectation symbol E, then Wald’s identity

(3.7) E(“p()]™) =1,

holds provided that |p(t)| > ¢(t) and in addition t satisfies
@) a>Re(t) >t f a<w, f=o;

(3.8) (ii) b<Re(t) <th if a<w, B<wo;
(iii) b<Re(t) <a if a< =, B < x.

Proor. The result follows from the previous theorem by setting z = [¢(¢)] ™ in
(3.5), and noting that F(z, t) is finite if |¢| < [#(%)]™" and if ¢ satisfies the con-
ditions (3.8) (Lemma 3.1). In general, we have, for b < Re(f) < a and

()] > ¢(t),
B =1+ . gl)-]_l[%(t) — 1JF(z, 1).

1i

It should be noted that the regions of validity of Wald’s identity are sufficient
for applications such as the determination of the probability of absorption and
the characteristic function of n. For example, if « < ©,8 = « and E(X;) > 0,
then £ < 0, and using the root ¢ = #(2) of 2¢(¢) = 1 which satisfies t,(2) > t
for z real, we obtain the approximate relation (Wald [12]) Ef{exp ati(2)2"} = 1
or E(z") = exp{—ati(2)} approximately.

4. Further notes and generalizations.

(i) If ¢(¢) is not defined except on the imaginary axis, and if « and 8 are
both finite, then the identity (3.5) is still valid although the region of validity
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is not the same since ¢, has no meaning. Stein [10] showed that as a consequence
of the “leakage” of probability, F..(e) — F.(—@) tends to zero exponentially
as m — . Thus for purely imaginary ¢, the series (2.3), regarded as a power
series in 2, has radius of convergence 1 + ¢, where ¢ = ¢(a, 8) > 0 and uni-
formly in ¢. Thus in (3.5) we may set z = [¢(¢)]”* provided that

lo(t)| > 1/(1 + ¢).

(ii) There is a connection between the identity (3.5) and the Wiener-Hopf
integral equation. In the following formal argument we suppose that the random
walk starts at A > 0 and that there is an absorbing barrier at the origin. We
assume that a(z) = A’(z) exists and it follows that fn(z) = Fn(z) also exists.
Let

Ja ) = 3 2al@),

where fo(z) = 8(x — h), 6(x) being the Dirac delta function. Then the recur-
rence relation (2.2) becomes

in@) = [ ale = p)fasly) dy
0
and thus
f(z,z) — 8(z — h) = zf: a(z — y)f(z,y) dy,
or
~sa—m = [ " (alz — ) — 8z — 1)}z, y) dy.

This is an integral equation of the Wiener-Hopf type with the difference kernel
{za(x — y) — 8(x — y)} and holds for z > 0. The method of solution is to
assume that for £ < 0, the left hand side is defined by some function g(z, )
which vanishes for £ > 0. Both sides of the equation are then transformed by
multiplying by e and integrating with respect to x from — « to «, thus ob-
taining
0 0

f e g(z2,z) de — e™ = {2¢(t) — 1} f e” f(z,y) dy.

Lo o
This is the identity (3.5) (in the generalized form (4.1) below) and it is seen

that the transform of the unknown function g(z, z) is identified with E(e"2").
(iii) If therandom walk startsat the pointh, then (3.5) becomes

(41) E(e"2") = " + {z6(t) — 1}F (2, 1).

(iv) It was shown by Wald [13] that (3.7) may be differentiated any number
of times under the expectation sign and then we may set ¢ = 0. This procedure
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can be used to obtain moment relations such as E(S) = E(X)E(n). The dif-
ferentiation property is a simple consequence of the fact that F(z, t) is a regular
function of z at the point z = 1 when (a) @ < », 8 < » whether or not ¢(¢)
isregular at ¢ = 0, (b) @ < ®©, 8 = «, E(X) > 0 and ¢(¢) regular and (c)
a= o, < o, E(X) < 0 and ¢(¢) again regular. We cannot use complex
variable arguments to obtain moment relations in cases (b) and (c¢) when
¢(t) is not regular.

(v) Suppose that the steps of a random walk occur in continuous time and
are governed by several independent distributions A4,(z), As(z), -+ An()
where steps with distribution 4A;(x) occur in a Poisson process with mean rate
7y, per unit time (k = 1, 2, --- N). Let S(r) be the displacement at time r and
let the function F.(z) correspond to F,(z) in the discrete-time case. Thus

F.(z) = P{—B8 < 8(s') <a for 0 <7 <7 and 8(7) £ }.

J(vp) = [0 e"'"{f_: e'.’z dF,(x)} dr

and J (v, 8) corresponds to F(z, t) of (2.3). We now have N moment generating
functions

Let

0

() = f o dA,(x), k=12 N.

Let T be the time at which absorption takes place (corresponding to » in the
discrete-time case), and let S = S(T). Then the continuous-time analogue of
(3.5) is

(42) B = 1+ [Znlo0) — 1) =] J6,0)

and the manner of derivation is similar. If we now set

v = ;Tk{iﬁk(o) -1,

then we obtain the corresponding form of Wald’s identity
E(exp [68 — T.}.‘, rdou(6) — 1}]) = 1.

Dvoretzky, Kiefer and Wolfowitz [5a] have shown that Wald’s identity holds
for processes in continuous time and have given applications to sequential tests
for such processes. In the third example of Section 5, we show how (4.2) may
be applied to a simple random walk in continuous time.

5. Three examples.

(i) We consider a discrete time random walk starting at the origin. The
steps X;(j = 1, 2, --- ) are discrete and bounded. There is a single absorbing
barrier at a, (o > 0). This is a gambler’s ruin problem, in which « is the gambler’s
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initial capital and X is the adversary’s gain at the jth play. Ruin corresponds
to absorption. It is well known that ruin is certain if E(X;) = 0. We shall use
the identity (3.5) to obtain an expression for the probability of ruin in the case
where E(X;) < 0. We now take a to be a positive integer.

The probability generating function for the X, is given by

M(w)=k2bmw'° (0<a< ®,0<b< ).
We assume that

(5.1) ged.(k — k) =1,

where & and k' run through all integers which satisfy px # 0 and p+ # 0. The
identity (3.5) now assumes the form

(5.2) Ew%"™) = 1 + {eM(w) — 1}H(z, w),
where

00 a—1
(5.3) H(z, w) = ;0 2" Z pi™w’
and

™ = P(S<a for k=1,2--m—1 and Sn =J)
In this case, wo > 0is defined by M’(wo) = 0, and wo 2 1 according as E(X) § 0.
The series (5.3) converges for
lo| < [M(wo)]7,  |w| Z w,
el < [M(DI™, ol < wo.
Since S can only take the values a, & + 1, -+ @ + o — 1, the left hand side
of (5.2) can be written as

a—1

(5.4) Ew®%™) = k; w* R (2),

where Ry(2) = P(S = a + k)E(2"|S = a + k). If w(z) is a root of the equa-
tion

(5.5) M(w) =1
then from (5.2) and (5.4) we obtain
(5.6) 3 ()" Re) = L

There will in general be a + b roots of (5.5) and P. Whittle has indicated
that, by a modification of an argument used by Lindley [8], we may show that
for z < [M(wo)]™, b of these roots lie inside the circle |w| = wo and a of them
lie outside. For complex z and |2| < [M (wo)]™", we denote the roots which, when
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z is real lie outside the circle |w| = wo, by wi(z), we(z), - - - wa(2). For real 2
we assume that these roots are distinet and satisfy

wi(2) £ |lwn(2)], k=223, - a.

It follows from the assumption (5.1) that the above inequality is strict in a
neighbourhood of z = 1.

Thus we obtain @ equations of the type (5.6), one from each of the roots
we(2) (k = 1,2, --- a), and these may be solved for the Ri(z). The solution
may be expressed in the form of a polynomial in w which takes the value 1 at
the points w = wx(2) (k = 1,2, --- a). Hence

:; w* R (2) = w* kg [we(2)] g fw — wi(z)}/{we(2z) — w;(2)}].

We put w = 1 and z = 1 and write wi(1) = wy, thus obtaining

a—1 a

(67) P(n < =) = kga Ry(1) = ;wz“gk{(l — w;)/(we — wy)}.

If E(X) > 0, then w; = 1 and hence P(n < «) = 1. This is well known. If
E(X) < 0 then wy > 1, and (5.7) is an explicit expression for the probability
of ruin or absorption. Also, as @ — «, we have the asymptotic relation

Pin < ) = i [T (€ = 1)/ = )} |10+ 06,
where & satisfies 0 < 8 < 1. The usual approximation for P(n < ) is
P(n < ») = wi’

approximately. See, for example, Wald [12] and Bartlett ([2], p. 20).
(ii) In this example we consider the classical random walk for which

PX=1)=p, PX=-1)=¢g=1-p

and we use the explicit results known for this case to illustrate the regions of
convergence discussed in Lemma 3.1. It will be seen that in the single barrier
case the regions given by Lemma 3.1 are sharper than in the two barrier case.
Feller ([6] pp. 318-323) discusses this random walk in detail. Again,  and g8
are positive integers.

Using the notation of the previous example we have M(w) = pw + qu .
The roots of zM(w) = 1 are

we(z) = {1 £ (1 — 4pqz2)*}(2pz)"l.
Ifa < © and 8 = o, then H(z, w) (5.3) is given by
H(z, w) = {wlw(2)]™* — 1}/[pe{l — wi(2)w Hw — wa(2)}],

the method of derivation being the same as in the previous example. The factor
w — wy(2) divides both the numerator and denominator of H(z, w), and there-
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fore w = w,(2) is not a singularity of H(z, w). On the other hand w = wy(2) is
a singularity of H(z, w). Now w = wy(z) corresponds to z = [M(w)]™" in the
region |w| > wo, while w = wy(2) corresponds to z = [M(w)]™ in the region
lw| < wo, where wo = (g/p)* in this case. Thus in the region |w| < wo, the
series for H (s, w) is convergent for |z| < |M(w)|™, while in the region |w| > w0,
the series is convergent for |z| < [M(wo)]™ = %(pg)~}. Lemma 3.1 gives these
z-regions as |z| < [M(Jw])]™ and |2| < [M(wo)]™" respectively.

If we consider the two barrier case, then from Feller’s results it is not difficult
to show that the z-singularity of H(z, w) nearest the origin is

2z = [2(pg)* cos {x/(a + BT > [M(wo)]™,

which means that the series for H(z, w) actually converges in a region larger
than that given by Lemma 3.1.

(iii) As an application of the identity (4.2) we consider a random walk in
continuous time, in which steps of +1 occur in a Poisson process with mean
rate r; , and steps of —1 occur in a Poisson process with mean rate r. . The bar-
riers are again at « and —pB (a, B positive integers). The use of (4.2) in this
case is made simple by the fact that the walk will terminate exactly on a barrier.
In the notation of Section 4(v), wehave¢,(8) = ¢’ and¢s(8) = ¢ °. If we write
w = ¢, then (4.2) takes the form

(58)  Ew’e™") =14+ {rn(w—1) + r(w" — 1) — }K(v, w),
where K (v, w) = J(v, log w). Let w;(v) and we(v) be the roots of
n(w —1) + r(w™ — 1) =o.
Then ‘
wo(v) = i+ 12— v & {(r + 1 — 0)? — 4y}l

Let p = P(S = @), p» = P(S = —B) and let E,, E, denote expectations
conditional on § = «, 8 = —p respectively. Then the left hand side of (5.8)
may be written w*p,Bi(e*") + w PpuEa(e™") and on setting w = w;(v), (1 =
1, 2), in (5.8), we obtain two equations

{wi(0)} *pBi(e7) + {wi(0)} PpaBa(e”) = 1, i=1,2,
whence, if we write wn = wi(v) and w, = wy(v),
pEi(e”T) = (wa’ — wi’)/(wrPwi — wiwi®)
and |
paBa(e”") = (wi — wi)/(wi'wi — wiwy®).

The above expressions are Laplace transforms of the two conditional distribu-
tions of 7, the time to absorption. For further details we refer to the paper of
Heathcote and Moyal [7], in which the above result is obtained using difference
equations and in which this random walk is discussed in detail.
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